Merge remote-tracking branch 'asoc/fix/samsung' into asoc-linus
[deliverable/linux.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20
21 /*
22 * We need to define the tracepoints somewhere, and tlb.c
23 * is only compied when SMP=y.
24 */
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/tlb.h>
27
28 #include "mm_internal.h"
29
30 /*
31 * Tables translating between page_cache_type_t and pte encoding.
32 * Minimal supported modes are defined statically, modified if more supported
33 * cache modes are available.
34 * Index into __cachemode2pte_tbl is the cachemode.
35 * Index into __pte2cachemode_tbl are the caching attribute bits of the pte
36 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
37 */
38 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
39 [_PAGE_CACHE_MODE_WB] = 0,
40 [_PAGE_CACHE_MODE_WC] = _PAGE_PWT,
41 [_PAGE_CACHE_MODE_UC_MINUS] = _PAGE_PCD,
42 [_PAGE_CACHE_MODE_UC] = _PAGE_PCD | _PAGE_PWT,
43 [_PAGE_CACHE_MODE_WT] = _PAGE_PCD,
44 [_PAGE_CACHE_MODE_WP] = _PAGE_PCD,
45 };
46 EXPORT_SYMBOL(__cachemode2pte_tbl);
47 uint8_t __pte2cachemode_tbl[8] = {
48 [__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB,
49 [__pte2cm_idx(_PAGE_PWT)] = _PAGE_CACHE_MODE_WC,
50 [__pte2cm_idx(_PAGE_PCD)] = _PAGE_CACHE_MODE_UC_MINUS,
51 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD)] = _PAGE_CACHE_MODE_UC,
52 [__pte2cm_idx(_PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
53 [__pte2cm_idx(_PAGE_PWT | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
54 [__pte2cm_idx(_PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
55 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
56 };
57 EXPORT_SYMBOL(__pte2cachemode_tbl);
58
59 static unsigned long __initdata pgt_buf_start;
60 static unsigned long __initdata pgt_buf_end;
61 static unsigned long __initdata pgt_buf_top;
62
63 static unsigned long min_pfn_mapped;
64
65 static bool __initdata can_use_brk_pgt = true;
66
67 /*
68 * Pages returned are already directly mapped.
69 *
70 * Changing that is likely to break Xen, see commit:
71 *
72 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
73 *
74 * for detailed information.
75 */
76 __ref void *alloc_low_pages(unsigned int num)
77 {
78 unsigned long pfn;
79 int i;
80
81 if (after_bootmem) {
82 unsigned int order;
83
84 order = get_order((unsigned long)num << PAGE_SHIFT);
85 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
86 __GFP_ZERO, order);
87 }
88
89 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
90 unsigned long ret;
91 if (min_pfn_mapped >= max_pfn_mapped)
92 panic("alloc_low_pages: ran out of memory");
93 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
94 max_pfn_mapped << PAGE_SHIFT,
95 PAGE_SIZE * num , PAGE_SIZE);
96 if (!ret)
97 panic("alloc_low_pages: can not alloc memory");
98 memblock_reserve(ret, PAGE_SIZE * num);
99 pfn = ret >> PAGE_SHIFT;
100 } else {
101 pfn = pgt_buf_end;
102 pgt_buf_end += num;
103 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
104 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
105 }
106
107 for (i = 0; i < num; i++) {
108 void *adr;
109
110 adr = __va((pfn + i) << PAGE_SHIFT);
111 clear_page(adr);
112 }
113
114 return __va(pfn << PAGE_SHIFT);
115 }
116
117 /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
118 #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
119 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
120 void __init early_alloc_pgt_buf(void)
121 {
122 unsigned long tables = INIT_PGT_BUF_SIZE;
123 phys_addr_t base;
124
125 base = __pa(extend_brk(tables, PAGE_SIZE));
126
127 pgt_buf_start = base >> PAGE_SHIFT;
128 pgt_buf_end = pgt_buf_start;
129 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
130 }
131
132 int after_bootmem;
133
134 int direct_gbpages
135 #ifdef CONFIG_DIRECT_GBPAGES
136 = 1
137 #endif
138 ;
139
140 static void __init init_gbpages(void)
141 {
142 #ifdef CONFIG_X86_64
143 if (direct_gbpages && cpu_has_gbpages)
144 printk(KERN_INFO "Using GB pages for direct mapping\n");
145 else
146 direct_gbpages = 0;
147 #endif
148 }
149
150 struct map_range {
151 unsigned long start;
152 unsigned long end;
153 unsigned page_size_mask;
154 };
155
156 static int page_size_mask;
157
158 static void __init probe_page_size_mask(void)
159 {
160 init_gbpages();
161
162 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
163 /*
164 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
165 * This will simplify cpa(), which otherwise needs to support splitting
166 * large pages into small in interrupt context, etc.
167 */
168 if (direct_gbpages)
169 page_size_mask |= 1 << PG_LEVEL_1G;
170 if (cpu_has_pse)
171 page_size_mask |= 1 << PG_LEVEL_2M;
172 #endif
173
174 /* Enable PSE if available */
175 if (cpu_has_pse)
176 cr4_set_bits_and_update_boot(X86_CR4_PSE);
177
178 /* Enable PGE if available */
179 if (cpu_has_pge) {
180 cr4_set_bits_and_update_boot(X86_CR4_PGE);
181 __supported_pte_mask |= _PAGE_GLOBAL;
182 }
183 }
184
185 #ifdef CONFIG_X86_32
186 #define NR_RANGE_MR 3
187 #else /* CONFIG_X86_64 */
188 #define NR_RANGE_MR 5
189 #endif
190
191 static int __meminit save_mr(struct map_range *mr, int nr_range,
192 unsigned long start_pfn, unsigned long end_pfn,
193 unsigned long page_size_mask)
194 {
195 if (start_pfn < end_pfn) {
196 if (nr_range >= NR_RANGE_MR)
197 panic("run out of range for init_memory_mapping\n");
198 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
199 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
200 mr[nr_range].page_size_mask = page_size_mask;
201 nr_range++;
202 }
203
204 return nr_range;
205 }
206
207 /*
208 * adjust the page_size_mask for small range to go with
209 * big page size instead small one if nearby are ram too.
210 */
211 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
212 int nr_range)
213 {
214 int i;
215
216 for (i = 0; i < nr_range; i++) {
217 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
218 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
219 unsigned long start = round_down(mr[i].start, PMD_SIZE);
220 unsigned long end = round_up(mr[i].end, PMD_SIZE);
221
222 #ifdef CONFIG_X86_32
223 if ((end >> PAGE_SHIFT) > max_low_pfn)
224 continue;
225 #endif
226
227 if (memblock_is_region_memory(start, end - start))
228 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
229 }
230 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
231 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
232 unsigned long start = round_down(mr[i].start, PUD_SIZE);
233 unsigned long end = round_up(mr[i].end, PUD_SIZE);
234
235 if (memblock_is_region_memory(start, end - start))
236 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
237 }
238 }
239 }
240
241 static const char *page_size_string(struct map_range *mr)
242 {
243 static const char str_1g[] = "1G";
244 static const char str_2m[] = "2M";
245 static const char str_4m[] = "4M";
246 static const char str_4k[] = "4k";
247
248 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
249 return str_1g;
250 /*
251 * 32-bit without PAE has a 4M large page size.
252 * PG_LEVEL_2M is misnamed, but we can at least
253 * print out the right size in the string.
254 */
255 if (IS_ENABLED(CONFIG_X86_32) &&
256 !IS_ENABLED(CONFIG_X86_PAE) &&
257 mr->page_size_mask & (1<<PG_LEVEL_2M))
258 return str_4m;
259
260 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
261 return str_2m;
262
263 return str_4k;
264 }
265
266 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
267 unsigned long start,
268 unsigned long end)
269 {
270 unsigned long start_pfn, end_pfn, limit_pfn;
271 unsigned long pfn;
272 int i;
273
274 limit_pfn = PFN_DOWN(end);
275
276 /* head if not big page alignment ? */
277 pfn = start_pfn = PFN_DOWN(start);
278 #ifdef CONFIG_X86_32
279 /*
280 * Don't use a large page for the first 2/4MB of memory
281 * because there are often fixed size MTRRs in there
282 * and overlapping MTRRs into large pages can cause
283 * slowdowns.
284 */
285 if (pfn == 0)
286 end_pfn = PFN_DOWN(PMD_SIZE);
287 else
288 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
289 #else /* CONFIG_X86_64 */
290 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
291 #endif
292 if (end_pfn > limit_pfn)
293 end_pfn = limit_pfn;
294 if (start_pfn < end_pfn) {
295 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
296 pfn = end_pfn;
297 }
298
299 /* big page (2M) range */
300 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
301 #ifdef CONFIG_X86_32
302 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
303 #else /* CONFIG_X86_64 */
304 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
305 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
306 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
307 #endif
308
309 if (start_pfn < end_pfn) {
310 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
311 page_size_mask & (1<<PG_LEVEL_2M));
312 pfn = end_pfn;
313 }
314
315 #ifdef CONFIG_X86_64
316 /* big page (1G) range */
317 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
318 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
319 if (start_pfn < end_pfn) {
320 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
321 page_size_mask &
322 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
323 pfn = end_pfn;
324 }
325
326 /* tail is not big page (1G) alignment */
327 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
328 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
329 if (start_pfn < end_pfn) {
330 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
331 page_size_mask & (1<<PG_LEVEL_2M));
332 pfn = end_pfn;
333 }
334 #endif
335
336 /* tail is not big page (2M) alignment */
337 start_pfn = pfn;
338 end_pfn = limit_pfn;
339 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
340
341 if (!after_bootmem)
342 adjust_range_page_size_mask(mr, nr_range);
343
344 /* try to merge same page size and continuous */
345 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
346 unsigned long old_start;
347 if (mr[i].end != mr[i+1].start ||
348 mr[i].page_size_mask != mr[i+1].page_size_mask)
349 continue;
350 /* move it */
351 old_start = mr[i].start;
352 memmove(&mr[i], &mr[i+1],
353 (nr_range - 1 - i) * sizeof(struct map_range));
354 mr[i--].start = old_start;
355 nr_range--;
356 }
357
358 for (i = 0; i < nr_range; i++)
359 printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
360 mr[i].start, mr[i].end - 1,
361 page_size_string(&mr[i]));
362
363 return nr_range;
364 }
365
366 struct range pfn_mapped[E820_X_MAX];
367 int nr_pfn_mapped;
368
369 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
370 {
371 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
372 nr_pfn_mapped, start_pfn, end_pfn);
373 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
374
375 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
376
377 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
378 max_low_pfn_mapped = max(max_low_pfn_mapped,
379 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
380 }
381
382 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
383 {
384 int i;
385
386 for (i = 0; i < nr_pfn_mapped; i++)
387 if ((start_pfn >= pfn_mapped[i].start) &&
388 (end_pfn <= pfn_mapped[i].end))
389 return true;
390
391 return false;
392 }
393
394 /*
395 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
396 * This runs before bootmem is initialized and gets pages directly from
397 * the physical memory. To access them they are temporarily mapped.
398 */
399 unsigned long __init_refok init_memory_mapping(unsigned long start,
400 unsigned long end)
401 {
402 struct map_range mr[NR_RANGE_MR];
403 unsigned long ret = 0;
404 int nr_range, i;
405
406 pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
407 start, end - 1);
408
409 memset(mr, 0, sizeof(mr));
410 nr_range = split_mem_range(mr, 0, start, end);
411
412 for (i = 0; i < nr_range; i++)
413 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
414 mr[i].page_size_mask);
415
416 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
417
418 return ret >> PAGE_SHIFT;
419 }
420
421 /*
422 * We need to iterate through the E820 memory map and create direct mappings
423 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
424 * create direct mappings for all pfns from [0 to max_low_pfn) and
425 * [4GB to max_pfn) because of possible memory holes in high addresses
426 * that cannot be marked as UC by fixed/variable range MTRRs.
427 * Depending on the alignment of E820 ranges, this may possibly result
428 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
429 *
430 * init_mem_mapping() calls init_range_memory_mapping() with big range.
431 * That range would have hole in the middle or ends, and only ram parts
432 * will be mapped in init_range_memory_mapping().
433 */
434 static unsigned long __init init_range_memory_mapping(
435 unsigned long r_start,
436 unsigned long r_end)
437 {
438 unsigned long start_pfn, end_pfn;
439 unsigned long mapped_ram_size = 0;
440 int i;
441
442 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
443 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
444 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
445 if (start >= end)
446 continue;
447
448 /*
449 * if it is overlapping with brk pgt, we need to
450 * alloc pgt buf from memblock instead.
451 */
452 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
453 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
454 init_memory_mapping(start, end);
455 mapped_ram_size += end - start;
456 can_use_brk_pgt = true;
457 }
458
459 return mapped_ram_size;
460 }
461
462 static unsigned long __init get_new_step_size(unsigned long step_size)
463 {
464 /*
465 * Initial mapped size is PMD_SIZE (2M).
466 * We can not set step_size to be PUD_SIZE (1G) yet.
467 * In worse case, when we cross the 1G boundary, and
468 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
469 * to map 1G range with PTE. Hence we use one less than the
470 * difference of page table level shifts.
471 *
472 * Don't need to worry about overflow in the top-down case, on 32bit,
473 * when step_size is 0, round_down() returns 0 for start, and that
474 * turns it into 0x100000000ULL.
475 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
476 * needs to be taken into consideration by the code below.
477 */
478 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
479 }
480
481 /**
482 * memory_map_top_down - Map [map_start, map_end) top down
483 * @map_start: start address of the target memory range
484 * @map_end: end address of the target memory range
485 *
486 * This function will setup direct mapping for memory range
487 * [map_start, map_end) in top-down. That said, the page tables
488 * will be allocated at the end of the memory, and we map the
489 * memory in top-down.
490 */
491 static void __init memory_map_top_down(unsigned long map_start,
492 unsigned long map_end)
493 {
494 unsigned long real_end, start, last_start;
495 unsigned long step_size;
496 unsigned long addr;
497 unsigned long mapped_ram_size = 0;
498
499 /* xen has big range in reserved near end of ram, skip it at first.*/
500 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
501 real_end = addr + PMD_SIZE;
502
503 /* step_size need to be small so pgt_buf from BRK could cover it */
504 step_size = PMD_SIZE;
505 max_pfn_mapped = 0; /* will get exact value next */
506 min_pfn_mapped = real_end >> PAGE_SHIFT;
507 last_start = start = real_end;
508
509 /*
510 * We start from the top (end of memory) and go to the bottom.
511 * The memblock_find_in_range() gets us a block of RAM from the
512 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
513 * for page table.
514 */
515 while (last_start > map_start) {
516 if (last_start > step_size) {
517 start = round_down(last_start - 1, step_size);
518 if (start < map_start)
519 start = map_start;
520 } else
521 start = map_start;
522 mapped_ram_size += init_range_memory_mapping(start,
523 last_start);
524 last_start = start;
525 min_pfn_mapped = last_start >> PAGE_SHIFT;
526 if (mapped_ram_size >= step_size)
527 step_size = get_new_step_size(step_size);
528 }
529
530 if (real_end < map_end)
531 init_range_memory_mapping(real_end, map_end);
532 }
533
534 /**
535 * memory_map_bottom_up - Map [map_start, map_end) bottom up
536 * @map_start: start address of the target memory range
537 * @map_end: end address of the target memory range
538 *
539 * This function will setup direct mapping for memory range
540 * [map_start, map_end) in bottom-up. Since we have limited the
541 * bottom-up allocation above the kernel, the page tables will
542 * be allocated just above the kernel and we map the memory
543 * in [map_start, map_end) in bottom-up.
544 */
545 static void __init memory_map_bottom_up(unsigned long map_start,
546 unsigned long map_end)
547 {
548 unsigned long next, start;
549 unsigned long mapped_ram_size = 0;
550 /* step_size need to be small so pgt_buf from BRK could cover it */
551 unsigned long step_size = PMD_SIZE;
552
553 start = map_start;
554 min_pfn_mapped = start >> PAGE_SHIFT;
555
556 /*
557 * We start from the bottom (@map_start) and go to the top (@map_end).
558 * The memblock_find_in_range() gets us a block of RAM from the
559 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
560 * for page table.
561 */
562 while (start < map_end) {
563 if (step_size && map_end - start > step_size) {
564 next = round_up(start + 1, step_size);
565 if (next > map_end)
566 next = map_end;
567 } else {
568 next = map_end;
569 }
570
571 mapped_ram_size += init_range_memory_mapping(start, next);
572 start = next;
573
574 if (mapped_ram_size >= step_size)
575 step_size = get_new_step_size(step_size);
576 }
577 }
578
579 void __init init_mem_mapping(void)
580 {
581 unsigned long end;
582
583 probe_page_size_mask();
584
585 #ifdef CONFIG_X86_64
586 end = max_pfn << PAGE_SHIFT;
587 #else
588 end = max_low_pfn << PAGE_SHIFT;
589 #endif
590
591 /* the ISA range is always mapped regardless of memory holes */
592 init_memory_mapping(0, ISA_END_ADDRESS);
593
594 /*
595 * If the allocation is in bottom-up direction, we setup direct mapping
596 * in bottom-up, otherwise we setup direct mapping in top-down.
597 */
598 if (memblock_bottom_up()) {
599 unsigned long kernel_end = __pa_symbol(_end);
600
601 /*
602 * we need two separate calls here. This is because we want to
603 * allocate page tables above the kernel. So we first map
604 * [kernel_end, end) to make memory above the kernel be mapped
605 * as soon as possible. And then use page tables allocated above
606 * the kernel to map [ISA_END_ADDRESS, kernel_end).
607 */
608 memory_map_bottom_up(kernel_end, end);
609 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
610 } else {
611 memory_map_top_down(ISA_END_ADDRESS, end);
612 }
613
614 #ifdef CONFIG_X86_64
615 if (max_pfn > max_low_pfn) {
616 /* can we preseve max_low_pfn ?*/
617 max_low_pfn = max_pfn;
618 }
619 #else
620 early_ioremap_page_table_range_init();
621 #endif
622
623 load_cr3(swapper_pg_dir);
624 __flush_tlb_all();
625
626 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
627 }
628
629 /*
630 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
631 * is valid. The argument is a physical page number.
632 *
633 *
634 * On x86, access has to be given to the first megabyte of ram because that area
635 * contains BIOS code and data regions used by X and dosemu and similar apps.
636 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
637 * mmio resources as well as potential bios/acpi data regions.
638 */
639 int devmem_is_allowed(unsigned long pagenr)
640 {
641 if (pagenr < 256)
642 return 1;
643 if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
644 return 0;
645 if (!page_is_ram(pagenr))
646 return 1;
647 return 0;
648 }
649
650 void free_init_pages(char *what, unsigned long begin, unsigned long end)
651 {
652 unsigned long begin_aligned, end_aligned;
653
654 /* Make sure boundaries are page aligned */
655 begin_aligned = PAGE_ALIGN(begin);
656 end_aligned = end & PAGE_MASK;
657
658 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
659 begin = begin_aligned;
660 end = end_aligned;
661 }
662
663 if (begin >= end)
664 return;
665
666 /*
667 * If debugging page accesses then do not free this memory but
668 * mark them not present - any buggy init-section access will
669 * create a kernel page fault:
670 */
671 #ifdef CONFIG_DEBUG_PAGEALLOC
672 printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
673 begin, end - 1);
674 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
675 #else
676 /*
677 * We just marked the kernel text read only above, now that
678 * we are going to free part of that, we need to make that
679 * writeable and non-executable first.
680 */
681 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
682 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
683
684 free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
685 #endif
686 }
687
688 void free_initmem(void)
689 {
690 free_init_pages("unused kernel",
691 (unsigned long)(&__init_begin),
692 (unsigned long)(&__init_end));
693 }
694
695 #ifdef CONFIG_BLK_DEV_INITRD
696 void __init free_initrd_mem(unsigned long start, unsigned long end)
697 {
698 #ifdef CONFIG_MICROCODE_EARLY
699 /*
700 * Remember, initrd memory may contain microcode or other useful things.
701 * Before we lose initrd mem, we need to find a place to hold them
702 * now that normal virtual memory is enabled.
703 */
704 save_microcode_in_initrd();
705 #endif
706
707 /*
708 * end could be not aligned, and We can not align that,
709 * decompresser could be confused by aligned initrd_end
710 * We already reserve the end partial page before in
711 * - i386_start_kernel()
712 * - x86_64_start_kernel()
713 * - relocate_initrd()
714 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
715 */
716 free_init_pages("initrd", start, PAGE_ALIGN(end));
717 }
718 #endif
719
720 void __init zone_sizes_init(void)
721 {
722 unsigned long max_zone_pfns[MAX_NR_ZONES];
723
724 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
725
726 #ifdef CONFIG_ZONE_DMA
727 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
728 #endif
729 #ifdef CONFIG_ZONE_DMA32
730 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
731 #endif
732 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
733 #ifdef CONFIG_HIGHMEM
734 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
735 #endif
736
737 free_area_init_nodes(max_zone_pfns);
738 }
739
740 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
741 #ifdef CONFIG_SMP
742 .active_mm = &init_mm,
743 .state = 0,
744 #endif
745 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
746 };
747 EXPORT_SYMBOL_GPL(cpu_tlbstate);
748
749 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
750 {
751 /* entry 0 MUST be WB (hardwired to speed up translations) */
752 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
753
754 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
755 __pte2cachemode_tbl[entry] = cache;
756 }
This page took 0.078022 seconds and 5 git commands to generate.