x86: Unify node_to_cpumask_map handling between 32 and 64bit
[deliverable/linux.git] / arch / x86 / mm / numa_64.c
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/memblock.h>
11 #include <linux/mmzone.h>
12 #include <linux/ctype.h>
13 #include <linux/module.h>
14 #include <linux/nodemask.h>
15 #include <linux/sched.h>
16
17 #include <asm/e820.h>
18 #include <asm/proto.h>
19 #include <asm/dma.h>
20 #include <asm/numa.h>
21 #include <asm/acpi.h>
22 #include <asm/amd_nb.h>
23
24 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
25 EXPORT_SYMBOL(node_data);
26
27 struct memnode memnode;
28
29 static unsigned long __initdata nodemap_addr;
30 static unsigned long __initdata nodemap_size;
31
32 /*
33 * Given a shift value, try to populate memnodemap[]
34 * Returns :
35 * 1 if OK
36 * 0 if memnodmap[] too small (of shift too small)
37 * -1 if node overlap or lost ram (shift too big)
38 */
39 static int __init populate_memnodemap(const struct bootnode *nodes,
40 int numnodes, int shift, int *nodeids)
41 {
42 unsigned long addr, end;
43 int i, res = -1;
44
45 memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
46 for (i = 0; i < numnodes; i++) {
47 addr = nodes[i].start;
48 end = nodes[i].end;
49 if (addr >= end)
50 continue;
51 if ((end >> shift) >= memnodemapsize)
52 return 0;
53 do {
54 if (memnodemap[addr >> shift] != NUMA_NO_NODE)
55 return -1;
56
57 if (!nodeids)
58 memnodemap[addr >> shift] = i;
59 else
60 memnodemap[addr >> shift] = nodeids[i];
61
62 addr += (1UL << shift);
63 } while (addr < end);
64 res = 1;
65 }
66 return res;
67 }
68
69 static int __init allocate_cachealigned_memnodemap(void)
70 {
71 unsigned long addr;
72
73 memnodemap = memnode.embedded_map;
74 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
75 return 0;
76
77 addr = 0x8000;
78 nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
79 nodemap_addr = memblock_find_in_range(addr, max_pfn<<PAGE_SHIFT,
80 nodemap_size, L1_CACHE_BYTES);
81 if (nodemap_addr == MEMBLOCK_ERROR) {
82 printk(KERN_ERR
83 "NUMA: Unable to allocate Memory to Node hash map\n");
84 nodemap_addr = nodemap_size = 0;
85 return -1;
86 }
87 memnodemap = phys_to_virt(nodemap_addr);
88 memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
89
90 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
91 nodemap_addr, nodemap_addr + nodemap_size);
92 return 0;
93 }
94
95 /*
96 * The LSB of all start and end addresses in the node map is the value of the
97 * maximum possible shift.
98 */
99 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
100 int numnodes)
101 {
102 int i, nodes_used = 0;
103 unsigned long start, end;
104 unsigned long bitfield = 0, memtop = 0;
105
106 for (i = 0; i < numnodes; i++) {
107 start = nodes[i].start;
108 end = nodes[i].end;
109 if (start >= end)
110 continue;
111 bitfield |= start;
112 nodes_used++;
113 if (end > memtop)
114 memtop = end;
115 }
116 if (nodes_used <= 1)
117 i = 63;
118 else
119 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
120 memnodemapsize = (memtop >> i)+1;
121 return i;
122 }
123
124 int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
125 int *nodeids)
126 {
127 int shift;
128
129 shift = extract_lsb_from_nodes(nodes, numnodes);
130 if (allocate_cachealigned_memnodemap())
131 return -1;
132 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
133 shift);
134
135 if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
136 printk(KERN_INFO "Your memory is not aligned you need to "
137 "rebuild your kernel with a bigger NODEMAPSIZE "
138 "shift=%d\n", shift);
139 return -1;
140 }
141 return shift;
142 }
143
144 int __meminit __early_pfn_to_nid(unsigned long pfn)
145 {
146 return phys_to_nid(pfn << PAGE_SHIFT);
147 }
148
149 static void * __init early_node_mem(int nodeid, unsigned long start,
150 unsigned long end, unsigned long size,
151 unsigned long align)
152 {
153 unsigned long mem;
154
155 /*
156 * put it on high as possible
157 * something will go with NODE_DATA
158 */
159 if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
160 start = MAX_DMA_PFN<<PAGE_SHIFT;
161 if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
162 end > (MAX_DMA32_PFN<<PAGE_SHIFT))
163 start = MAX_DMA32_PFN<<PAGE_SHIFT;
164 mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
165 if (mem != MEMBLOCK_ERROR)
166 return __va(mem);
167
168 /* extend the search scope */
169 end = max_pfn_mapped << PAGE_SHIFT;
170 start = MAX_DMA_PFN << PAGE_SHIFT;
171 mem = memblock_find_in_range(start, end, size, align);
172 if (mem != MEMBLOCK_ERROR)
173 return __va(mem);
174
175 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
176 size, nodeid);
177
178 return NULL;
179 }
180
181 /* Initialize bootmem allocator for a node */
182 void __init
183 setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
184 {
185 unsigned long start_pfn, last_pfn, nodedata_phys;
186 const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
187 int nid;
188
189 if (!end)
190 return;
191
192 /*
193 * Don't confuse VM with a node that doesn't have the
194 * minimum amount of memory:
195 */
196 if (end && (end - start) < NODE_MIN_SIZE)
197 return;
198
199 start = roundup(start, ZONE_ALIGN);
200
201 printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
202 start, end);
203
204 start_pfn = start >> PAGE_SHIFT;
205 last_pfn = end >> PAGE_SHIFT;
206
207 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
208 SMP_CACHE_BYTES);
209 if (node_data[nodeid] == NULL)
210 return;
211 nodedata_phys = __pa(node_data[nodeid]);
212 memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
213 printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
214 nodedata_phys + pgdat_size - 1);
215 nid = phys_to_nid(nodedata_phys);
216 if (nid != nodeid)
217 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
218
219 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
220 NODE_DATA(nodeid)->node_id = nodeid;
221 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
222 NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
223
224 node_set_online(nodeid);
225 }
226
227 /*
228 * There are unfortunately some poorly designed mainboards around that
229 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
230 * mapping. To avoid this fill in the mapping for all possible CPUs,
231 * as the number of CPUs is not known yet. We round robin the existing
232 * nodes.
233 */
234 void __init numa_init_array(void)
235 {
236 int rr, i;
237
238 rr = first_node(node_online_map);
239 for (i = 0; i < nr_cpu_ids; i++) {
240 if (early_cpu_to_node(i) != NUMA_NO_NODE)
241 continue;
242 numa_set_node(i, rr);
243 rr = next_node(rr, node_online_map);
244 if (rr == MAX_NUMNODES)
245 rr = first_node(node_online_map);
246 }
247 }
248
249 #ifdef CONFIG_NUMA_EMU
250 /* Numa emulation */
251 static struct bootnode nodes[MAX_NUMNODES] __initdata;
252 static struct bootnode physnodes[MAX_NUMNODES] __cpuinitdata;
253 static char *cmdline __initdata;
254
255 void __init numa_emu_cmdline(char *str)
256 {
257 cmdline = str;
258 }
259
260 static int __init setup_physnodes(unsigned long start, unsigned long end,
261 int acpi, int amd)
262 {
263 int ret = 0;
264 int i;
265
266 memset(physnodes, 0, sizeof(physnodes));
267 #ifdef CONFIG_ACPI_NUMA
268 if (acpi)
269 acpi_get_nodes(physnodes, start, end);
270 #endif
271 #ifdef CONFIG_AMD_NUMA
272 if (amd)
273 amd_get_nodes(physnodes);
274 #endif
275 /*
276 * Basic sanity checking on the physical node map: there may be errors
277 * if the SRAT or AMD code incorrectly reported the topology or the mem=
278 * kernel parameter is used.
279 */
280 for (i = 0; i < MAX_NUMNODES; i++) {
281 if (physnodes[i].start == physnodes[i].end)
282 continue;
283 if (physnodes[i].start > end) {
284 physnodes[i].end = physnodes[i].start;
285 continue;
286 }
287 if (physnodes[i].end < start) {
288 physnodes[i].start = physnodes[i].end;
289 continue;
290 }
291 if (physnodes[i].start < start)
292 physnodes[i].start = start;
293 if (physnodes[i].end > end)
294 physnodes[i].end = end;
295 ret++;
296 }
297
298 /*
299 * If no physical topology was detected, a single node is faked to cover
300 * the entire address space.
301 */
302 if (!ret) {
303 physnodes[ret].start = start;
304 physnodes[ret].end = end;
305 ret = 1;
306 }
307 return ret;
308 }
309
310 static void __init fake_physnodes(int acpi, int amd, int nr_nodes)
311 {
312 int i;
313
314 BUG_ON(acpi && amd);
315 #ifdef CONFIG_ACPI_NUMA
316 if (acpi)
317 acpi_fake_nodes(nodes, nr_nodes);
318 #endif
319 #ifdef CONFIG_AMD_NUMA
320 if (amd)
321 amd_fake_nodes(nodes, nr_nodes);
322 #endif
323 if (!acpi && !amd)
324 for (i = 0; i < nr_cpu_ids; i++)
325 numa_set_node(i, 0);
326 }
327
328 /*
329 * Setups up nid to range from addr to addr + size. If the end
330 * boundary is greater than max_addr, then max_addr is used instead.
331 * The return value is 0 if there is additional memory left for
332 * allocation past addr and -1 otherwise. addr is adjusted to be at
333 * the end of the node.
334 */
335 static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
336 {
337 int ret = 0;
338 nodes[nid].start = *addr;
339 *addr += size;
340 if (*addr >= max_addr) {
341 *addr = max_addr;
342 ret = -1;
343 }
344 nodes[nid].end = *addr;
345 node_set(nid, node_possible_map);
346 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
347 nodes[nid].start, nodes[nid].end,
348 (nodes[nid].end - nodes[nid].start) >> 20);
349 return ret;
350 }
351
352 /*
353 * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
354 * to max_addr. The return value is the number of nodes allocated.
355 */
356 static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_nodes)
357 {
358 nodemask_t physnode_mask = NODE_MASK_NONE;
359 u64 size;
360 int big;
361 int ret = 0;
362 int i;
363
364 if (nr_nodes <= 0)
365 return -1;
366 if (nr_nodes > MAX_NUMNODES) {
367 pr_info("numa=fake=%d too large, reducing to %d\n",
368 nr_nodes, MAX_NUMNODES);
369 nr_nodes = MAX_NUMNODES;
370 }
371
372 size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
373 /*
374 * Calculate the number of big nodes that can be allocated as a result
375 * of consolidating the remainder.
376 */
377 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
378 FAKE_NODE_MIN_SIZE;
379
380 size &= FAKE_NODE_MIN_HASH_MASK;
381 if (!size) {
382 pr_err("Not enough memory for each node. "
383 "NUMA emulation disabled.\n");
384 return -1;
385 }
386
387 for (i = 0; i < MAX_NUMNODES; i++)
388 if (physnodes[i].start != physnodes[i].end)
389 node_set(i, physnode_mask);
390
391 /*
392 * Continue to fill physical nodes with fake nodes until there is no
393 * memory left on any of them.
394 */
395 while (nodes_weight(physnode_mask)) {
396 for_each_node_mask(i, physnode_mask) {
397 u64 end = physnodes[i].start + size;
398 u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
399
400 if (ret < big)
401 end += FAKE_NODE_MIN_SIZE;
402
403 /*
404 * Continue to add memory to this fake node if its
405 * non-reserved memory is less than the per-node size.
406 */
407 while (end - physnodes[i].start -
408 memblock_x86_hole_size(physnodes[i].start, end) < size) {
409 end += FAKE_NODE_MIN_SIZE;
410 if (end > physnodes[i].end) {
411 end = physnodes[i].end;
412 break;
413 }
414 }
415
416 /*
417 * If there won't be at least FAKE_NODE_MIN_SIZE of
418 * non-reserved memory in ZONE_DMA32 for the next node,
419 * this one must extend to the boundary.
420 */
421 if (end < dma32_end && dma32_end - end -
422 memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
423 end = dma32_end;
424
425 /*
426 * If there won't be enough non-reserved memory for the
427 * next node, this one must extend to the end of the
428 * physical node.
429 */
430 if (physnodes[i].end - end -
431 memblock_x86_hole_size(end, physnodes[i].end) < size)
432 end = physnodes[i].end;
433
434 /*
435 * Avoid allocating more nodes than requested, which can
436 * happen as a result of rounding down each node's size
437 * to FAKE_NODE_MIN_SIZE.
438 */
439 if (nodes_weight(physnode_mask) + ret >= nr_nodes)
440 end = physnodes[i].end;
441
442 if (setup_node_range(ret++, &physnodes[i].start,
443 end - physnodes[i].start,
444 physnodes[i].end) < 0)
445 node_clear(i, physnode_mask);
446 }
447 }
448 return ret;
449 }
450
451 /*
452 * Returns the end address of a node so that there is at least `size' amount of
453 * non-reserved memory or `max_addr' is reached.
454 */
455 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
456 {
457 u64 end = start + size;
458
459 while (end - start - memblock_x86_hole_size(start, end) < size) {
460 end += FAKE_NODE_MIN_SIZE;
461 if (end > max_addr) {
462 end = max_addr;
463 break;
464 }
465 }
466 return end;
467 }
468
469 /*
470 * Sets up fake nodes of `size' interleaved over physical nodes ranging from
471 * `addr' to `max_addr'. The return value is the number of nodes allocated.
472 */
473 static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
474 {
475 nodemask_t physnode_mask = NODE_MASK_NONE;
476 u64 min_size;
477 int ret = 0;
478 int i;
479
480 if (!size)
481 return -1;
482 /*
483 * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
484 * increased accordingly if the requested size is too small. This
485 * creates a uniform distribution of node sizes across the entire
486 * machine (but not necessarily over physical nodes).
487 */
488 min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
489 MAX_NUMNODES;
490 min_size = max(min_size, FAKE_NODE_MIN_SIZE);
491 if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
492 min_size = (min_size + FAKE_NODE_MIN_SIZE) &
493 FAKE_NODE_MIN_HASH_MASK;
494 if (size < min_size) {
495 pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
496 size >> 20, min_size >> 20);
497 size = min_size;
498 }
499 size &= FAKE_NODE_MIN_HASH_MASK;
500
501 for (i = 0; i < MAX_NUMNODES; i++)
502 if (physnodes[i].start != physnodes[i].end)
503 node_set(i, physnode_mask);
504 /*
505 * Fill physical nodes with fake nodes of size until there is no memory
506 * left on any of them.
507 */
508 while (nodes_weight(physnode_mask)) {
509 for_each_node_mask(i, physnode_mask) {
510 u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
511 u64 end;
512
513 end = find_end_of_node(physnodes[i].start,
514 physnodes[i].end, size);
515 /*
516 * If there won't be at least FAKE_NODE_MIN_SIZE of
517 * non-reserved memory in ZONE_DMA32 for the next node,
518 * this one must extend to the boundary.
519 */
520 if (end < dma32_end && dma32_end - end -
521 memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
522 end = dma32_end;
523
524 /*
525 * If there won't be enough non-reserved memory for the
526 * next node, this one must extend to the end of the
527 * physical node.
528 */
529 if (physnodes[i].end - end -
530 memblock_x86_hole_size(end, physnodes[i].end) < size)
531 end = physnodes[i].end;
532
533 /*
534 * Setup the fake node that will be allocated as bootmem
535 * later. If setup_node_range() returns non-zero, there
536 * is no more memory available on this physical node.
537 */
538 if (setup_node_range(ret++, &physnodes[i].start,
539 end - physnodes[i].start,
540 physnodes[i].end) < 0)
541 node_clear(i, physnode_mask);
542 }
543 }
544 return ret;
545 }
546
547 /*
548 * Sets up the system RAM area from start_pfn to last_pfn according to the
549 * numa=fake command-line option.
550 */
551 static int __init numa_emulation(unsigned long start_pfn,
552 unsigned long last_pfn, int acpi, int amd)
553 {
554 u64 addr = start_pfn << PAGE_SHIFT;
555 u64 max_addr = last_pfn << PAGE_SHIFT;
556 int num_nodes;
557 int i;
558
559 /*
560 * If the numa=fake command-line contains a 'M' or 'G', it represents
561 * the fixed node size. Otherwise, if it is just a single number N,
562 * split the system RAM into N fake nodes.
563 */
564 if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
565 u64 size;
566
567 size = memparse(cmdline, &cmdline);
568 num_nodes = split_nodes_size_interleave(addr, max_addr, size);
569 } else {
570 unsigned long n;
571
572 n = simple_strtoul(cmdline, NULL, 0);
573 num_nodes = split_nodes_interleave(addr, max_addr, n);
574 }
575
576 if (num_nodes < 0)
577 return num_nodes;
578 memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
579 if (memnode_shift < 0) {
580 memnode_shift = 0;
581 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
582 "disabled.\n");
583 return -1;
584 }
585
586 /*
587 * We need to vacate all active ranges that may have been registered for
588 * the e820 memory map.
589 */
590 remove_all_active_ranges();
591 for_each_node_mask(i, node_possible_map) {
592 memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
593 nodes[i].end >> PAGE_SHIFT);
594 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
595 }
596 setup_physnodes(addr, max_addr, acpi, amd);
597 fake_physnodes(acpi, amd, num_nodes);
598 numa_init_array();
599 return 0;
600 }
601 #endif /* CONFIG_NUMA_EMU */
602
603 void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
604 int acpi, int amd)
605 {
606 int i;
607
608 nodes_clear(node_possible_map);
609 nodes_clear(node_online_map);
610
611 #ifdef CONFIG_NUMA_EMU
612 setup_physnodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT,
613 acpi, amd);
614 if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, amd))
615 return;
616 setup_physnodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT,
617 acpi, amd);
618 nodes_clear(node_possible_map);
619 nodes_clear(node_online_map);
620 #endif
621
622 #ifdef CONFIG_ACPI_NUMA
623 if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
624 last_pfn << PAGE_SHIFT))
625 return;
626 nodes_clear(node_possible_map);
627 nodes_clear(node_online_map);
628 #endif
629
630 #ifdef CONFIG_AMD_NUMA
631 if (!numa_off && amd && !amd_scan_nodes())
632 return;
633 nodes_clear(node_possible_map);
634 nodes_clear(node_online_map);
635 #endif
636 printk(KERN_INFO "%s\n",
637 numa_off ? "NUMA turned off" : "No NUMA configuration found");
638
639 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
640 start_pfn << PAGE_SHIFT,
641 last_pfn << PAGE_SHIFT);
642 /* setup dummy node covering all memory */
643 memnode_shift = 63;
644 memnodemap = memnode.embedded_map;
645 memnodemap[0] = 0;
646 node_set_online(0);
647 node_set(0, node_possible_map);
648 for (i = 0; i < nr_cpu_ids; i++)
649 numa_set_node(i, 0);
650 memblock_x86_register_active_regions(0, start_pfn, last_pfn);
651 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
652 }
653
654 unsigned long __init numa_free_all_bootmem(void)
655 {
656 unsigned long pages = 0;
657 int i;
658
659 for_each_online_node(i)
660 pages += free_all_bootmem_node(NODE_DATA(i));
661
662 pages += free_all_memory_core_early(MAX_NUMNODES);
663
664 return pages;
665 }
666
667 #ifdef CONFIG_NUMA
668
669 static __init int find_near_online_node(int node)
670 {
671 int n, val;
672 int min_val = INT_MAX;
673 int best_node = -1;
674
675 for_each_online_node(n) {
676 val = node_distance(node, n);
677
678 if (val < min_val) {
679 min_val = val;
680 best_node = n;
681 }
682 }
683
684 return best_node;
685 }
686
687 /*
688 * Setup early cpu_to_node.
689 *
690 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
691 * and apicid_to_node[] tables have valid entries for a CPU.
692 * This means we skip cpu_to_node[] initialisation for NUMA
693 * emulation and faking node case (when running a kernel compiled
694 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
695 * is already initialized in a round robin manner at numa_init_array,
696 * prior to this call, and this initialization is good enough
697 * for the fake NUMA cases.
698 *
699 * Called before the per_cpu areas are setup.
700 */
701 void __init init_cpu_to_node(void)
702 {
703 int cpu;
704 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
705
706 BUG_ON(cpu_to_apicid == NULL);
707
708 for_each_possible_cpu(cpu) {
709 int node = numa_cpu_node(cpu);
710
711 if (node == NUMA_NO_NODE)
712 continue;
713 if (!node_online(node))
714 node = find_near_online_node(node);
715 numa_set_node(cpu, node);
716 }
717 }
718 #endif
719
720 int __cpuinit numa_cpu_node(int cpu)
721 {
722 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
723
724 if (apicid != BAD_APICID)
725 return __apicid_to_node[apicid];
726 return NUMA_NO_NODE;
727 }
728
729 /*
730 * UGLINESS AHEAD: Currently, CONFIG_NUMA_EMU is 64bit only and makes use
731 * of 64bit specific data structures. The distinction is artificial and
732 * should be removed. numa_{add|remove}_cpu() are implemented in numa.c
733 * for both 32 and 64bit when CONFIG_NUMA_EMU is disabled but here when
734 * enabled.
735 *
736 * NUMA emulation is planned to be made generic and the following and other
737 * related code should be moved to numa.c.
738 */
739 #ifdef CONFIG_NUMA_EMU
740 # ifndef CONFIG_DEBUG_PER_CPU_MAPS
741 void __cpuinit numa_add_cpu(int cpu)
742 {
743 unsigned long addr;
744 int physnid, nid;
745
746 nid = numa_cpu_node(cpu);
747 if (nid == NUMA_NO_NODE)
748 nid = early_cpu_to_node(cpu);
749 BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
750
751 /*
752 * Use the starting address of the emulated node to find which physical
753 * node it is allocated on.
754 */
755 addr = node_start_pfn(nid) << PAGE_SHIFT;
756 for (physnid = 0; physnid < MAX_NUMNODES; physnid++)
757 if (addr >= physnodes[physnid].start &&
758 addr < physnodes[physnid].end)
759 break;
760
761 /*
762 * Map the cpu to each emulated node that is allocated on the physical
763 * node of the cpu's apic id.
764 */
765 for_each_online_node(nid) {
766 addr = node_start_pfn(nid) << PAGE_SHIFT;
767 if (addr >= physnodes[physnid].start &&
768 addr < physnodes[physnid].end)
769 cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
770 }
771 }
772
773 void __cpuinit numa_remove_cpu(int cpu)
774 {
775 int i;
776
777 for_each_online_node(i)
778 cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
779 }
780 # else /* !CONFIG_DEBUG_PER_CPU_MAPS */
781 static void __cpuinit numa_set_cpumask(int cpu, int enable)
782 {
783 int node = early_cpu_to_node(cpu);
784 struct cpumask *mask;
785 int i;
786
787 for_each_online_node(i) {
788 unsigned long addr;
789
790 addr = node_start_pfn(i) << PAGE_SHIFT;
791 if (addr < physnodes[node].start ||
792 addr >= physnodes[node].end)
793 continue;
794 mask = debug_cpumask_set_cpu(cpu, enable);
795 if (!mask)
796 return;
797
798 if (enable)
799 cpumask_set_cpu(cpu, mask);
800 else
801 cpumask_clear_cpu(cpu, mask);
802 }
803 }
804
805 void __cpuinit numa_add_cpu(int cpu)
806 {
807 numa_set_cpumask(cpu, 1);
808 }
809
810 void __cpuinit numa_remove_cpu(int cpu)
811 {
812 numa_set_cpumask(cpu, 0);
813 }
814 # endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
815 #endif /* CONFIG_NUMA_EMU */
This page took 0.096043 seconds and 5 git commands to generate.