x86: fix bad pmd ffff810000207xxx(9090909090909090)
[deliverable/linux.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
48 #include <asm/cacheflush.h>
49
50 static unsigned long dma_reserve __initdata;
51
52 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
53
54 int direct_gbpages __meminitdata
55 #ifdef CONFIG_DIRECT_GBPAGES
56 = 1
57 #endif
58 ;
59
60 static int __init parse_direct_gbpages_off(char *arg)
61 {
62 direct_gbpages = 0;
63 return 0;
64 }
65 early_param("nogbpages", parse_direct_gbpages_off);
66
67 static int __init parse_direct_gbpages_on(char *arg)
68 {
69 direct_gbpages = 1;
70 return 0;
71 }
72 early_param("gbpages", parse_direct_gbpages_on);
73
74 /*
75 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
76 * physical space so we can cache the place of the first one and move
77 * around without checking the pgd every time.
78 */
79
80 void show_mem(void)
81 {
82 long i, total = 0, reserved = 0;
83 long shared = 0, cached = 0;
84 struct page *page;
85 pg_data_t *pgdat;
86
87 printk(KERN_INFO "Mem-info:\n");
88 show_free_areas();
89 for_each_online_pgdat(pgdat) {
90 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
91 /*
92 * This loop can take a while with 256 GB and
93 * 4k pages so defer the NMI watchdog:
94 */
95 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
96 touch_nmi_watchdog();
97
98 if (!pfn_valid(pgdat->node_start_pfn + i))
99 continue;
100
101 page = pfn_to_page(pgdat->node_start_pfn + i);
102 total++;
103 if (PageReserved(page))
104 reserved++;
105 else if (PageSwapCache(page))
106 cached++;
107 else if (page_count(page))
108 shared += page_count(page) - 1;
109 }
110 }
111 printk(KERN_INFO "%lu pages of RAM\n", total);
112 printk(KERN_INFO "%lu reserved pages\n", reserved);
113 printk(KERN_INFO "%lu pages shared\n", shared);
114 printk(KERN_INFO "%lu pages swap cached\n", cached);
115 }
116
117 int after_bootmem;
118
119 static __init void *spp_getpage(void)
120 {
121 void *ptr;
122
123 if (after_bootmem)
124 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
125 else
126 ptr = alloc_bootmem_pages(PAGE_SIZE);
127
128 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
129 panic("set_pte_phys: cannot allocate page data %s\n",
130 after_bootmem ? "after bootmem" : "");
131 }
132
133 pr_debug("spp_getpage %p\n", ptr);
134
135 return ptr;
136 }
137
138 static void
139 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
140 {
141 pgd_t *pgd;
142 pud_t *pud;
143 pmd_t *pmd;
144 pte_t *pte, new_pte;
145
146 pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
147
148 pgd = pgd_offset_k(vaddr);
149 if (pgd_none(*pgd)) {
150 printk(KERN_ERR
151 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
152 return;
153 }
154 pud = pud_offset(pgd, vaddr);
155 if (pud_none(*pud)) {
156 pmd = (pmd_t *) spp_getpage();
157 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
158 if (pmd != pmd_offset(pud, 0)) {
159 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
160 pmd, pmd_offset(pud, 0));
161 return;
162 }
163 }
164 pmd = pmd_offset(pud, vaddr);
165 if (pmd_none(*pmd)) {
166 pte = (pte_t *) spp_getpage();
167 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
168 if (pte != pte_offset_kernel(pmd, 0)) {
169 printk(KERN_ERR "PAGETABLE BUG #02!\n");
170 return;
171 }
172 }
173 new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
174
175 pte = pte_offset_kernel(pmd, vaddr);
176 if (!pte_none(*pte) && pte_val(new_pte) &&
177 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
178 pte_ERROR(*pte);
179 set_pte(pte, new_pte);
180
181 /*
182 * It's enough to flush this one mapping.
183 * (PGE mappings get flushed as well)
184 */
185 __flush_tlb_one(vaddr);
186 }
187
188 /*
189 * The head.S code sets up the kernel high mapping:
190 *
191 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
192 *
193 * phys_addr holds the negative offset to the kernel, which is added
194 * to the compile time generated pmds. This results in invalid pmds up
195 * to the point where we hit the physaddr 0 mapping.
196 *
197 * We limit the mappings to the region from _text to _end. _end is
198 * rounded up to the 2MB boundary. This catches the invalid pmds as
199 * well, as they are located before _text:
200 */
201 void __init cleanup_highmap(void)
202 {
203 unsigned long vaddr = __START_KERNEL_map;
204 unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
205 pmd_t *pmd = level2_kernel_pgt;
206 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
207
208 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
209 if (pmd_none(*pmd))
210 continue;
211 if (vaddr < (unsigned long) _text || vaddr > end)
212 set_pmd(pmd, __pmd(0));
213 }
214 }
215
216 /* NOTE: this is meant to be run only at boot */
217 void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
218 {
219 unsigned long address = __fix_to_virt(idx);
220
221 if (idx >= __end_of_fixed_addresses) {
222 printk(KERN_ERR "Invalid __set_fixmap\n");
223 return;
224 }
225 set_pte_phys(address, phys, prot);
226 }
227
228 static unsigned long __initdata table_start;
229 static unsigned long __meminitdata table_end;
230
231 static __meminit void *alloc_low_page(unsigned long *phys)
232 {
233 unsigned long pfn = table_end++;
234 void *adr;
235
236 if (after_bootmem) {
237 adr = (void *)get_zeroed_page(GFP_ATOMIC);
238 *phys = __pa(adr);
239
240 return adr;
241 }
242
243 if (pfn >= end_pfn)
244 panic("alloc_low_page: ran out of memory");
245
246 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
247 memset(adr, 0, PAGE_SIZE);
248 *phys = pfn * PAGE_SIZE;
249 return adr;
250 }
251
252 static __meminit void unmap_low_page(void *adr)
253 {
254 if (after_bootmem)
255 return;
256
257 early_iounmap(adr, PAGE_SIZE);
258 }
259
260 /* Must run before zap_low_mappings */
261 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
262 {
263 pmd_t *pmd, *last_pmd;
264 unsigned long vaddr;
265 int i, pmds;
266
267 pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
268 vaddr = __START_KERNEL_map;
269 pmd = level2_kernel_pgt;
270 last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
271
272 for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
273 for (i = 0; i < pmds; i++) {
274 if (pmd_present(pmd[i]))
275 goto continue_outer_loop;
276 }
277 vaddr += addr & ~PMD_MASK;
278 addr &= PMD_MASK;
279
280 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
281 set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
282 __flush_tlb_all();
283
284 return (void *)vaddr;
285 continue_outer_loop:
286 ;
287 }
288 printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
289
290 return NULL;
291 }
292
293 /*
294 * To avoid virtual aliases later:
295 */
296 __meminit void early_iounmap(void *addr, unsigned long size)
297 {
298 unsigned long vaddr;
299 pmd_t *pmd;
300 int i, pmds;
301
302 vaddr = (unsigned long)addr;
303 pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
304 pmd = level2_kernel_pgt + pmd_index(vaddr);
305
306 for (i = 0; i < pmds; i++)
307 pmd_clear(pmd + i);
308
309 __flush_tlb_all();
310 }
311
312 static unsigned long __meminit
313 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
314 {
315 int i = pmd_index(address);
316
317 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
318 pmd_t *pmd = pmd_page + pmd_index(address);
319
320 if (address >= end) {
321 if (!after_bootmem) {
322 for (; i < PTRS_PER_PMD; i++, pmd++)
323 set_pmd(pmd, __pmd(0));
324 }
325 break;
326 }
327
328 if (pmd_val(*pmd))
329 continue;
330
331 set_pte((pte_t *)pmd,
332 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
333 }
334 return address;
335 }
336
337 static unsigned long __meminit
338 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
339 {
340 pmd_t *pmd = pmd_offset(pud, 0);
341 unsigned long last_map_addr;
342
343 spin_lock(&init_mm.page_table_lock);
344 last_map_addr = phys_pmd_init(pmd, address, end);
345 spin_unlock(&init_mm.page_table_lock);
346 __flush_tlb_all();
347 return last_map_addr;
348 }
349
350 static unsigned long __meminit
351 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
352 {
353 unsigned long last_map_addr = end;
354 int i = pud_index(addr);
355
356 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
357 unsigned long pmd_phys;
358 pud_t *pud = pud_page + pud_index(addr);
359 pmd_t *pmd;
360
361 if (addr >= end)
362 break;
363
364 if (!after_bootmem &&
365 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
366 set_pud(pud, __pud(0));
367 continue;
368 }
369
370 if (pud_val(*pud)) {
371 if (!pud_large(*pud))
372 last_map_addr = phys_pmd_update(pud, addr, end);
373 continue;
374 }
375
376 if (direct_gbpages) {
377 set_pte((pte_t *)pud,
378 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
379 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
380 continue;
381 }
382
383 pmd = alloc_low_page(&pmd_phys);
384
385 spin_lock(&init_mm.page_table_lock);
386 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
387 last_map_addr = phys_pmd_init(pmd, addr, end);
388 spin_unlock(&init_mm.page_table_lock);
389
390 unmap_low_page(pmd);
391 }
392 __flush_tlb_all();
393
394 return last_map_addr >> PAGE_SHIFT;
395 }
396
397 static void __init find_early_table_space(unsigned long end)
398 {
399 unsigned long puds, pmds, tables, start;
400
401 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
402 tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
403 if (!direct_gbpages) {
404 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
405 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
406 }
407
408 /*
409 * RED-PEN putting page tables only on node 0 could
410 * cause a hotspot and fill up ZONE_DMA. The page tables
411 * need roughly 0.5KB per GB.
412 */
413 start = 0x8000;
414 table_start = find_e820_area(start, end, tables, PAGE_SIZE);
415 if (table_start == -1UL)
416 panic("Cannot find space for the kernel page tables");
417
418 table_start >>= PAGE_SHIFT;
419 table_end = table_start;
420
421 early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
422 end, table_start << PAGE_SHIFT,
423 (table_start << PAGE_SHIFT) + tables);
424 }
425
426 static void __init init_gbpages(void)
427 {
428 if (direct_gbpages && cpu_has_gbpages)
429 printk(KERN_INFO "Using GB pages for direct mapping\n");
430 else
431 direct_gbpages = 0;
432 }
433
434 #ifdef CONFIG_MEMTEST_BOOTPARAM
435
436 static void __init memtest(unsigned long start_phys, unsigned long size,
437 unsigned pattern)
438 {
439 unsigned long i;
440 unsigned long *start;
441 unsigned long start_bad;
442 unsigned long last_bad;
443 unsigned long val;
444 unsigned long start_phys_aligned;
445 unsigned long count;
446 unsigned long incr;
447
448 switch (pattern) {
449 case 0:
450 val = 0UL;
451 break;
452 case 1:
453 val = -1UL;
454 break;
455 case 2:
456 val = 0x5555555555555555UL;
457 break;
458 case 3:
459 val = 0xaaaaaaaaaaaaaaaaUL;
460 break;
461 default:
462 return;
463 }
464
465 incr = sizeof(unsigned long);
466 start_phys_aligned = ALIGN(start_phys, incr);
467 count = (size - (start_phys_aligned - start_phys))/incr;
468 start = __va(start_phys_aligned);
469 start_bad = 0;
470 last_bad = 0;
471
472 for (i = 0; i < count; i++)
473 start[i] = val;
474 for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
475 if (*start != val) {
476 if (start_phys_aligned == last_bad + incr) {
477 last_bad += incr;
478 } else {
479 if (start_bad) {
480 printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
481 val, start_bad, last_bad + incr);
482 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
483 }
484 start_bad = last_bad = start_phys_aligned;
485 }
486 }
487 }
488 if (start_bad) {
489 printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
490 val, start_bad, last_bad + incr);
491 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
492 }
493
494 }
495
496 static int memtest_pattern __initdata = CONFIG_MEMTEST_BOOTPARAM_VALUE;
497
498 static int __init parse_memtest(char *arg)
499 {
500 if (arg)
501 memtest_pattern = simple_strtoul(arg, NULL, 0);
502 return 0;
503 }
504
505 early_param("memtest", parse_memtest);
506
507 static void __init early_memtest(unsigned long start, unsigned long end)
508 {
509 unsigned long t_start, t_size;
510 unsigned pattern;
511
512 if (!memtest_pattern)
513 return;
514
515 printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
516 for (pattern = 0; pattern < memtest_pattern; pattern++) {
517 t_start = start;
518 t_size = 0;
519 while (t_start < end) {
520 t_start = find_e820_area_size(t_start, &t_size, 1);
521
522 /* done ? */
523 if (t_start >= end)
524 break;
525 if (t_start + t_size > end)
526 t_size = end - t_start;
527
528 printk(KERN_CONT "\n %016lx - %016lx pattern %d",
529 t_start, t_start + t_size, pattern);
530
531 memtest(t_start, t_size, pattern);
532
533 t_start += t_size;
534 }
535 }
536 printk(KERN_CONT "\n");
537 }
538 #else
539 static void __init early_memtest(unsigned long start, unsigned long end)
540 {
541 }
542 #endif
543
544 /*
545 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
546 * This runs before bootmem is initialized and gets pages directly from
547 * the physical memory. To access them they are temporarily mapped.
548 */
549 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
550 {
551 unsigned long next, last_map_addr = end;
552 unsigned long start_phys = start, end_phys = end;
553
554 printk(KERN_INFO "init_memory_mapping\n");
555
556 /*
557 * Find space for the kernel direct mapping tables.
558 *
559 * Later we should allocate these tables in the local node of the
560 * memory mapped. Unfortunately this is done currently before the
561 * nodes are discovered.
562 */
563 if (!after_bootmem) {
564 init_gbpages();
565 find_early_table_space(end);
566 }
567
568 start = (unsigned long)__va(start);
569 end = (unsigned long)__va(end);
570
571 for (; start < end; start = next) {
572 pgd_t *pgd = pgd_offset_k(start);
573 unsigned long pud_phys;
574 pud_t *pud;
575
576 if (after_bootmem)
577 pud = pud_offset(pgd, start & PGDIR_MASK);
578 else
579 pud = alloc_low_page(&pud_phys);
580
581 next = start + PGDIR_SIZE;
582 if (next > end)
583 next = end;
584 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
585 if (!after_bootmem)
586 set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
587 unmap_low_page(pud);
588 }
589
590 if (!after_bootmem)
591 mmu_cr4_features = read_cr4();
592 __flush_tlb_all();
593
594 if (!after_bootmem)
595 reserve_early(table_start << PAGE_SHIFT,
596 table_end << PAGE_SHIFT, "PGTABLE");
597
598 if (!after_bootmem)
599 early_memtest(start_phys, end_phys);
600
601 return last_map_addr;
602 }
603
604 #ifndef CONFIG_NUMA
605 void __init paging_init(void)
606 {
607 unsigned long max_zone_pfns[MAX_NR_ZONES];
608
609 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
610 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
611 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
612 max_zone_pfns[ZONE_NORMAL] = end_pfn;
613
614 memory_present(0, 0, end_pfn);
615 sparse_init();
616 free_area_init_nodes(max_zone_pfns);
617 }
618 #endif
619
620 /*
621 * Memory hotplug specific functions
622 */
623 #ifdef CONFIG_MEMORY_HOTPLUG
624 /*
625 * Memory is added always to NORMAL zone. This means you will never get
626 * additional DMA/DMA32 memory.
627 */
628 int arch_add_memory(int nid, u64 start, u64 size)
629 {
630 struct pglist_data *pgdat = NODE_DATA(nid);
631 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
632 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
633 unsigned long nr_pages = size >> PAGE_SHIFT;
634 int ret;
635
636 last_mapped_pfn = init_memory_mapping(start, start + size-1);
637 if (last_mapped_pfn > max_pfn_mapped)
638 max_pfn_mapped = last_mapped_pfn;
639
640 ret = __add_pages(zone, start_pfn, nr_pages);
641 WARN_ON(1);
642
643 return ret;
644 }
645 EXPORT_SYMBOL_GPL(arch_add_memory);
646
647 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
648 int memory_add_physaddr_to_nid(u64 start)
649 {
650 return 0;
651 }
652 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
653 #endif
654
655 #endif /* CONFIG_MEMORY_HOTPLUG */
656
657 /*
658 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
659 * is valid. The argument is a physical page number.
660 *
661 *
662 * On x86, access has to be given to the first megabyte of ram because that area
663 * contains bios code and data regions used by X and dosemu and similar apps.
664 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
665 * mmio resources as well as potential bios/acpi data regions.
666 */
667 int devmem_is_allowed(unsigned long pagenr)
668 {
669 if (pagenr <= 256)
670 return 1;
671 if (!page_is_ram(pagenr))
672 return 1;
673 return 0;
674 }
675
676
677 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
678 kcore_modules, kcore_vsyscall;
679
680 void __init mem_init(void)
681 {
682 long codesize, reservedpages, datasize, initsize;
683
684 pci_iommu_alloc();
685
686 /* clear_bss() already clear the empty_zero_page */
687
688 reservedpages = 0;
689
690 /* this will put all low memory onto the freelists */
691 #ifdef CONFIG_NUMA
692 totalram_pages = numa_free_all_bootmem();
693 #else
694 totalram_pages = free_all_bootmem();
695 #endif
696 reservedpages = end_pfn - totalram_pages -
697 absent_pages_in_range(0, end_pfn);
698 after_bootmem = 1;
699
700 codesize = (unsigned long) &_etext - (unsigned long) &_text;
701 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
702 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
703
704 /* Register memory areas for /proc/kcore */
705 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
706 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
707 VMALLOC_END-VMALLOC_START);
708 kclist_add(&kcore_kernel, &_stext, _end - _stext);
709 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
710 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
711 VSYSCALL_END - VSYSCALL_START);
712
713 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
714 "%ldk reserved, %ldk data, %ldk init)\n",
715 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
716 end_pfn << (PAGE_SHIFT-10),
717 codesize >> 10,
718 reservedpages << (PAGE_SHIFT-10),
719 datasize >> 10,
720 initsize >> 10);
721
722 cpa_init();
723 }
724
725 void free_init_pages(char *what, unsigned long begin, unsigned long end)
726 {
727 unsigned long addr = begin;
728
729 if (addr >= end)
730 return;
731
732 /*
733 * If debugging page accesses then do not free this memory but
734 * mark them not present - any buggy init-section access will
735 * create a kernel page fault:
736 */
737 #ifdef CONFIG_DEBUG_PAGEALLOC
738 printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
739 begin, PAGE_ALIGN(end));
740 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
741 #else
742 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
743
744 for (; addr < end; addr += PAGE_SIZE) {
745 ClearPageReserved(virt_to_page(addr));
746 init_page_count(virt_to_page(addr));
747 memset((void *)(addr & ~(PAGE_SIZE-1)),
748 POISON_FREE_INITMEM, PAGE_SIZE);
749 free_page(addr);
750 totalram_pages++;
751 }
752 #endif
753 }
754
755 void free_initmem(void)
756 {
757 free_init_pages("unused kernel memory",
758 (unsigned long)(&__init_begin),
759 (unsigned long)(&__init_end));
760 }
761
762 #ifdef CONFIG_DEBUG_RODATA
763 const int rodata_test_data = 0xC3;
764 EXPORT_SYMBOL_GPL(rodata_test_data);
765
766 void mark_rodata_ro(void)
767 {
768 unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
769
770 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
771 (end - start) >> 10);
772 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
773
774 /*
775 * The rodata section (but not the kernel text!) should also be
776 * not-executable.
777 */
778 start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
779 set_memory_nx(start, (end - start) >> PAGE_SHIFT);
780
781 rodata_test();
782
783 #ifdef CONFIG_CPA_DEBUG
784 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
785 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
786
787 printk(KERN_INFO "Testing CPA: again\n");
788 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
789 #endif
790 }
791
792 #endif
793
794 #ifdef CONFIG_BLK_DEV_INITRD
795 void free_initrd_mem(unsigned long start, unsigned long end)
796 {
797 free_init_pages("initrd memory", start, end);
798 }
799 #endif
800
801 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
802 {
803 #ifdef CONFIG_NUMA
804 int nid, next_nid;
805 #endif
806 unsigned long pfn = phys >> PAGE_SHIFT;
807
808 if (pfn >= end_pfn) {
809 /*
810 * This can happen with kdump kernels when accessing
811 * firmware tables:
812 */
813 if (pfn < max_pfn_mapped)
814 return;
815
816 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
817 phys, len);
818 return;
819 }
820
821 /* Should check here against the e820 map to avoid double free */
822 #ifdef CONFIG_NUMA
823 nid = phys_to_nid(phys);
824 next_nid = phys_to_nid(phys + len - 1);
825 if (nid == next_nid)
826 reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
827 else
828 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
829 #else
830 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
831 #endif
832
833 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
834 dma_reserve += len / PAGE_SIZE;
835 set_dma_reserve(dma_reserve);
836 }
837 }
838
839 int kern_addr_valid(unsigned long addr)
840 {
841 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
842 pgd_t *pgd;
843 pud_t *pud;
844 pmd_t *pmd;
845 pte_t *pte;
846
847 if (above != 0 && above != -1UL)
848 return 0;
849
850 pgd = pgd_offset_k(addr);
851 if (pgd_none(*pgd))
852 return 0;
853
854 pud = pud_offset(pgd, addr);
855 if (pud_none(*pud))
856 return 0;
857
858 pmd = pmd_offset(pud, addr);
859 if (pmd_none(*pmd))
860 return 0;
861
862 if (pmd_large(*pmd))
863 return pfn_valid(pmd_pfn(*pmd));
864
865 pte = pte_offset_kernel(pmd, addr);
866 if (pte_none(*pte))
867 return 0;
868
869 return pfn_valid(pte_pfn(*pte));
870 }
871
872 /*
873 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
874 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
875 * not need special handling anymore:
876 */
877 static struct vm_area_struct gate_vma = {
878 .vm_start = VSYSCALL_START,
879 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
880 .vm_page_prot = PAGE_READONLY_EXEC,
881 .vm_flags = VM_READ | VM_EXEC
882 };
883
884 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
885 {
886 #ifdef CONFIG_IA32_EMULATION
887 if (test_tsk_thread_flag(tsk, TIF_IA32))
888 return NULL;
889 #endif
890 return &gate_vma;
891 }
892
893 int in_gate_area(struct task_struct *task, unsigned long addr)
894 {
895 struct vm_area_struct *vma = get_gate_vma(task);
896
897 if (!vma)
898 return 0;
899
900 return (addr >= vma->vm_start) && (addr < vma->vm_end);
901 }
902
903 /*
904 * Use this when you have no reliable task/vma, typically from interrupt
905 * context. It is less reliable than using the task's vma and may give
906 * false positives:
907 */
908 int in_gate_area_no_task(unsigned long addr)
909 {
910 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
911 }
912
913 const char *arch_vma_name(struct vm_area_struct *vma)
914 {
915 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
916 return "[vdso]";
917 if (vma == &gate_vma)
918 return "[vsyscall]";
919 return NULL;
920 }
921
922 #ifdef CONFIG_SPARSEMEM_VMEMMAP
923 /*
924 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
925 */
926 static long __meminitdata addr_start, addr_end;
927 static void __meminitdata *p_start, *p_end;
928 static int __meminitdata node_start;
929
930 int __meminit
931 vmemmap_populate(struct page *start_page, unsigned long size, int node)
932 {
933 unsigned long addr = (unsigned long)start_page;
934 unsigned long end = (unsigned long)(start_page + size);
935 unsigned long next;
936 pgd_t *pgd;
937 pud_t *pud;
938 pmd_t *pmd;
939
940 for (; addr < end; addr = next) {
941 next = pmd_addr_end(addr, end);
942
943 pgd = vmemmap_pgd_populate(addr, node);
944 if (!pgd)
945 return -ENOMEM;
946
947 pud = vmemmap_pud_populate(pgd, addr, node);
948 if (!pud)
949 return -ENOMEM;
950
951 pmd = pmd_offset(pud, addr);
952 if (pmd_none(*pmd)) {
953 pte_t entry;
954 void *p;
955
956 p = vmemmap_alloc_block(PMD_SIZE, node);
957 if (!p)
958 return -ENOMEM;
959
960 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
961 PAGE_KERNEL_LARGE);
962 set_pmd(pmd, __pmd(pte_val(entry)));
963
964 /* check to see if we have contiguous blocks */
965 if (p_end != p || node_start != node) {
966 if (p_start)
967 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
968 addr_start, addr_end-1, p_start, p_end-1, node_start);
969 addr_start = addr;
970 node_start = node;
971 p_start = p;
972 }
973 addr_end = addr + PMD_SIZE;
974 p_end = p + PMD_SIZE;
975 } else {
976 vmemmap_verify((pte_t *)pmd, node, addr, next);
977 }
978 }
979 return 0;
980 }
981
982 void __meminit vmemmap_populate_print_last(void)
983 {
984 if (p_start) {
985 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
986 addr_start, addr_end-1, p_start, p_end-1, node_start);
987 p_start = NULL;
988 p_end = NULL;
989 node_start = 0;
990 }
991 }
992 #endif
This page took 0.069431 seconds and 5 git commands to generate.