x86: clean up paging_init()
[deliverable/linux.git] / arch / x86 / mm / numa_64.c
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
15
16 #include <asm/e820.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>
19 #include <asm/numa.h>
20 #include <asm/acpi.h>
21 #include <asm/k8.h>
22
23 #ifndef Dprintk
24 #define Dprintk(x...)
25 #endif
26
27 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
28 EXPORT_SYMBOL(node_data);
29
30 bootmem_data_t plat_node_bdata[MAX_NUMNODES];
31
32 struct memnode memnode;
33
34 u16 x86_cpu_to_node_map_init[NR_CPUS] = {
35 [0 ... NR_CPUS-1] = NUMA_NO_NODE
36 };
37 void *x86_cpu_to_node_map_early_ptr;
38 DEFINE_PER_CPU(u16, x86_cpu_to_node_map) = NUMA_NO_NODE;
39 EXPORT_PER_CPU_SYMBOL(x86_cpu_to_node_map);
40 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
41 EXPORT_SYMBOL(x86_cpu_to_node_map_early_ptr);
42 #endif
43
44 u16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
45 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
46 };
47
48 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
49 EXPORT_SYMBOL(node_to_cpumask_map);
50
51 int numa_off __initdata;
52 unsigned long __initdata nodemap_addr;
53 unsigned long __initdata nodemap_size;
54
55 /*
56 * Given a shift value, try to populate memnodemap[]
57 * Returns :
58 * 1 if OK
59 * 0 if memnodmap[] too small (of shift too small)
60 * -1 if node overlap or lost ram (shift too big)
61 */
62 static int __init populate_memnodemap(const struct bootnode *nodes,
63 int numnodes, int shift)
64 {
65 unsigned long addr, end;
66 int i, res = -1;
67
68 memset(memnodemap, 0xff, memnodemapsize);
69 for (i = 0; i < numnodes; i++) {
70 addr = nodes[i].start;
71 end = nodes[i].end;
72 if (addr >= end)
73 continue;
74 if ((end >> shift) >= memnodemapsize)
75 return 0;
76 do {
77 if (memnodemap[addr >> shift] != 0xff)
78 return -1;
79 memnodemap[addr >> shift] = i;
80 addr += (1UL << shift);
81 } while (addr < end);
82 res = 1;
83 }
84 return res;
85 }
86
87 static int __init allocate_cachealigned_memnodemap(void)
88 {
89 unsigned long pad, pad_addr;
90
91 memnodemap = memnode.embedded_map;
92 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
93 return 0;
94
95 pad = L1_CACHE_BYTES - 1;
96 pad_addr = 0x8000;
97 nodemap_size = pad + memnodemapsize;
98 nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
99 nodemap_size);
100 if (nodemap_addr == -1UL) {
101 printk(KERN_ERR
102 "NUMA: Unable to allocate Memory to Node hash map\n");
103 nodemap_addr = nodemap_size = 0;
104 return -1;
105 }
106 pad_addr = (nodemap_addr + pad) & ~pad;
107 memnodemap = phys_to_virt(pad_addr);
108 reserve_early(nodemap_addr, nodemap_addr + nodemap_size);
109
110 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
111 nodemap_addr, nodemap_addr + nodemap_size);
112 return 0;
113 }
114
115 /*
116 * The LSB of all start and end addresses in the node map is the value of the
117 * maximum possible shift.
118 */
119 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
120 int numnodes)
121 {
122 int i, nodes_used = 0;
123 unsigned long start, end;
124 unsigned long bitfield = 0, memtop = 0;
125
126 for (i = 0; i < numnodes; i++) {
127 start = nodes[i].start;
128 end = nodes[i].end;
129 if (start >= end)
130 continue;
131 bitfield |= start;
132 nodes_used++;
133 if (end > memtop)
134 memtop = end;
135 }
136 if (nodes_used <= 1)
137 i = 63;
138 else
139 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
140 memnodemapsize = (memtop >> i)+1;
141 return i;
142 }
143
144 int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
145 {
146 int shift;
147
148 shift = extract_lsb_from_nodes(nodes, numnodes);
149 if (allocate_cachealigned_memnodemap())
150 return -1;
151 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
152 shift);
153
154 if (populate_memnodemap(nodes, numnodes, shift) != 1) {
155 printk(KERN_INFO "Your memory is not aligned you need to "
156 "rebuild your kernel with a bigger NODEMAPSIZE "
157 "shift=%d\n", shift);
158 return -1;
159 }
160 return shift;
161 }
162
163 int early_pfn_to_nid(unsigned long pfn)
164 {
165 return phys_to_nid(pfn << PAGE_SHIFT);
166 }
167
168 static void * __init early_node_mem(int nodeid, unsigned long start,
169 unsigned long end, unsigned long size)
170 {
171 unsigned long mem = find_e820_area(start, end, size);
172 void *ptr;
173
174 if (mem != -1L)
175 return __va(mem);
176 ptr = __alloc_bootmem_nopanic(size,
177 SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
178 if (ptr == NULL) {
179 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
180 size, nodeid);
181 return NULL;
182 }
183 return ptr;
184 }
185
186 /* Initialize bootmem allocator for a node */
187 void __init setup_node_bootmem(int nodeid, unsigned long start,
188 unsigned long end)
189 {
190 unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
191 unsigned long bootmap_start, nodedata_phys;
192 void *bootmap;
193 const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
194
195 start = round_up(start, ZONE_ALIGN);
196
197 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
198 start, end);
199
200 start_pfn = start >> PAGE_SHIFT;
201 end_pfn = end >> PAGE_SHIFT;
202
203 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
204 if (node_data[nodeid] == NULL)
205 return;
206 nodedata_phys = __pa(node_data[nodeid]);
207
208 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
209 NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
210 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
211 NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
212
213 /* Find a place for the bootmem map */
214 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
215 bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
216 bootmap = early_node_mem(nodeid, bootmap_start, end,
217 bootmap_pages<<PAGE_SHIFT);
218 if (bootmap == NULL) {
219 if (nodedata_phys < start || nodedata_phys >= end)
220 free_bootmem((unsigned long)node_data[nodeid],
221 pgdat_size);
222 node_data[nodeid] = NULL;
223 return;
224 }
225 bootmap_start = __pa(bootmap);
226 Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
227
228 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
229 bootmap_start >> PAGE_SHIFT,
230 start_pfn, end_pfn);
231
232 free_bootmem_with_active_regions(nodeid, end);
233
234 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
235 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
236 bootmap_pages<<PAGE_SHIFT);
237 #ifdef CONFIG_ACPI_NUMA
238 srat_reserve_add_area(nodeid);
239 #endif
240 node_set_online(nodeid);
241 }
242
243 /*
244 * There are unfortunately some poorly designed mainboards around that
245 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
246 * mapping. To avoid this fill in the mapping for all possible CPUs,
247 * as the number of CPUs is not known yet. We round robin the existing
248 * nodes.
249 */
250 void __init numa_init_array(void)
251 {
252 int rr, i;
253
254 rr = first_node(node_online_map);
255 for (i = 0; i < NR_CPUS; i++) {
256 if (cpu_to_node(i) != NUMA_NO_NODE)
257 continue;
258 numa_set_node(i, rr);
259 rr = next_node(rr, node_online_map);
260 if (rr == MAX_NUMNODES)
261 rr = first_node(node_online_map);
262 }
263 }
264
265 #ifdef CONFIG_NUMA_EMU
266 /* Numa emulation */
267 char *cmdline __initdata;
268
269 /*
270 * Setups up nid to range from addr to addr + size. If the end
271 * boundary is greater than max_addr, then max_addr is used instead.
272 * The return value is 0 if there is additional memory left for
273 * allocation past addr and -1 otherwise. addr is adjusted to be at
274 * the end of the node.
275 */
276 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
277 u64 size, u64 max_addr)
278 {
279 int ret = 0;
280
281 nodes[nid].start = *addr;
282 *addr += size;
283 if (*addr >= max_addr) {
284 *addr = max_addr;
285 ret = -1;
286 }
287 nodes[nid].end = *addr;
288 node_set(nid, node_possible_map);
289 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
290 nodes[nid].start, nodes[nid].end,
291 (nodes[nid].end - nodes[nid].start) >> 20);
292 return ret;
293 }
294
295 /*
296 * Splits num_nodes nodes up equally starting at node_start. The return value
297 * is the number of nodes split up and addr is adjusted to be at the end of the
298 * last node allocated.
299 */
300 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
301 u64 max_addr, int node_start,
302 int num_nodes)
303 {
304 unsigned int big;
305 u64 size;
306 int i;
307
308 if (num_nodes <= 0)
309 return -1;
310 if (num_nodes > MAX_NUMNODES)
311 num_nodes = MAX_NUMNODES;
312 size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
313 num_nodes;
314 /*
315 * Calculate the number of big nodes that can be allocated as a result
316 * of consolidating the leftovers.
317 */
318 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
319 FAKE_NODE_MIN_SIZE;
320
321 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
322 size &= FAKE_NODE_MIN_HASH_MASK;
323 if (!size) {
324 printk(KERN_ERR "Not enough memory for each node. "
325 "NUMA emulation disabled.\n");
326 return -1;
327 }
328
329 for (i = node_start; i < num_nodes + node_start; i++) {
330 u64 end = *addr + size;
331
332 if (i < big)
333 end += FAKE_NODE_MIN_SIZE;
334 /*
335 * The final node can have the remaining system RAM. Other
336 * nodes receive roughly the same amount of available pages.
337 */
338 if (i == num_nodes + node_start - 1)
339 end = max_addr;
340 else
341 while (end - *addr - e820_hole_size(*addr, end) <
342 size) {
343 end += FAKE_NODE_MIN_SIZE;
344 if (end > max_addr) {
345 end = max_addr;
346 break;
347 }
348 }
349 if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
350 break;
351 }
352 return i - node_start + 1;
353 }
354
355 /*
356 * Splits the remaining system RAM into chunks of size. The remaining memory is
357 * always assigned to a final node and can be asymmetric. Returns the number of
358 * nodes split.
359 */
360 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
361 u64 max_addr, int node_start, u64 size)
362 {
363 int i = node_start;
364 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
365 while (!setup_node_range(i++, nodes, addr, size, max_addr))
366 ;
367 return i - node_start;
368 }
369
370 /*
371 * Sets up the system RAM area from start_pfn to end_pfn according to the
372 * numa=fake command-line option.
373 */
374 static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
375 {
376 struct bootnode nodes[MAX_NUMNODES];
377 u64 size, addr = start_pfn << PAGE_SHIFT;
378 u64 max_addr = end_pfn << PAGE_SHIFT;
379 int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
380
381 memset(&nodes, 0, sizeof(nodes));
382 /*
383 * If the numa=fake command-line is just a single number N, split the
384 * system RAM into N fake nodes.
385 */
386 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
387 long n = simple_strtol(cmdline, NULL, 0);
388
389 num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
390 if (num_nodes < 0)
391 return num_nodes;
392 goto out;
393 }
394
395 /* Parse the command line. */
396 for (coeff_flag = 0; ; cmdline++) {
397 if (*cmdline && isdigit(*cmdline)) {
398 num = num * 10 + *cmdline - '0';
399 continue;
400 }
401 if (*cmdline == '*') {
402 if (num > 0)
403 coeff = num;
404 coeff_flag = 1;
405 }
406 if (!*cmdline || *cmdline == ',') {
407 if (!coeff_flag)
408 coeff = 1;
409 /*
410 * Round down to the nearest FAKE_NODE_MIN_SIZE.
411 * Command-line coefficients are in megabytes.
412 */
413 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
414 if (size)
415 for (i = 0; i < coeff; i++, num_nodes++)
416 if (setup_node_range(num_nodes, nodes,
417 &addr, size, max_addr) < 0)
418 goto done;
419 if (!*cmdline)
420 break;
421 coeff_flag = 0;
422 coeff = -1;
423 }
424 num = 0;
425 }
426 done:
427 if (!num_nodes)
428 return -1;
429 /* Fill remainder of system RAM, if appropriate. */
430 if (addr < max_addr) {
431 if (coeff_flag && coeff < 0) {
432 /* Split remaining nodes into num-sized chunks */
433 num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
434 num_nodes, num);
435 goto out;
436 }
437 switch (*(cmdline - 1)) {
438 case '*':
439 /* Split remaining nodes into coeff chunks */
440 if (coeff <= 0)
441 break;
442 num_nodes += split_nodes_equally(nodes, &addr, max_addr,
443 num_nodes, coeff);
444 break;
445 case ',':
446 /* Do not allocate remaining system RAM */
447 break;
448 default:
449 /* Give one final node */
450 setup_node_range(num_nodes, nodes, &addr,
451 max_addr - addr, max_addr);
452 num_nodes++;
453 }
454 }
455 out:
456 memnode_shift = compute_hash_shift(nodes, num_nodes);
457 if (memnode_shift < 0) {
458 memnode_shift = 0;
459 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
460 "disabled.\n");
461 return -1;
462 }
463
464 /*
465 * We need to vacate all active ranges that may have been registered by
466 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
467 * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
468 */
469 remove_all_active_ranges();
470 #ifdef CONFIG_ACPI_NUMA
471 acpi_numa = -1;
472 #endif
473 for_each_node_mask(i, node_possible_map) {
474 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
475 nodes[i].end >> PAGE_SHIFT);
476 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
477 }
478 acpi_fake_nodes(nodes, num_nodes);
479 numa_init_array();
480 return 0;
481 }
482 #endif /* CONFIG_NUMA_EMU */
483
484 void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
485 {
486 int i;
487
488 nodes_clear(node_possible_map);
489
490 #ifdef CONFIG_NUMA_EMU
491 if (cmdline && !numa_emulation(start_pfn, end_pfn))
492 return;
493 nodes_clear(node_possible_map);
494 #endif
495
496 #ifdef CONFIG_ACPI_NUMA
497 if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
498 end_pfn << PAGE_SHIFT))
499 return;
500 nodes_clear(node_possible_map);
501 #endif
502
503 #ifdef CONFIG_K8_NUMA
504 if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
505 end_pfn<<PAGE_SHIFT))
506 return;
507 nodes_clear(node_possible_map);
508 #endif
509 printk(KERN_INFO "%s\n",
510 numa_off ? "NUMA turned off" : "No NUMA configuration found");
511
512 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
513 start_pfn << PAGE_SHIFT,
514 end_pfn << PAGE_SHIFT);
515 /* setup dummy node covering all memory */
516 memnode_shift = 63;
517 memnodemap = memnode.embedded_map;
518 memnodemap[0] = 0;
519 nodes_clear(node_online_map);
520 node_set_online(0);
521 node_set(0, node_possible_map);
522 for (i = 0; i < NR_CPUS; i++)
523 numa_set_node(i, 0);
524 /* cpumask_of_cpu() may not be available during early startup */
525 memset(&node_to_cpumask_map[0], 0, sizeof(node_to_cpumask_map[0]));
526 cpu_set(0, node_to_cpumask_map[0]);
527 e820_register_active_regions(0, start_pfn, end_pfn);
528 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
529 }
530
531 __cpuinit void numa_add_cpu(int cpu)
532 {
533 set_bit(cpu, (unsigned long *)&node_to_cpumask_map[cpu_to_node(cpu)]);
534 }
535
536 void __cpuinit numa_set_node(int cpu, int node)
537 {
538 u16 *cpu_to_node_map = x86_cpu_to_node_map_early_ptr;
539
540 cpu_pda(cpu)->nodenumber = node;
541
542 if(cpu_to_node_map)
543 cpu_to_node_map[cpu] = node;
544 else if(per_cpu_offset(cpu))
545 per_cpu(x86_cpu_to_node_map, cpu) = node;
546 else
547 Dprintk(KERN_INFO "Setting node for non-present cpu %d\n", cpu);
548 }
549
550 unsigned long __init numa_free_all_bootmem(void)
551 {
552 unsigned long pages = 0;
553 int i;
554
555 for_each_online_node(i)
556 pages += free_all_bootmem_node(NODE_DATA(i));
557
558 return pages;
559 }
560
561 void __init paging_init(void)
562 {
563 unsigned long max_zone_pfns[MAX_NR_ZONES];
564
565 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
566 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
567 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
568 max_zone_pfns[ZONE_NORMAL] = end_pfn;
569
570 sparse_memory_present_with_active_regions(MAX_NUMNODES);
571 sparse_init();
572
573 free_area_init_nodes(max_zone_pfns);
574 }
575
576 static __init int numa_setup(char *opt)
577 {
578 if (!opt)
579 return -EINVAL;
580 if (!strncmp(opt, "off", 3))
581 numa_off = 1;
582 #ifdef CONFIG_NUMA_EMU
583 if (!strncmp(opt, "fake=", 5))
584 cmdline = opt + 5;
585 #endif
586 #ifdef CONFIG_ACPI_NUMA
587 if (!strncmp(opt, "noacpi", 6))
588 acpi_numa = -1;
589 if (!strncmp(opt, "hotadd=", 7))
590 hotadd_percent = simple_strtoul(opt+7, NULL, 10);
591 #endif
592 return 0;
593 }
594 early_param("numa", numa_setup);
595
596 /*
597 * Setup early cpu_to_node.
598 *
599 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
600 * and apicid_to_node[] tables have valid entries for a CPU.
601 * This means we skip cpu_to_node[] initialisation for NUMA
602 * emulation and faking node case (when running a kernel compiled
603 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
604 * is already initialized in a round robin manner at numa_init_array,
605 * prior to this call, and this initialization is good enough
606 * for the fake NUMA cases.
607 */
608 void __init init_cpu_to_node(void)
609 {
610 int i;
611
612 for (i = 0; i < NR_CPUS; i++) {
613 u16 apicid = x86_cpu_to_apicid_init[i];
614
615 if (apicid == BAD_APICID)
616 continue;
617 if (apicid_to_node[apicid] == NUMA_NO_NODE)
618 continue;
619 numa_set_node(i, apicid_to_node[apicid]);
620 }
621 }
622
623
This page took 0.043259 seconds and 6 git commands to generate.