Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20
21 /*
22 * We need to define the tracepoints somewhere, and tlb.c
23 * is only compied when SMP=y.
24 */
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/tlb.h>
27
28 #include "mm_internal.h"
29
30 /*
31 * Tables translating between page_cache_type_t and pte encoding.
32 * Minimal supported modes are defined statically, modified if more supported
33 * cache modes are available.
34 * Index into __cachemode2pte_tbl is the cachemode.
35 * Index into __pte2cachemode_tbl are the caching attribute bits of the pte
36 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
37 */
38 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
39 [_PAGE_CACHE_MODE_WB] = 0,
40 [_PAGE_CACHE_MODE_WC] = _PAGE_PWT,
41 [_PAGE_CACHE_MODE_UC_MINUS] = _PAGE_PCD,
42 [_PAGE_CACHE_MODE_UC] = _PAGE_PCD | _PAGE_PWT,
43 [_PAGE_CACHE_MODE_WT] = _PAGE_PCD,
44 [_PAGE_CACHE_MODE_WP] = _PAGE_PCD,
45 };
46 EXPORT_SYMBOL(__cachemode2pte_tbl);
47 uint8_t __pte2cachemode_tbl[8] = {
48 [__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB,
49 [__pte2cm_idx(_PAGE_PWT)] = _PAGE_CACHE_MODE_WC,
50 [__pte2cm_idx(_PAGE_PCD)] = _PAGE_CACHE_MODE_UC_MINUS,
51 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD)] = _PAGE_CACHE_MODE_UC,
52 [__pte2cm_idx(_PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
53 [__pte2cm_idx(_PAGE_PWT | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
54 [__pte2cm_idx(_PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
55 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
56 };
57 EXPORT_SYMBOL(__pte2cachemode_tbl);
58
59 static unsigned long __initdata pgt_buf_start;
60 static unsigned long __initdata pgt_buf_end;
61 static unsigned long __initdata pgt_buf_top;
62
63 static unsigned long min_pfn_mapped;
64
65 static bool __initdata can_use_brk_pgt = true;
66
67 /*
68 * Pages returned are already directly mapped.
69 *
70 * Changing that is likely to break Xen, see commit:
71 *
72 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
73 *
74 * for detailed information.
75 */
76 __ref void *alloc_low_pages(unsigned int num)
77 {
78 unsigned long pfn;
79 int i;
80
81 if (after_bootmem) {
82 unsigned int order;
83
84 order = get_order((unsigned long)num << PAGE_SHIFT);
85 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
86 __GFP_ZERO, order);
87 }
88
89 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
90 unsigned long ret;
91 if (min_pfn_mapped >= max_pfn_mapped)
92 panic("alloc_low_pages: ran out of memory");
93 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
94 max_pfn_mapped << PAGE_SHIFT,
95 PAGE_SIZE * num , PAGE_SIZE);
96 if (!ret)
97 panic("alloc_low_pages: can not alloc memory");
98 memblock_reserve(ret, PAGE_SIZE * num);
99 pfn = ret >> PAGE_SHIFT;
100 } else {
101 pfn = pgt_buf_end;
102 pgt_buf_end += num;
103 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
104 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
105 }
106
107 for (i = 0; i < num; i++) {
108 void *adr;
109
110 adr = __va((pfn + i) << PAGE_SHIFT);
111 clear_page(adr);
112 }
113
114 return __va(pfn << PAGE_SHIFT);
115 }
116
117 /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
118 #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
119 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
120 void __init early_alloc_pgt_buf(void)
121 {
122 unsigned long tables = INIT_PGT_BUF_SIZE;
123 phys_addr_t base;
124
125 base = __pa(extend_brk(tables, PAGE_SIZE));
126
127 pgt_buf_start = base >> PAGE_SHIFT;
128 pgt_buf_end = pgt_buf_start;
129 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
130 }
131
132 int after_bootmem;
133
134 int direct_gbpages
135 #ifdef CONFIG_DIRECT_GBPAGES
136 = 1
137 #endif
138 ;
139
140 static void __init init_gbpages(void)
141 {
142 #ifdef CONFIG_X86_64
143 if (direct_gbpages && cpu_has_gbpages)
144 printk(KERN_INFO "Using GB pages for direct mapping\n");
145 else
146 direct_gbpages = 0;
147 #endif
148 }
149
150 struct map_range {
151 unsigned long start;
152 unsigned long end;
153 unsigned page_size_mask;
154 };
155
156 static int page_size_mask;
157
158 static void __init probe_page_size_mask(void)
159 {
160 init_gbpages();
161
162 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
163 /*
164 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
165 * This will simplify cpa(), which otherwise needs to support splitting
166 * large pages into small in interrupt context, etc.
167 */
168 if (direct_gbpages)
169 page_size_mask |= 1 << PG_LEVEL_1G;
170 if (cpu_has_pse)
171 page_size_mask |= 1 << PG_LEVEL_2M;
172 #endif
173
174 /* Enable PSE if available */
175 if (cpu_has_pse)
176 cr4_set_bits_and_update_boot(X86_CR4_PSE);
177
178 /* Enable PGE if available */
179 if (cpu_has_pge) {
180 cr4_set_bits_and_update_boot(X86_CR4_PGE);
181 __supported_pte_mask |= _PAGE_GLOBAL;
182 } else
183 __supported_pte_mask &= ~_PAGE_GLOBAL;
184 }
185
186 #ifdef CONFIG_X86_32
187 #define NR_RANGE_MR 3
188 #else /* CONFIG_X86_64 */
189 #define NR_RANGE_MR 5
190 #endif
191
192 static int __meminit save_mr(struct map_range *mr, int nr_range,
193 unsigned long start_pfn, unsigned long end_pfn,
194 unsigned long page_size_mask)
195 {
196 if (start_pfn < end_pfn) {
197 if (nr_range >= NR_RANGE_MR)
198 panic("run out of range for init_memory_mapping\n");
199 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
200 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
201 mr[nr_range].page_size_mask = page_size_mask;
202 nr_range++;
203 }
204
205 return nr_range;
206 }
207
208 /*
209 * adjust the page_size_mask for small range to go with
210 * big page size instead small one if nearby are ram too.
211 */
212 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
213 int nr_range)
214 {
215 int i;
216
217 for (i = 0; i < nr_range; i++) {
218 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
219 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
220 unsigned long start = round_down(mr[i].start, PMD_SIZE);
221 unsigned long end = round_up(mr[i].end, PMD_SIZE);
222
223 #ifdef CONFIG_X86_32
224 if ((end >> PAGE_SHIFT) > max_low_pfn)
225 continue;
226 #endif
227
228 if (memblock_is_region_memory(start, end - start))
229 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
230 }
231 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
232 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
233 unsigned long start = round_down(mr[i].start, PUD_SIZE);
234 unsigned long end = round_up(mr[i].end, PUD_SIZE);
235
236 if (memblock_is_region_memory(start, end - start))
237 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
238 }
239 }
240 }
241
242 static const char *page_size_string(struct map_range *mr)
243 {
244 static const char str_1g[] = "1G";
245 static const char str_2m[] = "2M";
246 static const char str_4m[] = "4M";
247 static const char str_4k[] = "4k";
248
249 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
250 return str_1g;
251 /*
252 * 32-bit without PAE has a 4M large page size.
253 * PG_LEVEL_2M is misnamed, but we can at least
254 * print out the right size in the string.
255 */
256 if (IS_ENABLED(CONFIG_X86_32) &&
257 !IS_ENABLED(CONFIG_X86_PAE) &&
258 mr->page_size_mask & (1<<PG_LEVEL_2M))
259 return str_4m;
260
261 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
262 return str_2m;
263
264 return str_4k;
265 }
266
267 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
268 unsigned long start,
269 unsigned long end)
270 {
271 unsigned long start_pfn, end_pfn, limit_pfn;
272 unsigned long pfn;
273 int i;
274
275 limit_pfn = PFN_DOWN(end);
276
277 /* head if not big page alignment ? */
278 pfn = start_pfn = PFN_DOWN(start);
279 #ifdef CONFIG_X86_32
280 /*
281 * Don't use a large page for the first 2/4MB of memory
282 * because there are often fixed size MTRRs in there
283 * and overlapping MTRRs into large pages can cause
284 * slowdowns.
285 */
286 if (pfn == 0)
287 end_pfn = PFN_DOWN(PMD_SIZE);
288 else
289 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
290 #else /* CONFIG_X86_64 */
291 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
292 #endif
293 if (end_pfn > limit_pfn)
294 end_pfn = limit_pfn;
295 if (start_pfn < end_pfn) {
296 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
297 pfn = end_pfn;
298 }
299
300 /* big page (2M) range */
301 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
302 #ifdef CONFIG_X86_32
303 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
304 #else /* CONFIG_X86_64 */
305 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
306 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
307 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
308 #endif
309
310 if (start_pfn < end_pfn) {
311 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
312 page_size_mask & (1<<PG_LEVEL_2M));
313 pfn = end_pfn;
314 }
315
316 #ifdef CONFIG_X86_64
317 /* big page (1G) range */
318 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
319 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
320 if (start_pfn < end_pfn) {
321 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
322 page_size_mask &
323 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
324 pfn = end_pfn;
325 }
326
327 /* tail is not big page (1G) alignment */
328 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
329 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
330 if (start_pfn < end_pfn) {
331 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
332 page_size_mask & (1<<PG_LEVEL_2M));
333 pfn = end_pfn;
334 }
335 #endif
336
337 /* tail is not big page (2M) alignment */
338 start_pfn = pfn;
339 end_pfn = limit_pfn;
340 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
341
342 if (!after_bootmem)
343 adjust_range_page_size_mask(mr, nr_range);
344
345 /* try to merge same page size and continuous */
346 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
347 unsigned long old_start;
348 if (mr[i].end != mr[i+1].start ||
349 mr[i].page_size_mask != mr[i+1].page_size_mask)
350 continue;
351 /* move it */
352 old_start = mr[i].start;
353 memmove(&mr[i], &mr[i+1],
354 (nr_range - 1 - i) * sizeof(struct map_range));
355 mr[i--].start = old_start;
356 nr_range--;
357 }
358
359 for (i = 0; i < nr_range; i++)
360 printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
361 mr[i].start, mr[i].end - 1,
362 page_size_string(&mr[i]));
363
364 return nr_range;
365 }
366
367 struct range pfn_mapped[E820_X_MAX];
368 int nr_pfn_mapped;
369
370 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
371 {
372 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
373 nr_pfn_mapped, start_pfn, end_pfn);
374 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
375
376 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
377
378 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
379 max_low_pfn_mapped = max(max_low_pfn_mapped,
380 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
381 }
382
383 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
384 {
385 int i;
386
387 for (i = 0; i < nr_pfn_mapped; i++)
388 if ((start_pfn >= pfn_mapped[i].start) &&
389 (end_pfn <= pfn_mapped[i].end))
390 return true;
391
392 return false;
393 }
394
395 /*
396 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
397 * This runs before bootmem is initialized and gets pages directly from
398 * the physical memory. To access them they are temporarily mapped.
399 */
400 unsigned long __init_refok init_memory_mapping(unsigned long start,
401 unsigned long end)
402 {
403 struct map_range mr[NR_RANGE_MR];
404 unsigned long ret = 0;
405 int nr_range, i;
406
407 pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
408 start, end - 1);
409
410 memset(mr, 0, sizeof(mr));
411 nr_range = split_mem_range(mr, 0, start, end);
412
413 for (i = 0; i < nr_range; i++)
414 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
415 mr[i].page_size_mask);
416
417 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
418
419 return ret >> PAGE_SHIFT;
420 }
421
422 /*
423 * We need to iterate through the E820 memory map and create direct mappings
424 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
425 * create direct mappings for all pfns from [0 to max_low_pfn) and
426 * [4GB to max_pfn) because of possible memory holes in high addresses
427 * that cannot be marked as UC by fixed/variable range MTRRs.
428 * Depending on the alignment of E820 ranges, this may possibly result
429 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
430 *
431 * init_mem_mapping() calls init_range_memory_mapping() with big range.
432 * That range would have hole in the middle or ends, and only ram parts
433 * will be mapped in init_range_memory_mapping().
434 */
435 static unsigned long __init init_range_memory_mapping(
436 unsigned long r_start,
437 unsigned long r_end)
438 {
439 unsigned long start_pfn, end_pfn;
440 unsigned long mapped_ram_size = 0;
441 int i;
442
443 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
444 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
445 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
446 if (start >= end)
447 continue;
448
449 /*
450 * if it is overlapping with brk pgt, we need to
451 * alloc pgt buf from memblock instead.
452 */
453 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
454 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
455 init_memory_mapping(start, end);
456 mapped_ram_size += end - start;
457 can_use_brk_pgt = true;
458 }
459
460 return mapped_ram_size;
461 }
462
463 static unsigned long __init get_new_step_size(unsigned long step_size)
464 {
465 /*
466 * Initial mapped size is PMD_SIZE (2M).
467 * We can not set step_size to be PUD_SIZE (1G) yet.
468 * In worse case, when we cross the 1G boundary, and
469 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
470 * to map 1G range with PTE. Hence we use one less than the
471 * difference of page table level shifts.
472 *
473 * Don't need to worry about overflow in the top-down case, on 32bit,
474 * when step_size is 0, round_down() returns 0 for start, and that
475 * turns it into 0x100000000ULL.
476 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
477 * needs to be taken into consideration by the code below.
478 */
479 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
480 }
481
482 /**
483 * memory_map_top_down - Map [map_start, map_end) top down
484 * @map_start: start address of the target memory range
485 * @map_end: end address of the target memory range
486 *
487 * This function will setup direct mapping for memory range
488 * [map_start, map_end) in top-down. That said, the page tables
489 * will be allocated at the end of the memory, and we map the
490 * memory in top-down.
491 */
492 static void __init memory_map_top_down(unsigned long map_start,
493 unsigned long map_end)
494 {
495 unsigned long real_end, start, last_start;
496 unsigned long step_size;
497 unsigned long addr;
498 unsigned long mapped_ram_size = 0;
499
500 /* xen has big range in reserved near end of ram, skip it at first.*/
501 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
502 real_end = addr + PMD_SIZE;
503
504 /* step_size need to be small so pgt_buf from BRK could cover it */
505 step_size = PMD_SIZE;
506 max_pfn_mapped = 0; /* will get exact value next */
507 min_pfn_mapped = real_end >> PAGE_SHIFT;
508 last_start = start = real_end;
509
510 /*
511 * We start from the top (end of memory) and go to the bottom.
512 * The memblock_find_in_range() gets us a block of RAM from the
513 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
514 * for page table.
515 */
516 while (last_start > map_start) {
517 if (last_start > step_size) {
518 start = round_down(last_start - 1, step_size);
519 if (start < map_start)
520 start = map_start;
521 } else
522 start = map_start;
523 mapped_ram_size += init_range_memory_mapping(start,
524 last_start);
525 last_start = start;
526 min_pfn_mapped = last_start >> PAGE_SHIFT;
527 if (mapped_ram_size >= step_size)
528 step_size = get_new_step_size(step_size);
529 }
530
531 if (real_end < map_end)
532 init_range_memory_mapping(real_end, map_end);
533 }
534
535 /**
536 * memory_map_bottom_up - Map [map_start, map_end) bottom up
537 * @map_start: start address of the target memory range
538 * @map_end: end address of the target memory range
539 *
540 * This function will setup direct mapping for memory range
541 * [map_start, map_end) in bottom-up. Since we have limited the
542 * bottom-up allocation above the kernel, the page tables will
543 * be allocated just above the kernel and we map the memory
544 * in [map_start, map_end) in bottom-up.
545 */
546 static void __init memory_map_bottom_up(unsigned long map_start,
547 unsigned long map_end)
548 {
549 unsigned long next, start;
550 unsigned long mapped_ram_size = 0;
551 /* step_size need to be small so pgt_buf from BRK could cover it */
552 unsigned long step_size = PMD_SIZE;
553
554 start = map_start;
555 min_pfn_mapped = start >> PAGE_SHIFT;
556
557 /*
558 * We start from the bottom (@map_start) and go to the top (@map_end).
559 * The memblock_find_in_range() gets us a block of RAM from the
560 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
561 * for page table.
562 */
563 while (start < map_end) {
564 if (step_size && map_end - start > step_size) {
565 next = round_up(start + 1, step_size);
566 if (next > map_end)
567 next = map_end;
568 } else {
569 next = map_end;
570 }
571
572 mapped_ram_size += init_range_memory_mapping(start, next);
573 start = next;
574
575 if (mapped_ram_size >= step_size)
576 step_size = get_new_step_size(step_size);
577 }
578 }
579
580 void __init init_mem_mapping(void)
581 {
582 unsigned long end;
583
584 probe_page_size_mask();
585
586 #ifdef CONFIG_X86_64
587 end = max_pfn << PAGE_SHIFT;
588 #else
589 end = max_low_pfn << PAGE_SHIFT;
590 #endif
591
592 /* the ISA range is always mapped regardless of memory holes */
593 init_memory_mapping(0, ISA_END_ADDRESS);
594
595 /*
596 * If the allocation is in bottom-up direction, we setup direct mapping
597 * in bottom-up, otherwise we setup direct mapping in top-down.
598 */
599 if (memblock_bottom_up()) {
600 unsigned long kernel_end = __pa_symbol(_end);
601
602 /*
603 * we need two separate calls here. This is because we want to
604 * allocate page tables above the kernel. So we first map
605 * [kernel_end, end) to make memory above the kernel be mapped
606 * as soon as possible. And then use page tables allocated above
607 * the kernel to map [ISA_END_ADDRESS, kernel_end).
608 */
609 memory_map_bottom_up(kernel_end, end);
610 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
611 } else {
612 memory_map_top_down(ISA_END_ADDRESS, end);
613 }
614
615 #ifdef CONFIG_X86_64
616 if (max_pfn > max_low_pfn) {
617 /* can we preseve max_low_pfn ?*/
618 max_low_pfn = max_pfn;
619 }
620 #else
621 early_ioremap_page_table_range_init();
622 #endif
623
624 load_cr3(swapper_pg_dir);
625 __flush_tlb_all();
626
627 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
628 }
629
630 /*
631 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
632 * is valid. The argument is a physical page number.
633 *
634 *
635 * On x86, access has to be given to the first megabyte of ram because that area
636 * contains BIOS code and data regions used by X and dosemu and similar apps.
637 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
638 * mmio resources as well as potential bios/acpi data regions.
639 */
640 int devmem_is_allowed(unsigned long pagenr)
641 {
642 if (pagenr < 256)
643 return 1;
644 if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
645 return 0;
646 if (!page_is_ram(pagenr))
647 return 1;
648 return 0;
649 }
650
651 void free_init_pages(char *what, unsigned long begin, unsigned long end)
652 {
653 unsigned long begin_aligned, end_aligned;
654
655 /* Make sure boundaries are page aligned */
656 begin_aligned = PAGE_ALIGN(begin);
657 end_aligned = end & PAGE_MASK;
658
659 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
660 begin = begin_aligned;
661 end = end_aligned;
662 }
663
664 if (begin >= end)
665 return;
666
667 /*
668 * If debugging page accesses then do not free this memory but
669 * mark them not present - any buggy init-section access will
670 * create a kernel page fault:
671 */
672 #ifdef CONFIG_DEBUG_PAGEALLOC
673 printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
674 begin, end - 1);
675 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
676 #else
677 /*
678 * We just marked the kernel text read only above, now that
679 * we are going to free part of that, we need to make that
680 * writeable and non-executable first.
681 */
682 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
683 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
684
685 free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
686 #endif
687 }
688
689 void free_initmem(void)
690 {
691 free_init_pages("unused kernel",
692 (unsigned long)(&__init_begin),
693 (unsigned long)(&__init_end));
694 }
695
696 #ifdef CONFIG_BLK_DEV_INITRD
697 void __init free_initrd_mem(unsigned long start, unsigned long end)
698 {
699 #ifdef CONFIG_MICROCODE_EARLY
700 /*
701 * Remember, initrd memory may contain microcode or other useful things.
702 * Before we lose initrd mem, we need to find a place to hold them
703 * now that normal virtual memory is enabled.
704 */
705 save_microcode_in_initrd();
706 #endif
707
708 /*
709 * end could be not aligned, and We can not align that,
710 * decompresser could be confused by aligned initrd_end
711 * We already reserve the end partial page before in
712 * - i386_start_kernel()
713 * - x86_64_start_kernel()
714 * - relocate_initrd()
715 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
716 */
717 free_init_pages("initrd", start, PAGE_ALIGN(end));
718 }
719 #endif
720
721 void __init zone_sizes_init(void)
722 {
723 unsigned long max_zone_pfns[MAX_NR_ZONES];
724
725 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
726
727 #ifdef CONFIG_ZONE_DMA
728 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
729 #endif
730 #ifdef CONFIG_ZONE_DMA32
731 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
732 #endif
733 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
734 #ifdef CONFIG_HIGHMEM
735 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
736 #endif
737
738 free_area_init_nodes(max_zone_pfns);
739 }
740
741 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
742 #ifdef CONFIG_SMP
743 .active_mm = &init_mm,
744 .state = 0,
745 #endif
746 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
747 };
748 EXPORT_SYMBOL_GPL(cpu_tlbstate);
749
750 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
751 {
752 /* entry 0 MUST be WB (hardwired to speed up translations) */
753 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
754
755 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
756 __pte2cachemode_tbl[entry] = cache;
757 }
This page took 0.051342 seconds and 5 git commands to generate.