x86, mm: Move init_memory_mapping calling out of setup.c
[deliverable/linux.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19
20 unsigned long __initdata pgt_buf_start;
21 unsigned long __meminitdata pgt_buf_end;
22 unsigned long __meminitdata pgt_buf_top;
23
24 int after_bootmem;
25
26 int direct_gbpages
27 #ifdef CONFIG_DIRECT_GBPAGES
28 = 1
29 #endif
30 ;
31
32 struct map_range {
33 unsigned long start;
34 unsigned long end;
35 unsigned page_size_mask;
36 };
37
38 static int page_size_mask;
39
40 static void __init probe_page_size_mask(void)
41 {
42 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
43 /*
44 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
45 * This will simplify cpa(), which otherwise needs to support splitting
46 * large pages into small in interrupt context, etc.
47 */
48 if (direct_gbpages)
49 page_size_mask |= 1 << PG_LEVEL_1G;
50 if (cpu_has_pse)
51 page_size_mask |= 1 << PG_LEVEL_2M;
52 #endif
53
54 /* Enable PSE if available */
55 if (cpu_has_pse)
56 set_in_cr4(X86_CR4_PSE);
57
58 /* Enable PGE if available */
59 if (cpu_has_pge) {
60 set_in_cr4(X86_CR4_PGE);
61 __supported_pte_mask |= _PAGE_GLOBAL;
62 }
63 }
64 void __init native_pagetable_reserve(u64 start, u64 end)
65 {
66 memblock_reserve(start, end - start);
67 }
68
69 #ifdef CONFIG_X86_32
70 #define NR_RANGE_MR 3
71 #else /* CONFIG_X86_64 */
72 #define NR_RANGE_MR 5
73 #endif
74
75 static int __meminit save_mr(struct map_range *mr, int nr_range,
76 unsigned long start_pfn, unsigned long end_pfn,
77 unsigned long page_size_mask)
78 {
79 if (start_pfn < end_pfn) {
80 if (nr_range >= NR_RANGE_MR)
81 panic("run out of range for init_memory_mapping\n");
82 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
83 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
84 mr[nr_range].page_size_mask = page_size_mask;
85 nr_range++;
86 }
87
88 return nr_range;
89 }
90
91 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
92 unsigned long start,
93 unsigned long end)
94 {
95 unsigned long start_pfn, end_pfn;
96 unsigned long pos;
97 int i;
98
99 /* head if not big page alignment ? */
100 start_pfn = start >> PAGE_SHIFT;
101 pos = start_pfn << PAGE_SHIFT;
102 #ifdef CONFIG_X86_32
103 /*
104 * Don't use a large page for the first 2/4MB of memory
105 * because there are often fixed size MTRRs in there
106 * and overlapping MTRRs into large pages can cause
107 * slowdowns.
108 */
109 if (pos == 0)
110 end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
111 else
112 end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
113 << (PMD_SHIFT - PAGE_SHIFT);
114 #else /* CONFIG_X86_64 */
115 end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
116 << (PMD_SHIFT - PAGE_SHIFT);
117 #endif
118 if (end_pfn > (end >> PAGE_SHIFT))
119 end_pfn = end >> PAGE_SHIFT;
120 if (start_pfn < end_pfn) {
121 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
122 pos = end_pfn << PAGE_SHIFT;
123 }
124
125 /* big page (2M) range */
126 start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
127 << (PMD_SHIFT - PAGE_SHIFT);
128 #ifdef CONFIG_X86_32
129 end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
130 #else /* CONFIG_X86_64 */
131 end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
132 << (PUD_SHIFT - PAGE_SHIFT);
133 if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
134 end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
135 #endif
136
137 if (start_pfn < end_pfn) {
138 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
139 page_size_mask & (1<<PG_LEVEL_2M));
140 pos = end_pfn << PAGE_SHIFT;
141 }
142
143 #ifdef CONFIG_X86_64
144 /* big page (1G) range */
145 start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
146 << (PUD_SHIFT - PAGE_SHIFT);
147 end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
148 if (start_pfn < end_pfn) {
149 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
150 page_size_mask &
151 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
152 pos = end_pfn << PAGE_SHIFT;
153 }
154
155 /* tail is not big page (1G) alignment */
156 start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
157 << (PMD_SHIFT - PAGE_SHIFT);
158 end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
159 if (start_pfn < end_pfn) {
160 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
161 page_size_mask & (1<<PG_LEVEL_2M));
162 pos = end_pfn << PAGE_SHIFT;
163 }
164 #endif
165
166 /* tail is not big page (2M) alignment */
167 start_pfn = pos>>PAGE_SHIFT;
168 end_pfn = end>>PAGE_SHIFT;
169 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
170
171 /* try to merge same page size and continuous */
172 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
173 unsigned long old_start;
174 if (mr[i].end != mr[i+1].start ||
175 mr[i].page_size_mask != mr[i+1].page_size_mask)
176 continue;
177 /* move it */
178 old_start = mr[i].start;
179 memmove(&mr[i], &mr[i+1],
180 (nr_range - 1 - i) * sizeof(struct map_range));
181 mr[i--].start = old_start;
182 nr_range--;
183 }
184
185 for (i = 0; i < nr_range; i++)
186 printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
187 mr[i].start, mr[i].end - 1,
188 (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
189 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
190
191 return nr_range;
192 }
193
194 /*
195 * First calculate space needed for kernel direct mapping page tables to cover
196 * mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB
197 * pages. Then find enough contiguous space for those page tables.
198 */
199 static void __init find_early_table_space(struct map_range *mr, int nr_range)
200 {
201 int i;
202 unsigned long puds = 0, pmds = 0, ptes = 0, tables;
203 unsigned long start = 0, good_end;
204 phys_addr_t base;
205
206 for (i = 0; i < nr_range; i++) {
207 unsigned long range, extra;
208
209 range = mr[i].end - mr[i].start;
210 puds += (range + PUD_SIZE - 1) >> PUD_SHIFT;
211
212 if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) {
213 extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT);
214 pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT;
215 } else {
216 pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT;
217 }
218
219 if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) {
220 extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT);
221 #ifdef CONFIG_X86_32
222 extra += PMD_SIZE;
223 #endif
224 ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
225 } else {
226 ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT;
227 }
228 }
229
230 tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
231 tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
232 tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
233
234 #ifdef CONFIG_X86_32
235 /* for fixmap */
236 tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
237 #endif
238 good_end = max_pfn_mapped << PAGE_SHIFT;
239
240 base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
241 if (!base)
242 panic("Cannot find space for the kernel page tables");
243
244 pgt_buf_start = base >> PAGE_SHIFT;
245 pgt_buf_end = pgt_buf_start;
246 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
247
248 printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx]\n",
249 mr[nr_range - 1].end - 1, pgt_buf_start << PAGE_SHIFT,
250 (pgt_buf_top << PAGE_SHIFT) - 1);
251 }
252
253 /*
254 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
255 * This runs before bootmem is initialized and gets pages directly from
256 * the physical memory. To access them they are temporarily mapped.
257 */
258 unsigned long __init_refok init_memory_mapping(unsigned long start,
259 unsigned long end)
260 {
261 struct map_range mr[NR_RANGE_MR];
262 unsigned long ret = 0;
263 int nr_range, i;
264
265 pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
266 start, end - 1);
267
268 memset(mr, 0, sizeof(mr));
269 nr_range = split_mem_range(mr, 0, start, end);
270
271 /*
272 * Find space for the kernel direct mapping tables.
273 *
274 * Later we should allocate these tables in the local node of the
275 * memory mapped. Unfortunately this is done currently before the
276 * nodes are discovered.
277 */
278 if (!after_bootmem)
279 find_early_table_space(mr, nr_range);
280
281 for (i = 0; i < nr_range; i++)
282 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
283 mr[i].page_size_mask);
284
285 #ifdef CONFIG_X86_32
286 early_ioremap_page_table_range_init();
287
288 load_cr3(swapper_pg_dir);
289 #endif
290
291 __flush_tlb_all();
292
293 /*
294 * Reserve the kernel pagetable pages we used (pgt_buf_start -
295 * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
296 * so that they can be reused for other purposes.
297 *
298 * On native it just means calling memblock_reserve, on Xen it also
299 * means marking RW the pagetable pages that we allocated before
300 * but that haven't been used.
301 *
302 * In fact on xen we mark RO the whole range pgt_buf_start -
303 * pgt_buf_top, because we have to make sure that when
304 * init_memory_mapping reaches the pagetable pages area, it maps
305 * RO all the pagetable pages, including the ones that are beyond
306 * pgt_buf_end at that time.
307 */
308 if (!after_bootmem && pgt_buf_end > pgt_buf_start)
309 x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
310 PFN_PHYS(pgt_buf_end));
311
312 if (!after_bootmem)
313 early_memtest(start, end);
314
315 return ret >> PAGE_SHIFT;
316 }
317
318 void __init init_mem_mapping(void)
319 {
320 probe_page_size_mask();
321
322 /* max_pfn_mapped is updated here */
323 max_low_pfn_mapped = init_memory_mapping(0, max_low_pfn<<PAGE_SHIFT);
324 max_pfn_mapped = max_low_pfn_mapped;
325
326 #ifdef CONFIG_X86_64
327 if (max_pfn > max_low_pfn) {
328 max_pfn_mapped = init_memory_mapping(1UL<<32,
329 max_pfn<<PAGE_SHIFT);
330 /* can we preseve max_low_pfn ?*/
331 max_low_pfn = max_pfn;
332 }
333 #endif
334 }
335
336 /*
337 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
338 * is valid. The argument is a physical page number.
339 *
340 *
341 * On x86, access has to be given to the first megabyte of ram because that area
342 * contains bios code and data regions used by X and dosemu and similar apps.
343 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
344 * mmio resources as well as potential bios/acpi data regions.
345 */
346 int devmem_is_allowed(unsigned long pagenr)
347 {
348 if (pagenr < 256)
349 return 1;
350 if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
351 return 0;
352 if (!page_is_ram(pagenr))
353 return 1;
354 return 0;
355 }
356
357 void free_init_pages(char *what, unsigned long begin, unsigned long end)
358 {
359 unsigned long addr;
360 unsigned long begin_aligned, end_aligned;
361
362 /* Make sure boundaries are page aligned */
363 begin_aligned = PAGE_ALIGN(begin);
364 end_aligned = end & PAGE_MASK;
365
366 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
367 begin = begin_aligned;
368 end = end_aligned;
369 }
370
371 if (begin >= end)
372 return;
373
374 addr = begin;
375
376 /*
377 * If debugging page accesses then do not free this memory but
378 * mark them not present - any buggy init-section access will
379 * create a kernel page fault:
380 */
381 #ifdef CONFIG_DEBUG_PAGEALLOC
382 printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
383 begin, end - 1);
384 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
385 #else
386 /*
387 * We just marked the kernel text read only above, now that
388 * we are going to free part of that, we need to make that
389 * writeable and non-executable first.
390 */
391 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
392 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
393
394 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
395
396 for (; addr < end; addr += PAGE_SIZE) {
397 ClearPageReserved(virt_to_page(addr));
398 init_page_count(virt_to_page(addr));
399 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
400 free_page(addr);
401 totalram_pages++;
402 }
403 #endif
404 }
405
406 void free_initmem(void)
407 {
408 free_init_pages("unused kernel memory",
409 (unsigned long)(&__init_begin),
410 (unsigned long)(&__init_end));
411 }
412
413 #ifdef CONFIG_BLK_DEV_INITRD
414 void __init free_initrd_mem(unsigned long start, unsigned long end)
415 {
416 /*
417 * end could be not aligned, and We can not align that,
418 * decompresser could be confused by aligned initrd_end
419 * We already reserve the end partial page before in
420 * - i386_start_kernel()
421 * - x86_64_start_kernel()
422 * - relocate_initrd()
423 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
424 */
425 free_init_pages("initrd memory", start, PAGE_ALIGN(end));
426 }
427 #endif
428
429 void __init zone_sizes_init(void)
430 {
431 unsigned long max_zone_pfns[MAX_NR_ZONES];
432
433 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
434
435 #ifdef CONFIG_ZONE_DMA
436 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
437 #endif
438 #ifdef CONFIG_ZONE_DMA32
439 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
440 #endif
441 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
442 #ifdef CONFIG_HIGHMEM
443 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
444 #endif
445
446 free_area_init_nodes(max_zone_pfns);
447 }
448
This page took 0.044888 seconds and 6 git commands to generate.