Merge tag 'arc-v3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[deliverable/linux.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
61 unsigned long addr, unsigned long end)
62 {
63 addr &= PMD_MASK;
64 for (; addr < end; addr += PMD_SIZE) {
65 pmd_t *pmd = pmd_page + pmd_index(addr);
66
67 if (!pmd_present(*pmd))
68 set_pmd(pmd, __pmd(addr | pmd_flag));
69 }
70 }
71 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
72 unsigned long addr, unsigned long end)
73 {
74 unsigned long next;
75
76 for (; addr < end; addr = next) {
77 pud_t *pud = pud_page + pud_index(addr);
78 pmd_t *pmd;
79
80 next = (addr & PUD_MASK) + PUD_SIZE;
81 if (next > end)
82 next = end;
83
84 if (pud_present(*pud)) {
85 pmd = pmd_offset(pud, 0);
86 ident_pmd_init(info->pmd_flag, pmd, addr, next);
87 continue;
88 }
89 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
90 if (!pmd)
91 return -ENOMEM;
92 ident_pmd_init(info->pmd_flag, pmd, addr, next);
93 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
94 }
95
96 return 0;
97 }
98
99 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
100 unsigned long addr, unsigned long end)
101 {
102 unsigned long next;
103 int result;
104 int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
105
106 for (; addr < end; addr = next) {
107 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
108 pud_t *pud;
109
110 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
111 if (next > end)
112 next = end;
113
114 if (pgd_present(*pgd)) {
115 pud = pud_offset(pgd, 0);
116 result = ident_pud_init(info, pud, addr, next);
117 if (result)
118 return result;
119 continue;
120 }
121
122 pud = (pud_t *)info->alloc_pgt_page(info->context);
123 if (!pud)
124 return -ENOMEM;
125 result = ident_pud_init(info, pud, addr, next);
126 if (result)
127 return result;
128 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
129 }
130
131 return 0;
132 }
133
134 static int __init parse_direct_gbpages_off(char *arg)
135 {
136 direct_gbpages = 0;
137 return 0;
138 }
139 early_param("nogbpages", parse_direct_gbpages_off);
140
141 static int __init parse_direct_gbpages_on(char *arg)
142 {
143 direct_gbpages = 1;
144 return 0;
145 }
146 early_param("gbpages", parse_direct_gbpages_on);
147
148 /*
149 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
150 * physical space so we can cache the place of the first one and move
151 * around without checking the pgd every time.
152 */
153
154 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
155 EXPORT_SYMBOL_GPL(__supported_pte_mask);
156
157 int force_personality32;
158
159 /*
160 * noexec32=on|off
161 * Control non executable heap for 32bit processes.
162 * To control the stack too use noexec=off
163 *
164 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
165 * off PROT_READ implies PROT_EXEC
166 */
167 static int __init nonx32_setup(char *str)
168 {
169 if (!strcmp(str, "on"))
170 force_personality32 &= ~READ_IMPLIES_EXEC;
171 else if (!strcmp(str, "off"))
172 force_personality32 |= READ_IMPLIES_EXEC;
173 return 1;
174 }
175 __setup("noexec32=", nonx32_setup);
176
177 /*
178 * When memory was added/removed make sure all the processes MM have
179 * suitable PGD entries in the local PGD level page.
180 */
181 void sync_global_pgds(unsigned long start, unsigned long end)
182 {
183 unsigned long address;
184
185 for (address = start; address <= end; address += PGDIR_SIZE) {
186 const pgd_t *pgd_ref = pgd_offset_k(address);
187 struct page *page;
188
189 if (pgd_none(*pgd_ref))
190 continue;
191
192 spin_lock(&pgd_lock);
193 list_for_each_entry(page, &pgd_list, lru) {
194 pgd_t *pgd;
195 spinlock_t *pgt_lock;
196
197 pgd = (pgd_t *)page_address(page) + pgd_index(address);
198 /* the pgt_lock only for Xen */
199 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
200 spin_lock(pgt_lock);
201
202 if (pgd_none(*pgd))
203 set_pgd(pgd, *pgd_ref);
204 else
205 BUG_ON(pgd_page_vaddr(*pgd)
206 != pgd_page_vaddr(*pgd_ref));
207
208 spin_unlock(pgt_lock);
209 }
210 spin_unlock(&pgd_lock);
211 }
212 }
213
214 /*
215 * NOTE: This function is marked __ref because it calls __init function
216 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
217 */
218 static __ref void *spp_getpage(void)
219 {
220 void *ptr;
221
222 if (after_bootmem)
223 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
224 else
225 ptr = alloc_bootmem_pages(PAGE_SIZE);
226
227 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
228 panic("set_pte_phys: cannot allocate page data %s\n",
229 after_bootmem ? "after bootmem" : "");
230 }
231
232 pr_debug("spp_getpage %p\n", ptr);
233
234 return ptr;
235 }
236
237 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
238 {
239 if (pgd_none(*pgd)) {
240 pud_t *pud = (pud_t *)spp_getpage();
241 pgd_populate(&init_mm, pgd, pud);
242 if (pud != pud_offset(pgd, 0))
243 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
244 pud, pud_offset(pgd, 0));
245 }
246 return pud_offset(pgd, vaddr);
247 }
248
249 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
250 {
251 if (pud_none(*pud)) {
252 pmd_t *pmd = (pmd_t *) spp_getpage();
253 pud_populate(&init_mm, pud, pmd);
254 if (pmd != pmd_offset(pud, 0))
255 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
256 pmd, pmd_offset(pud, 0));
257 }
258 return pmd_offset(pud, vaddr);
259 }
260
261 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
262 {
263 if (pmd_none(*pmd)) {
264 pte_t *pte = (pte_t *) spp_getpage();
265 pmd_populate_kernel(&init_mm, pmd, pte);
266 if (pte != pte_offset_kernel(pmd, 0))
267 printk(KERN_ERR "PAGETABLE BUG #02!\n");
268 }
269 return pte_offset_kernel(pmd, vaddr);
270 }
271
272 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
273 {
274 pud_t *pud;
275 pmd_t *pmd;
276 pte_t *pte;
277
278 pud = pud_page + pud_index(vaddr);
279 pmd = fill_pmd(pud, vaddr);
280 pte = fill_pte(pmd, vaddr);
281
282 set_pte(pte, new_pte);
283
284 /*
285 * It's enough to flush this one mapping.
286 * (PGE mappings get flushed as well)
287 */
288 __flush_tlb_one(vaddr);
289 }
290
291 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
292 {
293 pgd_t *pgd;
294 pud_t *pud_page;
295
296 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
297
298 pgd = pgd_offset_k(vaddr);
299 if (pgd_none(*pgd)) {
300 printk(KERN_ERR
301 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
302 return;
303 }
304 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
305 set_pte_vaddr_pud(pud_page, vaddr, pteval);
306 }
307
308 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
309 {
310 pgd_t *pgd;
311 pud_t *pud;
312
313 pgd = pgd_offset_k(vaddr);
314 pud = fill_pud(pgd, vaddr);
315 return fill_pmd(pud, vaddr);
316 }
317
318 pte_t * __init populate_extra_pte(unsigned long vaddr)
319 {
320 pmd_t *pmd;
321
322 pmd = populate_extra_pmd(vaddr);
323 return fill_pte(pmd, vaddr);
324 }
325
326 /*
327 * Create large page table mappings for a range of physical addresses.
328 */
329 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
330 pgprot_t prot)
331 {
332 pgd_t *pgd;
333 pud_t *pud;
334 pmd_t *pmd;
335
336 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
337 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
338 pgd = pgd_offset_k((unsigned long)__va(phys));
339 if (pgd_none(*pgd)) {
340 pud = (pud_t *) spp_getpage();
341 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
342 _PAGE_USER));
343 }
344 pud = pud_offset(pgd, (unsigned long)__va(phys));
345 if (pud_none(*pud)) {
346 pmd = (pmd_t *) spp_getpage();
347 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
348 _PAGE_USER));
349 }
350 pmd = pmd_offset(pud, phys);
351 BUG_ON(!pmd_none(*pmd));
352 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
353 }
354 }
355
356 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
357 {
358 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
359 }
360
361 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
362 {
363 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
364 }
365
366 /*
367 * The head.S code sets up the kernel high mapping:
368 *
369 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
370 *
371 * phys_base holds the negative offset to the kernel, which is added
372 * to the compile time generated pmds. This results in invalid pmds up
373 * to the point where we hit the physaddr 0 mapping.
374 *
375 * We limit the mappings to the region from _text to _brk_end. _brk_end
376 * is rounded up to the 2MB boundary. This catches the invalid pmds as
377 * well, as they are located before _text:
378 */
379 void __init cleanup_highmap(void)
380 {
381 unsigned long vaddr = __START_KERNEL_map;
382 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
383 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
384 pmd_t *pmd = level2_kernel_pgt;
385
386 /*
387 * Native path, max_pfn_mapped is not set yet.
388 * Xen has valid max_pfn_mapped set in
389 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
390 */
391 if (max_pfn_mapped)
392 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
393
394 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
395 if (pmd_none(*pmd))
396 continue;
397 if (vaddr < (unsigned long) _text || vaddr > end)
398 set_pmd(pmd, __pmd(0));
399 }
400 }
401
402 static unsigned long __meminit
403 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
404 pgprot_t prot)
405 {
406 unsigned long pages = 0, next;
407 unsigned long last_map_addr = end;
408 int i;
409
410 pte_t *pte = pte_page + pte_index(addr);
411
412 for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
413 next = (addr & PAGE_MASK) + PAGE_SIZE;
414 if (addr >= end) {
415 if (!after_bootmem &&
416 !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
417 !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
418 set_pte(pte, __pte(0));
419 continue;
420 }
421
422 /*
423 * We will re-use the existing mapping.
424 * Xen for example has some special requirements, like mapping
425 * pagetable pages as RO. So assume someone who pre-setup
426 * these mappings are more intelligent.
427 */
428 if (pte_val(*pte)) {
429 if (!after_bootmem)
430 pages++;
431 continue;
432 }
433
434 if (0)
435 printk(" pte=%p addr=%lx pte=%016lx\n",
436 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
437 pages++;
438 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
439 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
440 }
441
442 update_page_count(PG_LEVEL_4K, pages);
443
444 return last_map_addr;
445 }
446
447 static unsigned long __meminit
448 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
449 unsigned long page_size_mask, pgprot_t prot)
450 {
451 unsigned long pages = 0, next;
452 unsigned long last_map_addr = end;
453
454 int i = pmd_index(address);
455
456 for (; i < PTRS_PER_PMD; i++, address = next) {
457 pmd_t *pmd = pmd_page + pmd_index(address);
458 pte_t *pte;
459 pgprot_t new_prot = prot;
460
461 next = (address & PMD_MASK) + PMD_SIZE;
462 if (address >= end) {
463 if (!after_bootmem &&
464 !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
465 !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
466 set_pmd(pmd, __pmd(0));
467 continue;
468 }
469
470 if (pmd_val(*pmd)) {
471 if (!pmd_large(*pmd)) {
472 spin_lock(&init_mm.page_table_lock);
473 pte = (pte_t *)pmd_page_vaddr(*pmd);
474 last_map_addr = phys_pte_init(pte, address,
475 end, prot);
476 spin_unlock(&init_mm.page_table_lock);
477 continue;
478 }
479 /*
480 * If we are ok with PG_LEVEL_2M mapping, then we will
481 * use the existing mapping,
482 *
483 * Otherwise, we will split the large page mapping but
484 * use the same existing protection bits except for
485 * large page, so that we don't violate Intel's TLB
486 * Application note (317080) which says, while changing
487 * the page sizes, new and old translations should
488 * not differ with respect to page frame and
489 * attributes.
490 */
491 if (page_size_mask & (1 << PG_LEVEL_2M)) {
492 if (!after_bootmem)
493 pages++;
494 last_map_addr = next;
495 continue;
496 }
497 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
498 }
499
500 if (page_size_mask & (1<<PG_LEVEL_2M)) {
501 pages++;
502 spin_lock(&init_mm.page_table_lock);
503 set_pte((pte_t *)pmd,
504 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
505 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
506 spin_unlock(&init_mm.page_table_lock);
507 last_map_addr = next;
508 continue;
509 }
510
511 pte = alloc_low_page();
512 last_map_addr = phys_pte_init(pte, address, end, new_prot);
513
514 spin_lock(&init_mm.page_table_lock);
515 pmd_populate_kernel(&init_mm, pmd, pte);
516 spin_unlock(&init_mm.page_table_lock);
517 }
518 update_page_count(PG_LEVEL_2M, pages);
519 return last_map_addr;
520 }
521
522 static unsigned long __meminit
523 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
524 unsigned long page_size_mask)
525 {
526 unsigned long pages = 0, next;
527 unsigned long last_map_addr = end;
528 int i = pud_index(addr);
529
530 for (; i < PTRS_PER_PUD; i++, addr = next) {
531 pud_t *pud = pud_page + pud_index(addr);
532 pmd_t *pmd;
533 pgprot_t prot = PAGE_KERNEL;
534
535 next = (addr & PUD_MASK) + PUD_SIZE;
536 if (addr >= end) {
537 if (!after_bootmem &&
538 !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
539 !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
540 set_pud(pud, __pud(0));
541 continue;
542 }
543
544 if (pud_val(*pud)) {
545 if (!pud_large(*pud)) {
546 pmd = pmd_offset(pud, 0);
547 last_map_addr = phys_pmd_init(pmd, addr, end,
548 page_size_mask, prot);
549 __flush_tlb_all();
550 continue;
551 }
552 /*
553 * If we are ok with PG_LEVEL_1G mapping, then we will
554 * use the existing mapping.
555 *
556 * Otherwise, we will split the gbpage mapping but use
557 * the same existing protection bits except for large
558 * page, so that we don't violate Intel's TLB
559 * Application note (317080) which says, while changing
560 * the page sizes, new and old translations should
561 * not differ with respect to page frame and
562 * attributes.
563 */
564 if (page_size_mask & (1 << PG_LEVEL_1G)) {
565 if (!after_bootmem)
566 pages++;
567 last_map_addr = next;
568 continue;
569 }
570 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
571 }
572
573 if (page_size_mask & (1<<PG_LEVEL_1G)) {
574 pages++;
575 spin_lock(&init_mm.page_table_lock);
576 set_pte((pte_t *)pud,
577 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
578 PAGE_KERNEL_LARGE));
579 spin_unlock(&init_mm.page_table_lock);
580 last_map_addr = next;
581 continue;
582 }
583
584 pmd = alloc_low_page();
585 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
586 prot);
587
588 spin_lock(&init_mm.page_table_lock);
589 pud_populate(&init_mm, pud, pmd);
590 spin_unlock(&init_mm.page_table_lock);
591 }
592 __flush_tlb_all();
593
594 update_page_count(PG_LEVEL_1G, pages);
595
596 return last_map_addr;
597 }
598
599 unsigned long __meminit
600 kernel_physical_mapping_init(unsigned long start,
601 unsigned long end,
602 unsigned long page_size_mask)
603 {
604 bool pgd_changed = false;
605 unsigned long next, last_map_addr = end;
606 unsigned long addr;
607
608 start = (unsigned long)__va(start);
609 end = (unsigned long)__va(end);
610 addr = start;
611
612 for (; start < end; start = next) {
613 pgd_t *pgd = pgd_offset_k(start);
614 pud_t *pud;
615
616 next = (start & PGDIR_MASK) + PGDIR_SIZE;
617
618 if (pgd_val(*pgd)) {
619 pud = (pud_t *)pgd_page_vaddr(*pgd);
620 last_map_addr = phys_pud_init(pud, __pa(start),
621 __pa(end), page_size_mask);
622 continue;
623 }
624
625 pud = alloc_low_page();
626 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
627 page_size_mask);
628
629 spin_lock(&init_mm.page_table_lock);
630 pgd_populate(&init_mm, pgd, pud);
631 spin_unlock(&init_mm.page_table_lock);
632 pgd_changed = true;
633 }
634
635 if (pgd_changed)
636 sync_global_pgds(addr, end - 1);
637
638 __flush_tlb_all();
639
640 return last_map_addr;
641 }
642
643 #ifndef CONFIG_NUMA
644 void __init initmem_init(void)
645 {
646 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
647 }
648 #endif
649
650 void __init paging_init(void)
651 {
652 sparse_memory_present_with_active_regions(MAX_NUMNODES);
653 sparse_init();
654
655 /*
656 * clear the default setting with node 0
657 * note: don't use nodes_clear here, that is really clearing when
658 * numa support is not compiled in, and later node_set_state
659 * will not set it back.
660 */
661 node_clear_state(0, N_MEMORY);
662 if (N_MEMORY != N_NORMAL_MEMORY)
663 node_clear_state(0, N_NORMAL_MEMORY);
664
665 zone_sizes_init();
666 }
667
668 /*
669 * Memory hotplug specific functions
670 */
671 #ifdef CONFIG_MEMORY_HOTPLUG
672 /*
673 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
674 * updating.
675 */
676 static void update_end_of_memory_vars(u64 start, u64 size)
677 {
678 unsigned long end_pfn = PFN_UP(start + size);
679
680 if (end_pfn > max_pfn) {
681 max_pfn = end_pfn;
682 max_low_pfn = end_pfn;
683 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
684 }
685 }
686
687 /*
688 * Memory is added always to NORMAL zone. This means you will never get
689 * additional DMA/DMA32 memory.
690 */
691 int arch_add_memory(int nid, u64 start, u64 size)
692 {
693 struct pglist_data *pgdat = NODE_DATA(nid);
694 struct zone *zone = pgdat->node_zones +
695 zone_for_memory(nid, start, size, ZONE_NORMAL);
696 unsigned long start_pfn = start >> PAGE_SHIFT;
697 unsigned long nr_pages = size >> PAGE_SHIFT;
698 int ret;
699
700 init_memory_mapping(start, start + size);
701
702 ret = __add_pages(nid, zone, start_pfn, nr_pages);
703 WARN_ON_ONCE(ret);
704
705 /* update max_pfn, max_low_pfn and high_memory */
706 update_end_of_memory_vars(start, size);
707
708 return ret;
709 }
710 EXPORT_SYMBOL_GPL(arch_add_memory);
711
712 #define PAGE_INUSE 0xFD
713
714 static void __meminit free_pagetable(struct page *page, int order)
715 {
716 unsigned long magic;
717 unsigned int nr_pages = 1 << order;
718
719 /* bootmem page has reserved flag */
720 if (PageReserved(page)) {
721 __ClearPageReserved(page);
722
723 magic = (unsigned long)page->lru.next;
724 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
725 while (nr_pages--)
726 put_page_bootmem(page++);
727 } else
728 while (nr_pages--)
729 free_reserved_page(page++);
730 } else
731 free_pages((unsigned long)page_address(page), order);
732 }
733
734 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
735 {
736 pte_t *pte;
737 int i;
738
739 for (i = 0; i < PTRS_PER_PTE; i++) {
740 pte = pte_start + i;
741 if (pte_val(*pte))
742 return;
743 }
744
745 /* free a pte talbe */
746 free_pagetable(pmd_page(*pmd), 0);
747 spin_lock(&init_mm.page_table_lock);
748 pmd_clear(pmd);
749 spin_unlock(&init_mm.page_table_lock);
750 }
751
752 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
753 {
754 pmd_t *pmd;
755 int i;
756
757 for (i = 0; i < PTRS_PER_PMD; i++) {
758 pmd = pmd_start + i;
759 if (pmd_val(*pmd))
760 return;
761 }
762
763 /* free a pmd talbe */
764 free_pagetable(pud_page(*pud), 0);
765 spin_lock(&init_mm.page_table_lock);
766 pud_clear(pud);
767 spin_unlock(&init_mm.page_table_lock);
768 }
769
770 /* Return true if pgd is changed, otherwise return false. */
771 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
772 {
773 pud_t *pud;
774 int i;
775
776 for (i = 0; i < PTRS_PER_PUD; i++) {
777 pud = pud_start + i;
778 if (pud_val(*pud))
779 return false;
780 }
781
782 /* free a pud table */
783 free_pagetable(pgd_page(*pgd), 0);
784 spin_lock(&init_mm.page_table_lock);
785 pgd_clear(pgd);
786 spin_unlock(&init_mm.page_table_lock);
787
788 return true;
789 }
790
791 static void __meminit
792 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
793 bool direct)
794 {
795 unsigned long next, pages = 0;
796 pte_t *pte;
797 void *page_addr;
798 phys_addr_t phys_addr;
799
800 pte = pte_start + pte_index(addr);
801 for (; addr < end; addr = next, pte++) {
802 next = (addr + PAGE_SIZE) & PAGE_MASK;
803 if (next > end)
804 next = end;
805
806 if (!pte_present(*pte))
807 continue;
808
809 /*
810 * We mapped [0,1G) memory as identity mapping when
811 * initializing, in arch/x86/kernel/head_64.S. These
812 * pagetables cannot be removed.
813 */
814 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
815 if (phys_addr < (phys_addr_t)0x40000000)
816 return;
817
818 if (IS_ALIGNED(addr, PAGE_SIZE) &&
819 IS_ALIGNED(next, PAGE_SIZE)) {
820 /*
821 * Do not free direct mapping pages since they were
822 * freed when offlining, or simplely not in use.
823 */
824 if (!direct)
825 free_pagetable(pte_page(*pte), 0);
826
827 spin_lock(&init_mm.page_table_lock);
828 pte_clear(&init_mm, addr, pte);
829 spin_unlock(&init_mm.page_table_lock);
830
831 /* For non-direct mapping, pages means nothing. */
832 pages++;
833 } else {
834 /*
835 * If we are here, we are freeing vmemmap pages since
836 * direct mapped memory ranges to be freed are aligned.
837 *
838 * If we are not removing the whole page, it means
839 * other page structs in this page are being used and
840 * we canot remove them. So fill the unused page_structs
841 * with 0xFD, and remove the page when it is wholly
842 * filled with 0xFD.
843 */
844 memset((void *)addr, PAGE_INUSE, next - addr);
845
846 page_addr = page_address(pte_page(*pte));
847 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
848 free_pagetable(pte_page(*pte), 0);
849
850 spin_lock(&init_mm.page_table_lock);
851 pte_clear(&init_mm, addr, pte);
852 spin_unlock(&init_mm.page_table_lock);
853 }
854 }
855 }
856
857 /* Call free_pte_table() in remove_pmd_table(). */
858 flush_tlb_all();
859 if (direct)
860 update_page_count(PG_LEVEL_4K, -pages);
861 }
862
863 static void __meminit
864 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
865 bool direct)
866 {
867 unsigned long next, pages = 0;
868 pte_t *pte_base;
869 pmd_t *pmd;
870 void *page_addr;
871
872 pmd = pmd_start + pmd_index(addr);
873 for (; addr < end; addr = next, pmd++) {
874 next = pmd_addr_end(addr, end);
875
876 if (!pmd_present(*pmd))
877 continue;
878
879 if (pmd_large(*pmd)) {
880 if (IS_ALIGNED(addr, PMD_SIZE) &&
881 IS_ALIGNED(next, PMD_SIZE)) {
882 if (!direct)
883 free_pagetable(pmd_page(*pmd),
884 get_order(PMD_SIZE));
885
886 spin_lock(&init_mm.page_table_lock);
887 pmd_clear(pmd);
888 spin_unlock(&init_mm.page_table_lock);
889 pages++;
890 } else {
891 /* If here, we are freeing vmemmap pages. */
892 memset((void *)addr, PAGE_INUSE, next - addr);
893
894 page_addr = page_address(pmd_page(*pmd));
895 if (!memchr_inv(page_addr, PAGE_INUSE,
896 PMD_SIZE)) {
897 free_pagetable(pmd_page(*pmd),
898 get_order(PMD_SIZE));
899
900 spin_lock(&init_mm.page_table_lock);
901 pmd_clear(pmd);
902 spin_unlock(&init_mm.page_table_lock);
903 }
904 }
905
906 continue;
907 }
908
909 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
910 remove_pte_table(pte_base, addr, next, direct);
911 free_pte_table(pte_base, pmd);
912 }
913
914 /* Call free_pmd_table() in remove_pud_table(). */
915 if (direct)
916 update_page_count(PG_LEVEL_2M, -pages);
917 }
918
919 static void __meminit
920 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
921 bool direct)
922 {
923 unsigned long next, pages = 0;
924 pmd_t *pmd_base;
925 pud_t *pud;
926 void *page_addr;
927
928 pud = pud_start + pud_index(addr);
929 for (; addr < end; addr = next, pud++) {
930 next = pud_addr_end(addr, end);
931
932 if (!pud_present(*pud))
933 continue;
934
935 if (pud_large(*pud)) {
936 if (IS_ALIGNED(addr, PUD_SIZE) &&
937 IS_ALIGNED(next, PUD_SIZE)) {
938 if (!direct)
939 free_pagetable(pud_page(*pud),
940 get_order(PUD_SIZE));
941
942 spin_lock(&init_mm.page_table_lock);
943 pud_clear(pud);
944 spin_unlock(&init_mm.page_table_lock);
945 pages++;
946 } else {
947 /* If here, we are freeing vmemmap pages. */
948 memset((void *)addr, PAGE_INUSE, next - addr);
949
950 page_addr = page_address(pud_page(*pud));
951 if (!memchr_inv(page_addr, PAGE_INUSE,
952 PUD_SIZE)) {
953 free_pagetable(pud_page(*pud),
954 get_order(PUD_SIZE));
955
956 spin_lock(&init_mm.page_table_lock);
957 pud_clear(pud);
958 spin_unlock(&init_mm.page_table_lock);
959 }
960 }
961
962 continue;
963 }
964
965 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
966 remove_pmd_table(pmd_base, addr, next, direct);
967 free_pmd_table(pmd_base, pud);
968 }
969
970 if (direct)
971 update_page_count(PG_LEVEL_1G, -pages);
972 }
973
974 /* start and end are both virtual address. */
975 static void __meminit
976 remove_pagetable(unsigned long start, unsigned long end, bool direct)
977 {
978 unsigned long next;
979 pgd_t *pgd;
980 pud_t *pud;
981 bool pgd_changed = false;
982
983 for (; start < end; start = next) {
984 next = pgd_addr_end(start, end);
985
986 pgd = pgd_offset_k(start);
987 if (!pgd_present(*pgd))
988 continue;
989
990 pud = (pud_t *)pgd_page_vaddr(*pgd);
991 remove_pud_table(pud, start, next, direct);
992 if (free_pud_table(pud, pgd))
993 pgd_changed = true;
994 }
995
996 if (pgd_changed)
997 sync_global_pgds(start, end - 1);
998
999 flush_tlb_all();
1000 }
1001
1002 void __ref vmemmap_free(unsigned long start, unsigned long end)
1003 {
1004 remove_pagetable(start, end, false);
1005 }
1006
1007 #ifdef CONFIG_MEMORY_HOTREMOVE
1008 static void __meminit
1009 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1010 {
1011 start = (unsigned long)__va(start);
1012 end = (unsigned long)__va(end);
1013
1014 remove_pagetable(start, end, true);
1015 }
1016
1017 int __ref arch_remove_memory(u64 start, u64 size)
1018 {
1019 unsigned long start_pfn = start >> PAGE_SHIFT;
1020 unsigned long nr_pages = size >> PAGE_SHIFT;
1021 struct zone *zone;
1022 int ret;
1023
1024 zone = page_zone(pfn_to_page(start_pfn));
1025 kernel_physical_mapping_remove(start, start + size);
1026 ret = __remove_pages(zone, start_pfn, nr_pages);
1027 WARN_ON_ONCE(ret);
1028
1029 return ret;
1030 }
1031 #endif
1032 #endif /* CONFIG_MEMORY_HOTPLUG */
1033
1034 static struct kcore_list kcore_vsyscall;
1035
1036 static void __init register_page_bootmem_info(void)
1037 {
1038 #ifdef CONFIG_NUMA
1039 int i;
1040
1041 for_each_online_node(i)
1042 register_page_bootmem_info_node(NODE_DATA(i));
1043 #endif
1044 }
1045
1046 void __init mem_init(void)
1047 {
1048 pci_iommu_alloc();
1049
1050 /* clear_bss() already clear the empty_zero_page */
1051
1052 register_page_bootmem_info();
1053
1054 /* this will put all memory onto the freelists */
1055 free_all_bootmem();
1056 after_bootmem = 1;
1057
1058 /* Register memory areas for /proc/kcore */
1059 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1060 PAGE_SIZE, KCORE_OTHER);
1061
1062 mem_init_print_info(NULL);
1063 }
1064
1065 #ifdef CONFIG_DEBUG_RODATA
1066 const int rodata_test_data = 0xC3;
1067 EXPORT_SYMBOL_GPL(rodata_test_data);
1068
1069 int kernel_set_to_readonly;
1070
1071 void set_kernel_text_rw(void)
1072 {
1073 unsigned long start = PFN_ALIGN(_text);
1074 unsigned long end = PFN_ALIGN(__stop___ex_table);
1075
1076 if (!kernel_set_to_readonly)
1077 return;
1078
1079 pr_debug("Set kernel text: %lx - %lx for read write\n",
1080 start, end);
1081
1082 /*
1083 * Make the kernel identity mapping for text RW. Kernel text
1084 * mapping will always be RO. Refer to the comment in
1085 * static_protections() in pageattr.c
1086 */
1087 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1088 }
1089
1090 void set_kernel_text_ro(void)
1091 {
1092 unsigned long start = PFN_ALIGN(_text);
1093 unsigned long end = PFN_ALIGN(__stop___ex_table);
1094
1095 if (!kernel_set_to_readonly)
1096 return;
1097
1098 pr_debug("Set kernel text: %lx - %lx for read only\n",
1099 start, end);
1100
1101 /*
1102 * Set the kernel identity mapping for text RO.
1103 */
1104 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1105 }
1106
1107 void mark_rodata_ro(void)
1108 {
1109 unsigned long start = PFN_ALIGN(_text);
1110 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1111 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1112 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1113 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1114 unsigned long all_end = PFN_ALIGN(&_end);
1115
1116 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1117 (end - start) >> 10);
1118 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1119
1120 kernel_set_to_readonly = 1;
1121
1122 /*
1123 * The rodata/data/bss/brk section (but not the kernel text!)
1124 * should also be not-executable.
1125 */
1126 set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1127
1128 rodata_test();
1129
1130 #ifdef CONFIG_CPA_DEBUG
1131 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1132 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1133
1134 printk(KERN_INFO "Testing CPA: again\n");
1135 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1136 #endif
1137
1138 free_init_pages("unused kernel",
1139 (unsigned long) __va(__pa_symbol(text_end)),
1140 (unsigned long) __va(__pa_symbol(rodata_start)));
1141 free_init_pages("unused kernel",
1142 (unsigned long) __va(__pa_symbol(rodata_end)),
1143 (unsigned long) __va(__pa_symbol(_sdata)));
1144 }
1145
1146 #endif
1147
1148 int kern_addr_valid(unsigned long addr)
1149 {
1150 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1151 pgd_t *pgd;
1152 pud_t *pud;
1153 pmd_t *pmd;
1154 pte_t *pte;
1155
1156 if (above != 0 && above != -1UL)
1157 return 0;
1158
1159 pgd = pgd_offset_k(addr);
1160 if (pgd_none(*pgd))
1161 return 0;
1162
1163 pud = pud_offset(pgd, addr);
1164 if (pud_none(*pud))
1165 return 0;
1166
1167 if (pud_large(*pud))
1168 return pfn_valid(pud_pfn(*pud));
1169
1170 pmd = pmd_offset(pud, addr);
1171 if (pmd_none(*pmd))
1172 return 0;
1173
1174 if (pmd_large(*pmd))
1175 return pfn_valid(pmd_pfn(*pmd));
1176
1177 pte = pte_offset_kernel(pmd, addr);
1178 if (pte_none(*pte))
1179 return 0;
1180
1181 return pfn_valid(pte_pfn(*pte));
1182 }
1183
1184 /*
1185 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
1186 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1187 * not need special handling anymore:
1188 */
1189 static const char *gate_vma_name(struct vm_area_struct *vma)
1190 {
1191 return "[vsyscall]";
1192 }
1193 static struct vm_operations_struct gate_vma_ops = {
1194 .name = gate_vma_name,
1195 };
1196 static struct vm_area_struct gate_vma = {
1197 .vm_start = VSYSCALL_ADDR,
1198 .vm_end = VSYSCALL_ADDR + PAGE_SIZE,
1199 .vm_page_prot = PAGE_READONLY_EXEC,
1200 .vm_flags = VM_READ | VM_EXEC,
1201 .vm_ops = &gate_vma_ops,
1202 };
1203
1204 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1205 {
1206 #ifdef CONFIG_IA32_EMULATION
1207 if (!mm || mm->context.ia32_compat)
1208 return NULL;
1209 #endif
1210 return &gate_vma;
1211 }
1212
1213 int in_gate_area(struct mm_struct *mm, unsigned long addr)
1214 {
1215 struct vm_area_struct *vma = get_gate_vma(mm);
1216
1217 if (!vma)
1218 return 0;
1219
1220 return (addr >= vma->vm_start) && (addr < vma->vm_end);
1221 }
1222
1223 /*
1224 * Use this when you have no reliable mm, typically from interrupt
1225 * context. It is less reliable than using a task's mm and may give
1226 * false positives.
1227 */
1228 int in_gate_area_no_mm(unsigned long addr)
1229 {
1230 return (addr & PAGE_MASK) == VSYSCALL_ADDR;
1231 }
1232
1233 static unsigned long probe_memory_block_size(void)
1234 {
1235 /* start from 2g */
1236 unsigned long bz = 1UL<<31;
1237
1238 #ifdef CONFIG_X86_UV
1239 if (is_uv_system()) {
1240 printk(KERN_INFO "UV: memory block size 2GB\n");
1241 return 2UL * 1024 * 1024 * 1024;
1242 }
1243 #endif
1244
1245 /* less than 64g installed */
1246 if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1247 return MIN_MEMORY_BLOCK_SIZE;
1248
1249 /* get the tail size */
1250 while (bz > MIN_MEMORY_BLOCK_SIZE) {
1251 if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1252 break;
1253 bz >>= 1;
1254 }
1255
1256 printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1257
1258 return bz;
1259 }
1260
1261 static unsigned long memory_block_size_probed;
1262 unsigned long memory_block_size_bytes(void)
1263 {
1264 if (!memory_block_size_probed)
1265 memory_block_size_probed = probe_memory_block_size();
1266
1267 return memory_block_size_probed;
1268 }
1269
1270 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1271 /*
1272 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1273 */
1274 static long __meminitdata addr_start, addr_end;
1275 static void __meminitdata *p_start, *p_end;
1276 static int __meminitdata node_start;
1277
1278 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1279 unsigned long end, int node)
1280 {
1281 unsigned long addr;
1282 unsigned long next;
1283 pgd_t *pgd;
1284 pud_t *pud;
1285 pmd_t *pmd;
1286
1287 for (addr = start; addr < end; addr = next) {
1288 next = pmd_addr_end(addr, end);
1289
1290 pgd = vmemmap_pgd_populate(addr, node);
1291 if (!pgd)
1292 return -ENOMEM;
1293
1294 pud = vmemmap_pud_populate(pgd, addr, node);
1295 if (!pud)
1296 return -ENOMEM;
1297
1298 pmd = pmd_offset(pud, addr);
1299 if (pmd_none(*pmd)) {
1300 void *p;
1301
1302 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1303 if (p) {
1304 pte_t entry;
1305
1306 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1307 PAGE_KERNEL_LARGE);
1308 set_pmd(pmd, __pmd(pte_val(entry)));
1309
1310 /* check to see if we have contiguous blocks */
1311 if (p_end != p || node_start != node) {
1312 if (p_start)
1313 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1314 addr_start, addr_end-1, p_start, p_end-1, node_start);
1315 addr_start = addr;
1316 node_start = node;
1317 p_start = p;
1318 }
1319
1320 addr_end = addr + PMD_SIZE;
1321 p_end = p + PMD_SIZE;
1322 continue;
1323 }
1324 } else if (pmd_large(*pmd)) {
1325 vmemmap_verify((pte_t *)pmd, node, addr, next);
1326 continue;
1327 }
1328 pr_warn_once("vmemmap: falling back to regular page backing\n");
1329 if (vmemmap_populate_basepages(addr, next, node))
1330 return -ENOMEM;
1331 }
1332 return 0;
1333 }
1334
1335 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1336 {
1337 int err;
1338
1339 if (cpu_has_pse)
1340 err = vmemmap_populate_hugepages(start, end, node);
1341 else
1342 err = vmemmap_populate_basepages(start, end, node);
1343 if (!err)
1344 sync_global_pgds(start, end - 1);
1345 return err;
1346 }
1347
1348 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1349 void register_page_bootmem_memmap(unsigned long section_nr,
1350 struct page *start_page, unsigned long size)
1351 {
1352 unsigned long addr = (unsigned long)start_page;
1353 unsigned long end = (unsigned long)(start_page + size);
1354 unsigned long next;
1355 pgd_t *pgd;
1356 pud_t *pud;
1357 pmd_t *pmd;
1358 unsigned int nr_pages;
1359 struct page *page;
1360
1361 for (; addr < end; addr = next) {
1362 pte_t *pte = NULL;
1363
1364 pgd = pgd_offset_k(addr);
1365 if (pgd_none(*pgd)) {
1366 next = (addr + PAGE_SIZE) & PAGE_MASK;
1367 continue;
1368 }
1369 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1370
1371 pud = pud_offset(pgd, addr);
1372 if (pud_none(*pud)) {
1373 next = (addr + PAGE_SIZE) & PAGE_MASK;
1374 continue;
1375 }
1376 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1377
1378 if (!cpu_has_pse) {
1379 next = (addr + PAGE_SIZE) & PAGE_MASK;
1380 pmd = pmd_offset(pud, addr);
1381 if (pmd_none(*pmd))
1382 continue;
1383 get_page_bootmem(section_nr, pmd_page(*pmd),
1384 MIX_SECTION_INFO);
1385
1386 pte = pte_offset_kernel(pmd, addr);
1387 if (pte_none(*pte))
1388 continue;
1389 get_page_bootmem(section_nr, pte_page(*pte),
1390 SECTION_INFO);
1391 } else {
1392 next = pmd_addr_end(addr, end);
1393
1394 pmd = pmd_offset(pud, addr);
1395 if (pmd_none(*pmd))
1396 continue;
1397
1398 nr_pages = 1 << (get_order(PMD_SIZE));
1399 page = pmd_page(*pmd);
1400 while (nr_pages--)
1401 get_page_bootmem(section_nr, page++,
1402 SECTION_INFO);
1403 }
1404 }
1405 }
1406 #endif
1407
1408 void __meminit vmemmap_populate_print_last(void)
1409 {
1410 if (p_start) {
1411 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1412 addr_start, addr_end-1, p_start, p_end-1, node_start);
1413 p_start = NULL;
1414 p_end = NULL;
1415 node_start = 0;
1416 }
1417 }
1418 #endif
This page took 0.061763 seconds and 5 git commands to generate.