x86-64, numa: Put pgtable to local node memory
[deliverable/linux.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/nmi.h>
33 #include <linux/gfp.h>
34
35 #include <asm/processor.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
54
55 static int __init parse_direct_gbpages_off(char *arg)
56 {
57 direct_gbpages = 0;
58 return 0;
59 }
60 early_param("nogbpages", parse_direct_gbpages_off);
61
62 static int __init parse_direct_gbpages_on(char *arg)
63 {
64 direct_gbpages = 1;
65 return 0;
66 }
67 early_param("gbpages", parse_direct_gbpages_on);
68
69 /*
70 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
71 * physical space so we can cache the place of the first one and move
72 * around without checking the pgd every time.
73 */
74
75 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
76 EXPORT_SYMBOL_GPL(__supported_pte_mask);
77
78 int force_personality32;
79
80 /*
81 * noexec32=on|off
82 * Control non executable heap for 32bit processes.
83 * To control the stack too use noexec=off
84 *
85 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
86 * off PROT_READ implies PROT_EXEC
87 */
88 static int __init nonx32_setup(char *str)
89 {
90 if (!strcmp(str, "on"))
91 force_personality32 &= ~READ_IMPLIES_EXEC;
92 else if (!strcmp(str, "off"))
93 force_personality32 |= READ_IMPLIES_EXEC;
94 return 1;
95 }
96 __setup("noexec32=", nonx32_setup);
97
98 /*
99 * When memory was added/removed make sure all the processes MM have
100 * suitable PGD entries in the local PGD level page.
101 */
102 void sync_global_pgds(unsigned long start, unsigned long end)
103 {
104 unsigned long address;
105
106 for (address = start; address <= end; address += PGDIR_SIZE) {
107 const pgd_t *pgd_ref = pgd_offset_k(address);
108 unsigned long flags;
109 struct page *page;
110
111 if (pgd_none(*pgd_ref))
112 continue;
113
114 spin_lock_irqsave(&pgd_lock, flags);
115 list_for_each_entry(page, &pgd_list, lru) {
116 pgd_t *pgd;
117 spinlock_t *pgt_lock;
118
119 pgd = (pgd_t *)page_address(page) + pgd_index(address);
120 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
121 spin_lock(pgt_lock);
122
123 if (pgd_none(*pgd))
124 set_pgd(pgd, *pgd_ref);
125 else
126 BUG_ON(pgd_page_vaddr(*pgd)
127 != pgd_page_vaddr(*pgd_ref));
128
129 spin_unlock(pgt_lock);
130 }
131 spin_unlock_irqrestore(&pgd_lock, flags);
132 }
133 }
134
135 /*
136 * NOTE: This function is marked __ref because it calls __init function
137 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
138 */
139 static __ref void *spp_getpage(void)
140 {
141 void *ptr;
142
143 if (after_bootmem)
144 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
145 else
146 ptr = alloc_bootmem_pages(PAGE_SIZE);
147
148 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
149 panic("set_pte_phys: cannot allocate page data %s\n",
150 after_bootmem ? "after bootmem" : "");
151 }
152
153 pr_debug("spp_getpage %p\n", ptr);
154
155 return ptr;
156 }
157
158 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
159 {
160 if (pgd_none(*pgd)) {
161 pud_t *pud = (pud_t *)spp_getpage();
162 pgd_populate(&init_mm, pgd, pud);
163 if (pud != pud_offset(pgd, 0))
164 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
165 pud, pud_offset(pgd, 0));
166 }
167 return pud_offset(pgd, vaddr);
168 }
169
170 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
171 {
172 if (pud_none(*pud)) {
173 pmd_t *pmd = (pmd_t *) spp_getpage();
174 pud_populate(&init_mm, pud, pmd);
175 if (pmd != pmd_offset(pud, 0))
176 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
177 pmd, pmd_offset(pud, 0));
178 }
179 return pmd_offset(pud, vaddr);
180 }
181
182 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
183 {
184 if (pmd_none(*pmd)) {
185 pte_t *pte = (pte_t *) spp_getpage();
186 pmd_populate_kernel(&init_mm, pmd, pte);
187 if (pte != pte_offset_kernel(pmd, 0))
188 printk(KERN_ERR "PAGETABLE BUG #02!\n");
189 }
190 return pte_offset_kernel(pmd, vaddr);
191 }
192
193 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
194 {
195 pud_t *pud;
196 pmd_t *pmd;
197 pte_t *pte;
198
199 pud = pud_page + pud_index(vaddr);
200 pmd = fill_pmd(pud, vaddr);
201 pte = fill_pte(pmd, vaddr);
202
203 set_pte(pte, new_pte);
204
205 /*
206 * It's enough to flush this one mapping.
207 * (PGE mappings get flushed as well)
208 */
209 __flush_tlb_one(vaddr);
210 }
211
212 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
213 {
214 pgd_t *pgd;
215 pud_t *pud_page;
216
217 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
218
219 pgd = pgd_offset_k(vaddr);
220 if (pgd_none(*pgd)) {
221 printk(KERN_ERR
222 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
223 return;
224 }
225 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
226 set_pte_vaddr_pud(pud_page, vaddr, pteval);
227 }
228
229 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
230 {
231 pgd_t *pgd;
232 pud_t *pud;
233
234 pgd = pgd_offset_k(vaddr);
235 pud = fill_pud(pgd, vaddr);
236 return fill_pmd(pud, vaddr);
237 }
238
239 pte_t * __init populate_extra_pte(unsigned long vaddr)
240 {
241 pmd_t *pmd;
242
243 pmd = populate_extra_pmd(vaddr);
244 return fill_pte(pmd, vaddr);
245 }
246
247 /*
248 * Create large page table mappings for a range of physical addresses.
249 */
250 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
251 pgprot_t prot)
252 {
253 pgd_t *pgd;
254 pud_t *pud;
255 pmd_t *pmd;
256
257 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
258 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
259 pgd = pgd_offset_k((unsigned long)__va(phys));
260 if (pgd_none(*pgd)) {
261 pud = (pud_t *) spp_getpage();
262 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
263 _PAGE_USER));
264 }
265 pud = pud_offset(pgd, (unsigned long)__va(phys));
266 if (pud_none(*pud)) {
267 pmd = (pmd_t *) spp_getpage();
268 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
269 _PAGE_USER));
270 }
271 pmd = pmd_offset(pud, phys);
272 BUG_ON(!pmd_none(*pmd));
273 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
274 }
275 }
276
277 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
278 {
279 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
280 }
281
282 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
283 {
284 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
285 }
286
287 /*
288 * The head.S code sets up the kernel high mapping:
289 *
290 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
291 *
292 * phys_addr holds the negative offset to the kernel, which is added
293 * to the compile time generated pmds. This results in invalid pmds up
294 * to the point where we hit the physaddr 0 mapping.
295 *
296 * We limit the mappings to the region from _text to _end. _end is
297 * rounded up to the 2MB boundary. This catches the invalid pmds as
298 * well, as they are located before _text:
299 */
300 void __init cleanup_highmap(void)
301 {
302 unsigned long vaddr = __START_KERNEL_map;
303 unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
304 pmd_t *pmd = level2_kernel_pgt;
305 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
306
307 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
308 if (pmd_none(*pmd))
309 continue;
310 if (vaddr < (unsigned long) _text || vaddr > end)
311 set_pmd(pmd, __pmd(0));
312 }
313 }
314
315 static __ref void *alloc_low_page(unsigned long *phys)
316 {
317 unsigned long pfn = e820_table_end++;
318 void *adr;
319
320 if (after_bootmem) {
321 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
322 *phys = __pa(adr);
323
324 return adr;
325 }
326
327 if (pfn >= e820_table_top)
328 panic("alloc_low_page: ran out of memory");
329
330 adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
331 clear_page(adr);
332 *phys = pfn * PAGE_SIZE;
333 return adr;
334 }
335
336 static __ref void *map_low_page(void *virt)
337 {
338 void *adr;
339 unsigned long phys, left;
340
341 if (after_bootmem)
342 return virt;
343
344 phys = __pa(virt);
345 left = phys & (PAGE_SIZE - 1);
346 adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
347 adr = (void *)(((unsigned long)adr) | left);
348
349 return adr;
350 }
351
352 static __ref void unmap_low_page(void *adr)
353 {
354 if (after_bootmem)
355 return;
356
357 early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
358 }
359
360 static unsigned long __meminit
361 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
362 pgprot_t prot)
363 {
364 unsigned pages = 0;
365 unsigned long last_map_addr = end;
366 int i;
367
368 pte_t *pte = pte_page + pte_index(addr);
369
370 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
371
372 if (addr >= end) {
373 if (!after_bootmem) {
374 for(; i < PTRS_PER_PTE; i++, pte++)
375 set_pte(pte, __pte(0));
376 }
377 break;
378 }
379
380 /*
381 * We will re-use the existing mapping.
382 * Xen for example has some special requirements, like mapping
383 * pagetable pages as RO. So assume someone who pre-setup
384 * these mappings are more intelligent.
385 */
386 if (pte_val(*pte)) {
387 pages++;
388 continue;
389 }
390
391 if (0)
392 printk(" pte=%p addr=%lx pte=%016lx\n",
393 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
394 pages++;
395 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
396 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
397 }
398
399 update_page_count(PG_LEVEL_4K, pages);
400
401 return last_map_addr;
402 }
403
404 static unsigned long __meminit
405 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
406 unsigned long page_size_mask, pgprot_t prot)
407 {
408 unsigned long pages = 0;
409 unsigned long last_map_addr = end;
410
411 int i = pmd_index(address);
412
413 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
414 unsigned long pte_phys;
415 pmd_t *pmd = pmd_page + pmd_index(address);
416 pte_t *pte;
417 pgprot_t new_prot = prot;
418
419 if (address >= end) {
420 if (!after_bootmem) {
421 for (; i < PTRS_PER_PMD; i++, pmd++)
422 set_pmd(pmd, __pmd(0));
423 }
424 break;
425 }
426
427 if (pmd_val(*pmd)) {
428 if (!pmd_large(*pmd)) {
429 spin_lock(&init_mm.page_table_lock);
430 pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
431 last_map_addr = phys_pte_init(pte, address,
432 end, prot);
433 unmap_low_page(pte);
434 spin_unlock(&init_mm.page_table_lock);
435 continue;
436 }
437 /*
438 * If we are ok with PG_LEVEL_2M mapping, then we will
439 * use the existing mapping,
440 *
441 * Otherwise, we will split the large page mapping but
442 * use the same existing protection bits except for
443 * large page, so that we don't violate Intel's TLB
444 * Application note (317080) which says, while changing
445 * the page sizes, new and old translations should
446 * not differ with respect to page frame and
447 * attributes.
448 */
449 if (page_size_mask & (1 << PG_LEVEL_2M)) {
450 pages++;
451 continue;
452 }
453 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
454 }
455
456 if (page_size_mask & (1<<PG_LEVEL_2M)) {
457 pages++;
458 spin_lock(&init_mm.page_table_lock);
459 set_pte((pte_t *)pmd,
460 pfn_pte(address >> PAGE_SHIFT,
461 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
462 spin_unlock(&init_mm.page_table_lock);
463 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
464 continue;
465 }
466
467 pte = alloc_low_page(&pte_phys);
468 last_map_addr = phys_pte_init(pte, address, end, new_prot);
469 unmap_low_page(pte);
470
471 spin_lock(&init_mm.page_table_lock);
472 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
473 spin_unlock(&init_mm.page_table_lock);
474 }
475 update_page_count(PG_LEVEL_2M, pages);
476 return last_map_addr;
477 }
478
479 static unsigned long __meminit
480 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
481 unsigned long page_size_mask)
482 {
483 unsigned long pages = 0;
484 unsigned long last_map_addr = end;
485 int i = pud_index(addr);
486
487 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
488 unsigned long pmd_phys;
489 pud_t *pud = pud_page + pud_index(addr);
490 pmd_t *pmd;
491 pgprot_t prot = PAGE_KERNEL;
492
493 if (addr >= end)
494 break;
495
496 if (!after_bootmem &&
497 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
498 set_pud(pud, __pud(0));
499 continue;
500 }
501
502 if (pud_val(*pud)) {
503 if (!pud_large(*pud)) {
504 pmd = map_low_page(pmd_offset(pud, 0));
505 last_map_addr = phys_pmd_init(pmd, addr, end,
506 page_size_mask, prot);
507 unmap_low_page(pmd);
508 __flush_tlb_all();
509 continue;
510 }
511 /*
512 * If we are ok with PG_LEVEL_1G mapping, then we will
513 * use the existing mapping.
514 *
515 * Otherwise, we will split the gbpage mapping but use
516 * the same existing protection bits except for large
517 * page, so that we don't violate Intel's TLB
518 * Application note (317080) which says, while changing
519 * the page sizes, new and old translations should
520 * not differ with respect to page frame and
521 * attributes.
522 */
523 if (page_size_mask & (1 << PG_LEVEL_1G)) {
524 pages++;
525 continue;
526 }
527 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
528 }
529
530 if (page_size_mask & (1<<PG_LEVEL_1G)) {
531 pages++;
532 spin_lock(&init_mm.page_table_lock);
533 set_pte((pte_t *)pud,
534 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
535 spin_unlock(&init_mm.page_table_lock);
536 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
537 continue;
538 }
539
540 pmd = alloc_low_page(&pmd_phys);
541 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
542 prot);
543 unmap_low_page(pmd);
544
545 spin_lock(&init_mm.page_table_lock);
546 pud_populate(&init_mm, pud, __va(pmd_phys));
547 spin_unlock(&init_mm.page_table_lock);
548 }
549 __flush_tlb_all();
550
551 update_page_count(PG_LEVEL_1G, pages);
552
553 return last_map_addr;
554 }
555
556 unsigned long __meminit
557 kernel_physical_mapping_init(unsigned long start,
558 unsigned long end,
559 unsigned long page_size_mask)
560 {
561 bool pgd_changed = false;
562 unsigned long next, last_map_addr = end;
563 unsigned long addr;
564
565 start = (unsigned long)__va(start);
566 end = (unsigned long)__va(end);
567 addr = start;
568
569 for (; start < end; start = next) {
570 pgd_t *pgd = pgd_offset_k(start);
571 unsigned long pud_phys;
572 pud_t *pud;
573
574 next = (start + PGDIR_SIZE) & PGDIR_MASK;
575 if (next > end)
576 next = end;
577
578 if (pgd_val(*pgd)) {
579 pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
580 last_map_addr = phys_pud_init(pud, __pa(start),
581 __pa(end), page_size_mask);
582 unmap_low_page(pud);
583 continue;
584 }
585
586 pud = alloc_low_page(&pud_phys);
587 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
588 page_size_mask);
589 unmap_low_page(pud);
590
591 spin_lock(&init_mm.page_table_lock);
592 pgd_populate(&init_mm, pgd, __va(pud_phys));
593 spin_unlock(&init_mm.page_table_lock);
594 pgd_changed = true;
595 }
596
597 if (pgd_changed)
598 sync_global_pgds(addr, end);
599
600 __flush_tlb_all();
601
602 return last_map_addr;
603 }
604
605 #ifndef CONFIG_NUMA
606 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
607 int acpi, int k8)
608 {
609 memblock_x86_register_active_regions(0, start_pfn, end_pfn);
610 init_memory_mapping_high();
611 }
612 #endif
613
614 struct mapping_work_data {
615 unsigned long start;
616 unsigned long end;
617 unsigned long pfn_mapped;
618 };
619
620 static int __init_refok
621 mapping_work_fn(unsigned long start_pfn, unsigned long end_pfn, void *datax)
622 {
623 struct mapping_work_data *data = datax;
624 unsigned long pfn_mapped;
625 unsigned long final_start, final_end;
626
627 final_start = max_t(unsigned long, start_pfn<<PAGE_SHIFT, data->start);
628 final_end = min_t(unsigned long, end_pfn<<PAGE_SHIFT, data->end);
629
630 if (final_end <= final_start)
631 return 0;
632
633 pfn_mapped = init_memory_mapping(final_start, final_end);
634
635 if (pfn_mapped > data->pfn_mapped)
636 data->pfn_mapped = pfn_mapped;
637
638 return 0;
639 }
640
641 static unsigned long __init_refok
642 init_memory_mapping_active_regions(unsigned long start, unsigned long end)
643 {
644 struct mapping_work_data data;
645
646 data.start = start;
647 data.end = end;
648 data.pfn_mapped = 0;
649
650 work_with_active_regions(MAX_NUMNODES, mapping_work_fn, &data);
651
652 return data.pfn_mapped;
653 }
654
655 void __init_refok init_memory_mapping_high(void)
656 {
657 if (max_pfn > max_low_pfn) {
658 max_pfn_mapped = init_memory_mapping_active_regions(1UL<<32,
659 max_pfn<<PAGE_SHIFT);
660 /* can we preserve max_low_pfn ? */
661 max_low_pfn = max_pfn;
662
663 memblock.current_limit = get_max_mapped();
664 }
665 }
666
667 void __init paging_init(void)
668 {
669 unsigned long max_zone_pfns[MAX_NR_ZONES];
670
671 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
672 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
673 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
674 max_zone_pfns[ZONE_NORMAL] = max_pfn;
675
676 sparse_memory_present_with_active_regions(MAX_NUMNODES);
677 sparse_init();
678
679 /*
680 * clear the default setting with node 0
681 * note: don't use nodes_clear here, that is really clearing when
682 * numa support is not compiled in, and later node_set_state
683 * will not set it back.
684 */
685 node_clear_state(0, N_NORMAL_MEMORY);
686
687 free_area_init_nodes(max_zone_pfns);
688 }
689
690 /*
691 * Memory hotplug specific functions
692 */
693 #ifdef CONFIG_MEMORY_HOTPLUG
694 /*
695 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
696 * updating.
697 */
698 static void update_end_of_memory_vars(u64 start, u64 size)
699 {
700 unsigned long end_pfn = PFN_UP(start + size);
701
702 if (end_pfn > max_pfn) {
703 max_pfn = end_pfn;
704 max_low_pfn = end_pfn;
705 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
706 }
707 }
708
709 /*
710 * Memory is added always to NORMAL zone. This means you will never get
711 * additional DMA/DMA32 memory.
712 */
713 int arch_add_memory(int nid, u64 start, u64 size)
714 {
715 struct pglist_data *pgdat = NODE_DATA(nid);
716 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
717 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
718 unsigned long nr_pages = size >> PAGE_SHIFT;
719 int ret;
720
721 last_mapped_pfn = init_memory_mapping(start, start + size);
722 if (last_mapped_pfn > max_pfn_mapped)
723 max_pfn_mapped = last_mapped_pfn;
724
725 ret = __add_pages(nid, zone, start_pfn, nr_pages);
726 WARN_ON_ONCE(ret);
727
728 /* update max_pfn, max_low_pfn and high_memory */
729 update_end_of_memory_vars(start, size);
730
731 return ret;
732 }
733 EXPORT_SYMBOL_GPL(arch_add_memory);
734
735 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
736 int memory_add_physaddr_to_nid(u64 start)
737 {
738 return 0;
739 }
740 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
741 #endif
742
743 #endif /* CONFIG_MEMORY_HOTPLUG */
744
745 static struct kcore_list kcore_vsyscall;
746
747 void __init mem_init(void)
748 {
749 long codesize, reservedpages, datasize, initsize;
750 unsigned long absent_pages;
751
752 pci_iommu_alloc();
753
754 /* clear_bss() already clear the empty_zero_page */
755
756 reservedpages = 0;
757
758 /* this will put all low memory onto the freelists */
759 #ifdef CONFIG_NUMA
760 totalram_pages = numa_free_all_bootmem();
761 #else
762 totalram_pages = free_all_bootmem();
763 #endif
764
765 absent_pages = absent_pages_in_range(0, max_pfn);
766 reservedpages = max_pfn - totalram_pages - absent_pages;
767 after_bootmem = 1;
768
769 codesize = (unsigned long) &_etext - (unsigned long) &_text;
770 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
771 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
772
773 /* Register memory areas for /proc/kcore */
774 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
775 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
776
777 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
778 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
779 nr_free_pages() << (PAGE_SHIFT-10),
780 max_pfn << (PAGE_SHIFT-10),
781 codesize >> 10,
782 absent_pages << (PAGE_SHIFT-10),
783 reservedpages << (PAGE_SHIFT-10),
784 datasize >> 10,
785 initsize >> 10);
786 }
787
788 #ifdef CONFIG_DEBUG_RODATA
789 const int rodata_test_data = 0xC3;
790 EXPORT_SYMBOL_GPL(rodata_test_data);
791
792 int kernel_set_to_readonly;
793
794 void set_kernel_text_rw(void)
795 {
796 unsigned long start = PFN_ALIGN(_text);
797 unsigned long end = PFN_ALIGN(__stop___ex_table);
798
799 if (!kernel_set_to_readonly)
800 return;
801
802 pr_debug("Set kernel text: %lx - %lx for read write\n",
803 start, end);
804
805 /*
806 * Make the kernel identity mapping for text RW. Kernel text
807 * mapping will always be RO. Refer to the comment in
808 * static_protections() in pageattr.c
809 */
810 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
811 }
812
813 void set_kernel_text_ro(void)
814 {
815 unsigned long start = PFN_ALIGN(_text);
816 unsigned long end = PFN_ALIGN(__stop___ex_table);
817
818 if (!kernel_set_to_readonly)
819 return;
820
821 pr_debug("Set kernel text: %lx - %lx for read only\n",
822 start, end);
823
824 /*
825 * Set the kernel identity mapping for text RO.
826 */
827 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
828 }
829
830 void mark_rodata_ro(void)
831 {
832 unsigned long start = PFN_ALIGN(_text);
833 unsigned long rodata_start =
834 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
835 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
836 unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
837 unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
838 unsigned long data_start = (unsigned long) &_sdata;
839
840 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
841 (end - start) >> 10);
842 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
843
844 kernel_set_to_readonly = 1;
845
846 /*
847 * The rodata section (but not the kernel text!) should also be
848 * not-executable.
849 */
850 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
851
852 rodata_test();
853
854 #ifdef CONFIG_CPA_DEBUG
855 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
856 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
857
858 printk(KERN_INFO "Testing CPA: again\n");
859 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
860 #endif
861
862 free_init_pages("unused kernel memory",
863 (unsigned long) page_address(virt_to_page(text_end)),
864 (unsigned long)
865 page_address(virt_to_page(rodata_start)));
866 free_init_pages("unused kernel memory",
867 (unsigned long) page_address(virt_to_page(rodata_end)),
868 (unsigned long) page_address(virt_to_page(data_start)));
869 }
870
871 #endif
872
873 int kern_addr_valid(unsigned long addr)
874 {
875 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
876 pgd_t *pgd;
877 pud_t *pud;
878 pmd_t *pmd;
879 pte_t *pte;
880
881 if (above != 0 && above != -1UL)
882 return 0;
883
884 pgd = pgd_offset_k(addr);
885 if (pgd_none(*pgd))
886 return 0;
887
888 pud = pud_offset(pgd, addr);
889 if (pud_none(*pud))
890 return 0;
891
892 pmd = pmd_offset(pud, addr);
893 if (pmd_none(*pmd))
894 return 0;
895
896 if (pmd_large(*pmd))
897 return pfn_valid(pmd_pfn(*pmd));
898
899 pte = pte_offset_kernel(pmd, addr);
900 if (pte_none(*pte))
901 return 0;
902
903 return pfn_valid(pte_pfn(*pte));
904 }
905
906 /*
907 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
908 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
909 * not need special handling anymore:
910 */
911 static struct vm_area_struct gate_vma = {
912 .vm_start = VSYSCALL_START,
913 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
914 .vm_page_prot = PAGE_READONLY_EXEC,
915 .vm_flags = VM_READ | VM_EXEC
916 };
917
918 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
919 {
920 #ifdef CONFIG_IA32_EMULATION
921 if (test_tsk_thread_flag(tsk, TIF_IA32))
922 return NULL;
923 #endif
924 return &gate_vma;
925 }
926
927 int in_gate_area(struct task_struct *task, unsigned long addr)
928 {
929 struct vm_area_struct *vma = get_gate_vma(task);
930
931 if (!vma)
932 return 0;
933
934 return (addr >= vma->vm_start) && (addr < vma->vm_end);
935 }
936
937 /*
938 * Use this when you have no reliable task/vma, typically from interrupt
939 * context. It is less reliable than using the task's vma and may give
940 * false positives:
941 */
942 int in_gate_area_no_task(unsigned long addr)
943 {
944 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
945 }
946
947 const char *arch_vma_name(struct vm_area_struct *vma)
948 {
949 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
950 return "[vdso]";
951 if (vma == &gate_vma)
952 return "[vsyscall]";
953 return NULL;
954 }
955
956 #ifdef CONFIG_SPARSEMEM_VMEMMAP
957 /*
958 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
959 */
960 static long __meminitdata addr_start, addr_end;
961 static void __meminitdata *p_start, *p_end;
962 static int __meminitdata node_start;
963
964 int __meminit
965 vmemmap_populate(struct page *start_page, unsigned long size, int node)
966 {
967 unsigned long addr = (unsigned long)start_page;
968 unsigned long end = (unsigned long)(start_page + size);
969 unsigned long next;
970 pgd_t *pgd;
971 pud_t *pud;
972 pmd_t *pmd;
973
974 for (; addr < end; addr = next) {
975 void *p = NULL;
976
977 pgd = vmemmap_pgd_populate(addr, node);
978 if (!pgd)
979 return -ENOMEM;
980
981 pud = vmemmap_pud_populate(pgd, addr, node);
982 if (!pud)
983 return -ENOMEM;
984
985 if (!cpu_has_pse) {
986 next = (addr + PAGE_SIZE) & PAGE_MASK;
987 pmd = vmemmap_pmd_populate(pud, addr, node);
988
989 if (!pmd)
990 return -ENOMEM;
991
992 p = vmemmap_pte_populate(pmd, addr, node);
993
994 if (!p)
995 return -ENOMEM;
996
997 addr_end = addr + PAGE_SIZE;
998 p_end = p + PAGE_SIZE;
999 } else {
1000 next = pmd_addr_end(addr, end);
1001
1002 pmd = pmd_offset(pud, addr);
1003 if (pmd_none(*pmd)) {
1004 pte_t entry;
1005
1006 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1007 if (!p)
1008 return -ENOMEM;
1009
1010 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1011 PAGE_KERNEL_LARGE);
1012 set_pmd(pmd, __pmd(pte_val(entry)));
1013
1014 /* check to see if we have contiguous blocks */
1015 if (p_end != p || node_start != node) {
1016 if (p_start)
1017 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1018 addr_start, addr_end-1, p_start, p_end-1, node_start);
1019 addr_start = addr;
1020 node_start = node;
1021 p_start = p;
1022 }
1023
1024 addr_end = addr + PMD_SIZE;
1025 p_end = p + PMD_SIZE;
1026 } else
1027 vmemmap_verify((pte_t *)pmd, node, addr, next);
1028 }
1029
1030 }
1031 sync_global_pgds((unsigned long)start_page, end);
1032 return 0;
1033 }
1034
1035 void __meminit vmemmap_populate_print_last(void)
1036 {
1037 if (p_start) {
1038 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1039 addr_start, addr_end-1, p_start, p_end-1, node_start);
1040 p_start = NULL;
1041 p_end = NULL;
1042 node_start = 0;
1043 }
1044 }
1045 #endif
This page took 0.05163 seconds and 5 git commands to generate.