Merge branch 'fixes' of master.kernel.org:/pub/scm/linux/kernel/git/linville/wireless-2.6
[deliverable/linux.git] / arch / x86 / mm / numa_64.c
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
15
16 #include <asm/e820.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>
19 #include <asm/numa.h>
20 #include <asm/acpi.h>
21 #include <asm/k8.h>
22
23 #ifndef Dprintk
24 #define Dprintk(x...)
25 #endif
26
27 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
28 EXPORT_SYMBOL(node_data);
29
30 bootmem_data_t plat_node_bdata[MAX_NUMNODES];
31
32 struct memnode memnode;
33
34 int x86_cpu_to_node_map_init[NR_CPUS] = {
35 [0 ... NR_CPUS-1] = NUMA_NO_NODE
36 };
37 void *x86_cpu_to_node_map_early_ptr;
38 DEFINE_PER_CPU(int, x86_cpu_to_node_map) = NUMA_NO_NODE;
39 EXPORT_PER_CPU_SYMBOL(x86_cpu_to_node_map);
40 EXPORT_SYMBOL(x86_cpu_to_node_map_early_ptr);
41
42 s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
43 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
44 };
45
46 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
47 EXPORT_SYMBOL(node_to_cpumask_map);
48
49 int numa_off __initdata;
50 unsigned long __initdata nodemap_addr;
51 unsigned long __initdata nodemap_size;
52
53 /*
54 * Given a shift value, try to populate memnodemap[]
55 * Returns :
56 * 1 if OK
57 * 0 if memnodmap[] too small (of shift too small)
58 * -1 if node overlap or lost ram (shift too big)
59 */
60 static int __init populate_memnodemap(const struct bootnode *nodes,
61 int numnodes, int shift)
62 {
63 unsigned long addr, end;
64 int i, res = -1;
65
66 memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
67 for (i = 0; i < numnodes; i++) {
68 addr = nodes[i].start;
69 end = nodes[i].end;
70 if (addr >= end)
71 continue;
72 if ((end >> shift) >= memnodemapsize)
73 return 0;
74 do {
75 if (memnodemap[addr >> shift] != NUMA_NO_NODE)
76 return -1;
77 memnodemap[addr >> shift] = i;
78 addr += (1UL << shift);
79 } while (addr < end);
80 res = 1;
81 }
82 return res;
83 }
84
85 static int __init allocate_cachealigned_memnodemap(void)
86 {
87 unsigned long addr;
88
89 memnodemap = memnode.embedded_map;
90 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
91 return 0;
92
93 addr = 0x8000;
94 nodemap_size = round_up(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
95 nodemap_addr = find_e820_area(addr, end_pfn<<PAGE_SHIFT,
96 nodemap_size, L1_CACHE_BYTES);
97 if (nodemap_addr == -1UL) {
98 printk(KERN_ERR
99 "NUMA: Unable to allocate Memory to Node hash map\n");
100 nodemap_addr = nodemap_size = 0;
101 return -1;
102 }
103 memnodemap = phys_to_virt(nodemap_addr);
104 reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
105
106 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
107 nodemap_addr, nodemap_addr + nodemap_size);
108 return 0;
109 }
110
111 /*
112 * The LSB of all start and end addresses in the node map is the value of the
113 * maximum possible shift.
114 */
115 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
116 int numnodes)
117 {
118 int i, nodes_used = 0;
119 unsigned long start, end;
120 unsigned long bitfield = 0, memtop = 0;
121
122 for (i = 0; i < numnodes; i++) {
123 start = nodes[i].start;
124 end = nodes[i].end;
125 if (start >= end)
126 continue;
127 bitfield |= start;
128 nodes_used++;
129 if (end > memtop)
130 memtop = end;
131 }
132 if (nodes_used <= 1)
133 i = 63;
134 else
135 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
136 memnodemapsize = (memtop >> i)+1;
137 return i;
138 }
139
140 int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
141 {
142 int shift;
143
144 shift = extract_lsb_from_nodes(nodes, numnodes);
145 if (allocate_cachealigned_memnodemap())
146 return -1;
147 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
148 shift);
149
150 if (populate_memnodemap(nodes, numnodes, shift) != 1) {
151 printk(KERN_INFO "Your memory is not aligned you need to "
152 "rebuild your kernel with a bigger NODEMAPSIZE "
153 "shift=%d\n", shift);
154 return -1;
155 }
156 return shift;
157 }
158
159 int early_pfn_to_nid(unsigned long pfn)
160 {
161 return phys_to_nid(pfn << PAGE_SHIFT);
162 }
163
164 static void * __init early_node_mem(int nodeid, unsigned long start,
165 unsigned long end, unsigned long size,
166 unsigned long align)
167 {
168 unsigned long mem = find_e820_area(start, end, size, align);
169 void *ptr;
170
171 if (mem != -1L)
172 return __va(mem);
173
174 ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
175 if (ptr == NULL) {
176 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
177 size, nodeid);
178 return NULL;
179 }
180 return ptr;
181 }
182
183 /* Initialize bootmem allocator for a node */
184 void __init setup_node_bootmem(int nodeid, unsigned long start,
185 unsigned long end)
186 {
187 unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
188 unsigned long bootmap_start, nodedata_phys;
189 void *bootmap;
190 const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
191
192 start = round_up(start, ZONE_ALIGN);
193
194 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
195 start, end);
196
197 start_pfn = start >> PAGE_SHIFT;
198 end_pfn = end >> PAGE_SHIFT;
199
200 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
201 SMP_CACHE_BYTES);
202 if (node_data[nodeid] == NULL)
203 return;
204 nodedata_phys = __pa(node_data[nodeid]);
205
206 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
207 NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
208 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
209 NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
210
211 /* Find a place for the bootmem map */
212 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
213 bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
214 /*
215 * SMP_CAHCE_BYTES could be enough, but init_bootmem_node like
216 * to use that to align to PAGE_SIZE
217 */
218 bootmap = early_node_mem(nodeid, bootmap_start, end,
219 bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
220 if (bootmap == NULL) {
221 if (nodedata_phys < start || nodedata_phys >= end)
222 free_bootmem((unsigned long)node_data[nodeid],
223 pgdat_size);
224 node_data[nodeid] = NULL;
225 return;
226 }
227 bootmap_start = __pa(bootmap);
228 Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
229
230 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
231 bootmap_start >> PAGE_SHIFT,
232 start_pfn, end_pfn);
233
234 free_bootmem_with_active_regions(nodeid, end);
235
236 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
237 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
238 bootmap_pages<<PAGE_SHIFT);
239 #ifdef CONFIG_ACPI_NUMA
240 srat_reserve_add_area(nodeid);
241 #endif
242 node_set_online(nodeid);
243 }
244
245 /*
246 * There are unfortunately some poorly designed mainboards around that
247 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
248 * mapping. To avoid this fill in the mapping for all possible CPUs,
249 * as the number of CPUs is not known yet. We round robin the existing
250 * nodes.
251 */
252 void __init numa_init_array(void)
253 {
254 int rr, i;
255
256 rr = first_node(node_online_map);
257 for (i = 0; i < NR_CPUS; i++) {
258 if (early_cpu_to_node(i) != NUMA_NO_NODE)
259 continue;
260 numa_set_node(i, rr);
261 rr = next_node(rr, node_online_map);
262 if (rr == MAX_NUMNODES)
263 rr = first_node(node_online_map);
264 }
265 }
266
267 #ifdef CONFIG_NUMA_EMU
268 /* Numa emulation */
269 char *cmdline __initdata;
270
271 /*
272 * Setups up nid to range from addr to addr + size. If the end
273 * boundary is greater than max_addr, then max_addr is used instead.
274 * The return value is 0 if there is additional memory left for
275 * allocation past addr and -1 otherwise. addr is adjusted to be at
276 * the end of the node.
277 */
278 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
279 u64 size, u64 max_addr)
280 {
281 int ret = 0;
282
283 nodes[nid].start = *addr;
284 *addr += size;
285 if (*addr >= max_addr) {
286 *addr = max_addr;
287 ret = -1;
288 }
289 nodes[nid].end = *addr;
290 node_set(nid, node_possible_map);
291 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
292 nodes[nid].start, nodes[nid].end,
293 (nodes[nid].end - nodes[nid].start) >> 20);
294 return ret;
295 }
296
297 /*
298 * Splits num_nodes nodes up equally starting at node_start. The return value
299 * is the number of nodes split up and addr is adjusted to be at the end of the
300 * last node allocated.
301 */
302 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
303 u64 max_addr, int node_start,
304 int num_nodes)
305 {
306 unsigned int big;
307 u64 size;
308 int i;
309
310 if (num_nodes <= 0)
311 return -1;
312 if (num_nodes > MAX_NUMNODES)
313 num_nodes = MAX_NUMNODES;
314 size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
315 num_nodes;
316 /*
317 * Calculate the number of big nodes that can be allocated as a result
318 * of consolidating the leftovers.
319 */
320 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
321 FAKE_NODE_MIN_SIZE;
322
323 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
324 size &= FAKE_NODE_MIN_HASH_MASK;
325 if (!size) {
326 printk(KERN_ERR "Not enough memory for each node. "
327 "NUMA emulation disabled.\n");
328 return -1;
329 }
330
331 for (i = node_start; i < num_nodes + node_start; i++) {
332 u64 end = *addr + size;
333
334 if (i < big)
335 end += FAKE_NODE_MIN_SIZE;
336 /*
337 * The final node can have the remaining system RAM. Other
338 * nodes receive roughly the same amount of available pages.
339 */
340 if (i == num_nodes + node_start - 1)
341 end = max_addr;
342 else
343 while (end - *addr - e820_hole_size(*addr, end) <
344 size) {
345 end += FAKE_NODE_MIN_SIZE;
346 if (end > max_addr) {
347 end = max_addr;
348 break;
349 }
350 }
351 if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
352 break;
353 }
354 return i - node_start + 1;
355 }
356
357 /*
358 * Splits the remaining system RAM into chunks of size. The remaining memory is
359 * always assigned to a final node and can be asymmetric. Returns the number of
360 * nodes split.
361 */
362 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
363 u64 max_addr, int node_start, u64 size)
364 {
365 int i = node_start;
366 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
367 while (!setup_node_range(i++, nodes, addr, size, max_addr))
368 ;
369 return i - node_start;
370 }
371
372 /*
373 * Sets up the system RAM area from start_pfn to end_pfn according to the
374 * numa=fake command-line option.
375 */
376 static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
377 {
378 struct bootnode nodes[MAX_NUMNODES];
379 u64 size, addr = start_pfn << PAGE_SHIFT;
380 u64 max_addr = end_pfn << PAGE_SHIFT;
381 int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
382
383 memset(&nodes, 0, sizeof(nodes));
384 /*
385 * If the numa=fake command-line is just a single number N, split the
386 * system RAM into N fake nodes.
387 */
388 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
389 long n = simple_strtol(cmdline, NULL, 0);
390
391 num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
392 if (num_nodes < 0)
393 return num_nodes;
394 goto out;
395 }
396
397 /* Parse the command line. */
398 for (coeff_flag = 0; ; cmdline++) {
399 if (*cmdline && isdigit(*cmdline)) {
400 num = num * 10 + *cmdline - '0';
401 continue;
402 }
403 if (*cmdline == '*') {
404 if (num > 0)
405 coeff = num;
406 coeff_flag = 1;
407 }
408 if (!*cmdline || *cmdline == ',') {
409 if (!coeff_flag)
410 coeff = 1;
411 /*
412 * Round down to the nearest FAKE_NODE_MIN_SIZE.
413 * Command-line coefficients are in megabytes.
414 */
415 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
416 if (size)
417 for (i = 0; i < coeff; i++, num_nodes++)
418 if (setup_node_range(num_nodes, nodes,
419 &addr, size, max_addr) < 0)
420 goto done;
421 if (!*cmdline)
422 break;
423 coeff_flag = 0;
424 coeff = -1;
425 }
426 num = 0;
427 }
428 done:
429 if (!num_nodes)
430 return -1;
431 /* Fill remainder of system RAM, if appropriate. */
432 if (addr < max_addr) {
433 if (coeff_flag && coeff < 0) {
434 /* Split remaining nodes into num-sized chunks */
435 num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
436 num_nodes, num);
437 goto out;
438 }
439 switch (*(cmdline - 1)) {
440 case '*':
441 /* Split remaining nodes into coeff chunks */
442 if (coeff <= 0)
443 break;
444 num_nodes += split_nodes_equally(nodes, &addr, max_addr,
445 num_nodes, coeff);
446 break;
447 case ',':
448 /* Do not allocate remaining system RAM */
449 break;
450 default:
451 /* Give one final node */
452 setup_node_range(num_nodes, nodes, &addr,
453 max_addr - addr, max_addr);
454 num_nodes++;
455 }
456 }
457 out:
458 memnode_shift = compute_hash_shift(nodes, num_nodes);
459 if (memnode_shift < 0) {
460 memnode_shift = 0;
461 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
462 "disabled.\n");
463 return -1;
464 }
465
466 /*
467 * We need to vacate all active ranges that may have been registered by
468 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
469 * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
470 */
471 remove_all_active_ranges();
472 #ifdef CONFIG_ACPI_NUMA
473 acpi_numa = -1;
474 #endif
475 for_each_node_mask(i, node_possible_map) {
476 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
477 nodes[i].end >> PAGE_SHIFT);
478 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
479 }
480 acpi_fake_nodes(nodes, num_nodes);
481 numa_init_array();
482 return 0;
483 }
484 #endif /* CONFIG_NUMA_EMU */
485
486 void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
487 {
488 int i;
489
490 nodes_clear(node_possible_map);
491
492 #ifdef CONFIG_NUMA_EMU
493 if (cmdline && !numa_emulation(start_pfn, end_pfn))
494 return;
495 nodes_clear(node_possible_map);
496 #endif
497
498 #ifdef CONFIG_ACPI_NUMA
499 if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
500 end_pfn << PAGE_SHIFT))
501 return;
502 nodes_clear(node_possible_map);
503 #endif
504
505 #ifdef CONFIG_K8_NUMA
506 if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
507 end_pfn<<PAGE_SHIFT))
508 return;
509 nodes_clear(node_possible_map);
510 #endif
511 printk(KERN_INFO "%s\n",
512 numa_off ? "NUMA turned off" : "No NUMA configuration found");
513
514 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
515 start_pfn << PAGE_SHIFT,
516 end_pfn << PAGE_SHIFT);
517 /* setup dummy node covering all memory */
518 memnode_shift = 63;
519 memnodemap = memnode.embedded_map;
520 memnodemap[0] = 0;
521 nodes_clear(node_online_map);
522 node_set_online(0);
523 node_set(0, node_possible_map);
524 for (i = 0; i < NR_CPUS; i++)
525 numa_set_node(i, 0);
526 /* cpumask_of_cpu() may not be available during early startup */
527 memset(&node_to_cpumask_map[0], 0, sizeof(node_to_cpumask_map[0]));
528 cpu_set(0, node_to_cpumask_map[0]);
529 e820_register_active_regions(0, start_pfn, end_pfn);
530 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
531 }
532
533 __cpuinit void numa_add_cpu(int cpu)
534 {
535 set_bit(cpu,
536 (unsigned long *)&node_to_cpumask_map[early_cpu_to_node(cpu)]);
537 }
538
539 void __cpuinit numa_set_node(int cpu, int node)
540 {
541 int *cpu_to_node_map = x86_cpu_to_node_map_early_ptr;
542
543 cpu_pda(cpu)->nodenumber = node;
544
545 if(cpu_to_node_map)
546 cpu_to_node_map[cpu] = node;
547 else if(per_cpu_offset(cpu))
548 per_cpu(x86_cpu_to_node_map, cpu) = node;
549 else
550 Dprintk(KERN_INFO "Setting node for non-present cpu %d\n", cpu);
551 }
552
553 unsigned long __init numa_free_all_bootmem(void)
554 {
555 unsigned long pages = 0;
556 int i;
557
558 for_each_online_node(i)
559 pages += free_all_bootmem_node(NODE_DATA(i));
560
561 return pages;
562 }
563
564 void __init paging_init(void)
565 {
566 unsigned long max_zone_pfns[MAX_NR_ZONES];
567
568 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
569 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
570 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
571 max_zone_pfns[ZONE_NORMAL] = end_pfn;
572
573 sparse_memory_present_with_active_regions(MAX_NUMNODES);
574 sparse_init();
575
576 free_area_init_nodes(max_zone_pfns);
577 }
578
579 static __init int numa_setup(char *opt)
580 {
581 if (!opt)
582 return -EINVAL;
583 if (!strncmp(opt, "off", 3))
584 numa_off = 1;
585 #ifdef CONFIG_NUMA_EMU
586 if (!strncmp(opt, "fake=", 5))
587 cmdline = opt + 5;
588 #endif
589 #ifdef CONFIG_ACPI_NUMA
590 if (!strncmp(opt, "noacpi", 6))
591 acpi_numa = -1;
592 if (!strncmp(opt, "hotadd=", 7))
593 hotadd_percent = simple_strtoul(opt+7, NULL, 10);
594 #endif
595 return 0;
596 }
597 early_param("numa", numa_setup);
598
599 /*
600 * Setup early cpu_to_node.
601 *
602 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
603 * and apicid_to_node[] tables have valid entries for a CPU.
604 * This means we skip cpu_to_node[] initialisation for NUMA
605 * emulation and faking node case (when running a kernel compiled
606 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
607 * is already initialized in a round robin manner at numa_init_array,
608 * prior to this call, and this initialization is good enough
609 * for the fake NUMA cases.
610 */
611 void __init init_cpu_to_node(void)
612 {
613 int i;
614
615 for (i = 0; i < NR_CPUS; i++) {
616 u16 apicid = x86_cpu_to_apicid_init[i];
617
618 if (apicid == BAD_APICID)
619 continue;
620 if (apicid_to_node[apicid] == NUMA_NO_NODE)
621 continue;
622 numa_set_node(i, apicid_to_node[apicid]);
623 }
624 }
625
626
This page took 0.059802 seconds and 6 git commands to generate.