Merge remote-tracking branch 'origin/x86/boot' into x86/mm2
[deliverable/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgprot_t mask_set;
34 pgprot_t mask_clr;
35 int numpages;
36 int flags;
37 unsigned long pfn;
38 unsigned force_split : 1;
39 int curpage;
40 struct page **pages;
41 };
42
43 /*
44 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46 * entries change the page attribute in parallel to some other cpu
47 * splitting a large page entry along with changing the attribute.
48 */
49 static DEFINE_SPINLOCK(cpa_lock);
50
51 #define CPA_FLUSHTLB 1
52 #define CPA_ARRAY 2
53 #define CPA_PAGES_ARRAY 4
54
55 #ifdef CONFIG_PROC_FS
56 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57
58 void update_page_count(int level, unsigned long pages)
59 {
60 /* Protect against CPA */
61 spin_lock(&pgd_lock);
62 direct_pages_count[level] += pages;
63 spin_unlock(&pgd_lock);
64 }
65
66 static void split_page_count(int level)
67 {
68 direct_pages_count[level]--;
69 direct_pages_count[level - 1] += PTRS_PER_PTE;
70 }
71
72 void arch_report_meminfo(struct seq_file *m)
73 {
74 seq_printf(m, "DirectMap4k: %8lu kB\n",
75 direct_pages_count[PG_LEVEL_4K] << 2);
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77 seq_printf(m, "DirectMap2M: %8lu kB\n",
78 direct_pages_count[PG_LEVEL_2M] << 11);
79 #else
80 seq_printf(m, "DirectMap4M: %8lu kB\n",
81 direct_pages_count[PG_LEVEL_2M] << 12);
82 #endif
83 #ifdef CONFIG_X86_64
84 if (direct_gbpages)
85 seq_printf(m, "DirectMap1G: %8lu kB\n",
86 direct_pages_count[PG_LEVEL_1G] << 20);
87 #endif
88 }
89 #else
90 static inline void split_page_count(int level) { }
91 #endif
92
93 #ifdef CONFIG_X86_64
94
95 static inline unsigned long highmap_start_pfn(void)
96 {
97 return __pa(_text) >> PAGE_SHIFT;
98 }
99
100 static inline unsigned long highmap_end_pfn(void)
101 {
102 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104
105 #endif
106
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112
113 static inline int
114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116 return addr >= start && addr < end;
117 }
118
119 /*
120 * Flushing functions
121 */
122
123 /**
124 * clflush_cache_range - flush a cache range with clflush
125 * @vaddr: virtual start address
126 * @size: number of bytes to flush
127 *
128 * clflush is an unordered instruction which needs fencing with mfence
129 * to avoid ordering issues.
130 */
131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133 void *vend = vaddr + size - 1;
134
135 mb();
136
137 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138 clflush(vaddr);
139 /*
140 * Flush any possible final partial cacheline:
141 */
142 clflush(vend);
143
144 mb();
145 }
146 EXPORT_SYMBOL_GPL(clflush_cache_range);
147
148 static void __cpa_flush_all(void *arg)
149 {
150 unsigned long cache = (unsigned long)arg;
151
152 /*
153 * Flush all to work around Errata in early athlons regarding
154 * large page flushing.
155 */
156 __flush_tlb_all();
157
158 if (cache && boot_cpu_data.x86 >= 4)
159 wbinvd();
160 }
161
162 static void cpa_flush_all(unsigned long cache)
163 {
164 BUG_ON(irqs_disabled());
165
166 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 }
168
169 static void __cpa_flush_range(void *arg)
170 {
171 /*
172 * We could optimize that further and do individual per page
173 * tlb invalidates for a low number of pages. Caveat: we must
174 * flush the high aliases on 64bit as well.
175 */
176 __flush_tlb_all();
177 }
178
179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 {
181 unsigned int i, level;
182 unsigned long addr;
183
184 BUG_ON(irqs_disabled());
185 WARN_ON(PAGE_ALIGN(start) != start);
186
187 on_each_cpu(__cpa_flush_range, NULL, 1);
188
189 if (!cache)
190 return;
191
192 /*
193 * We only need to flush on one CPU,
194 * clflush is a MESI-coherent instruction that
195 * will cause all other CPUs to flush the same
196 * cachelines:
197 */
198 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199 pte_t *pte = lookup_address(addr, &level);
200
201 /*
202 * Only flush present addresses:
203 */
204 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205 clflush_cache_range((void *) addr, PAGE_SIZE);
206 }
207 }
208
209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210 int in_flags, struct page **pages)
211 {
212 unsigned int i, level;
213 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214
215 BUG_ON(irqs_disabled());
216
217 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218
219 if (!cache || do_wbinvd)
220 return;
221
222 /*
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
226 * cachelines:
227 */
228 for (i = 0; i < numpages; i++) {
229 unsigned long addr;
230 pte_t *pte;
231
232 if (in_flags & CPA_PAGES_ARRAY)
233 addr = (unsigned long)page_address(pages[i]);
234 else
235 addr = start[i];
236
237 pte = lookup_address(addr, &level);
238
239 /*
240 * Only flush present addresses:
241 */
242 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243 clflush_cache_range((void *)addr, PAGE_SIZE);
244 }
245 }
246
247 /*
248 * Certain areas of memory on x86 require very specific protection flags,
249 * for example the BIOS area or kernel text. Callers don't always get this
250 * right (again, ioremap() on BIOS memory is not uncommon) so this function
251 * checks and fixes these known static required protection bits.
252 */
253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254 unsigned long pfn)
255 {
256 pgprot_t forbidden = __pgprot(0);
257
258 /*
259 * The BIOS area between 640k and 1Mb needs to be executable for
260 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261 */
262 #ifdef CONFIG_PCI_BIOS
263 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264 pgprot_val(forbidden) |= _PAGE_NX;
265 #endif
266
267 /*
268 * The kernel text needs to be executable for obvious reasons
269 * Does not cover __inittext since that is gone later on. On
270 * 64bit we do not enforce !NX on the low mapping
271 */
272 if (within(address, (unsigned long)_text, (unsigned long)_etext))
273 pgprot_val(forbidden) |= _PAGE_NX;
274
275 /*
276 * The .rodata section needs to be read-only. Using the pfn
277 * catches all aliases.
278 */
279 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
280 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
281 pgprot_val(forbidden) |= _PAGE_RW;
282
283 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
284 /*
285 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286 * kernel text mappings for the large page aligned text, rodata sections
287 * will be always read-only. For the kernel identity mappings covering
288 * the holes caused by this alignment can be anything that user asks.
289 *
290 * This will preserve the large page mappings for kernel text/data
291 * at no extra cost.
292 */
293 if (kernel_set_to_readonly &&
294 within(address, (unsigned long)_text,
295 (unsigned long)__end_rodata_hpage_align)) {
296 unsigned int level;
297
298 /*
299 * Don't enforce the !RW mapping for the kernel text mapping,
300 * if the current mapping is already using small page mapping.
301 * No need to work hard to preserve large page mappings in this
302 * case.
303 *
304 * This also fixes the Linux Xen paravirt guest boot failure
305 * (because of unexpected read-only mappings for kernel identity
306 * mappings). In this paravirt guest case, the kernel text
307 * mapping and the kernel identity mapping share the same
308 * page-table pages. Thus we can't really use different
309 * protections for the kernel text and identity mappings. Also,
310 * these shared mappings are made of small page mappings.
311 * Thus this don't enforce !RW mapping for small page kernel
312 * text mapping logic will help Linux Xen parvirt guest boot
313 * as well.
314 */
315 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316 pgprot_val(forbidden) |= _PAGE_RW;
317 }
318 #endif
319
320 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
321
322 return prot;
323 }
324
325 /*
326 * Lookup the page table entry for a virtual address. Return a pointer
327 * to the entry and the level of the mapping.
328 *
329 * Note: We return pud and pmd either when the entry is marked large
330 * or when the present bit is not set. Otherwise we would return a
331 * pointer to a nonexisting mapping.
332 */
333 pte_t *lookup_address(unsigned long address, unsigned int *level)
334 {
335 pgd_t *pgd = pgd_offset_k(address);
336 pud_t *pud;
337 pmd_t *pmd;
338
339 *level = PG_LEVEL_NONE;
340
341 if (pgd_none(*pgd))
342 return NULL;
343
344 pud = pud_offset(pgd, address);
345 if (pud_none(*pud))
346 return NULL;
347
348 *level = PG_LEVEL_1G;
349 if (pud_large(*pud) || !pud_present(*pud))
350 return (pte_t *)pud;
351
352 pmd = pmd_offset(pud, address);
353 if (pmd_none(*pmd))
354 return NULL;
355
356 *level = PG_LEVEL_2M;
357 if (pmd_large(*pmd) || !pmd_present(*pmd))
358 return (pte_t *)pmd;
359
360 *level = PG_LEVEL_4K;
361
362 return pte_offset_kernel(pmd, address);
363 }
364 EXPORT_SYMBOL_GPL(lookup_address);
365
366 /*
367 * Set the new pmd in all the pgds we know about:
368 */
369 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
370 {
371 /* change init_mm */
372 set_pte_atomic(kpte, pte);
373 #ifdef CONFIG_X86_32
374 if (!SHARED_KERNEL_PMD) {
375 struct page *page;
376
377 list_for_each_entry(page, &pgd_list, lru) {
378 pgd_t *pgd;
379 pud_t *pud;
380 pmd_t *pmd;
381
382 pgd = (pgd_t *)page_address(page) + pgd_index(address);
383 pud = pud_offset(pgd, address);
384 pmd = pmd_offset(pud, address);
385 set_pte_atomic((pte_t *)pmd, pte);
386 }
387 }
388 #endif
389 }
390
391 static int
392 try_preserve_large_page(pte_t *kpte, unsigned long address,
393 struct cpa_data *cpa)
394 {
395 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
396 pte_t new_pte, old_pte, *tmp;
397 pgprot_t old_prot, new_prot, req_prot;
398 int i, do_split = 1;
399 unsigned int level;
400
401 if (cpa->force_split)
402 return 1;
403
404 spin_lock(&pgd_lock);
405 /*
406 * Check for races, another CPU might have split this page
407 * up already:
408 */
409 tmp = lookup_address(address, &level);
410 if (tmp != kpte)
411 goto out_unlock;
412
413 switch (level) {
414 case PG_LEVEL_2M:
415 psize = PMD_PAGE_SIZE;
416 pmask = PMD_PAGE_MASK;
417 break;
418 #ifdef CONFIG_X86_64
419 case PG_LEVEL_1G:
420 psize = PUD_PAGE_SIZE;
421 pmask = PUD_PAGE_MASK;
422 break;
423 #endif
424 default:
425 do_split = -EINVAL;
426 goto out_unlock;
427 }
428
429 /*
430 * Calculate the number of pages, which fit into this large
431 * page starting at address:
432 */
433 nextpage_addr = (address + psize) & pmask;
434 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
435 if (numpages < cpa->numpages)
436 cpa->numpages = numpages;
437
438 /*
439 * We are safe now. Check whether the new pgprot is the same:
440 */
441 old_pte = *kpte;
442 old_prot = new_prot = req_prot = pte_pgprot(old_pte);
443
444 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
445 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
446
447 /*
448 * old_pte points to the large page base address. So we need
449 * to add the offset of the virtual address:
450 */
451 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
452 cpa->pfn = pfn;
453
454 new_prot = static_protections(req_prot, address, pfn);
455
456 /*
457 * We need to check the full range, whether
458 * static_protection() requires a different pgprot for one of
459 * the pages in the range we try to preserve:
460 */
461 addr = address & pmask;
462 pfn = pte_pfn(old_pte);
463 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
464 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
465
466 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
467 goto out_unlock;
468 }
469
470 /*
471 * If there are no changes, return. maxpages has been updated
472 * above:
473 */
474 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
475 do_split = 0;
476 goto out_unlock;
477 }
478
479 /*
480 * We need to change the attributes. Check, whether we can
481 * change the large page in one go. We request a split, when
482 * the address is not aligned and the number of pages is
483 * smaller than the number of pages in the large page. Note
484 * that we limited the number of possible pages already to
485 * the number of pages in the large page.
486 */
487 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
488 /*
489 * The address is aligned and the number of pages
490 * covers the full page.
491 */
492 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
493 __set_pmd_pte(kpte, address, new_pte);
494 cpa->flags |= CPA_FLUSHTLB;
495 do_split = 0;
496 }
497
498 out_unlock:
499 spin_unlock(&pgd_lock);
500
501 return do_split;
502 }
503
504 static int split_large_page(pte_t *kpte, unsigned long address)
505 {
506 unsigned long pfn, pfninc = 1;
507 unsigned int i, level;
508 pte_t *pbase, *tmp;
509 pgprot_t ref_prot;
510 struct page *base;
511
512 if (!debug_pagealloc)
513 spin_unlock(&cpa_lock);
514 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
515 if (!debug_pagealloc)
516 spin_lock(&cpa_lock);
517 if (!base)
518 return -ENOMEM;
519
520 spin_lock(&pgd_lock);
521 /*
522 * Check for races, another CPU might have split this page
523 * up for us already:
524 */
525 tmp = lookup_address(address, &level);
526 if (tmp != kpte)
527 goto out_unlock;
528
529 pbase = (pte_t *)page_address(base);
530 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
531 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
532 /*
533 * If we ever want to utilize the PAT bit, we need to
534 * update this function to make sure it's converted from
535 * bit 12 to bit 7 when we cross from the 2MB level to
536 * the 4K level:
537 */
538 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
539
540 #ifdef CONFIG_X86_64
541 if (level == PG_LEVEL_1G) {
542 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
543 pgprot_val(ref_prot) |= _PAGE_PSE;
544 }
545 #endif
546
547 /*
548 * Get the target pfn from the original entry:
549 */
550 pfn = pte_pfn(*kpte);
551 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
552 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
553
554 if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
555 PFN_DOWN(__pa(address)) + 1))
556 split_page_count(level);
557
558 /*
559 * Install the new, split up pagetable.
560 *
561 * We use the standard kernel pagetable protections for the new
562 * pagetable protections, the actual ptes set above control the
563 * primary protection behavior:
564 */
565 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
566
567 /*
568 * Intel Atom errata AAH41 workaround.
569 *
570 * The real fix should be in hw or in a microcode update, but
571 * we also probabilistically try to reduce the window of having
572 * a large TLB mixed with 4K TLBs while instruction fetches are
573 * going on.
574 */
575 __flush_tlb_all();
576
577 base = NULL;
578
579 out_unlock:
580 /*
581 * If we dropped out via the lookup_address check under
582 * pgd_lock then stick the page back into the pool:
583 */
584 if (base)
585 __free_page(base);
586 spin_unlock(&pgd_lock);
587
588 return 0;
589 }
590
591 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
592 int primary)
593 {
594 /*
595 * Ignore all non primary paths.
596 */
597 if (!primary)
598 return 0;
599
600 /*
601 * Ignore the NULL PTE for kernel identity mapping, as it is expected
602 * to have holes.
603 * Also set numpages to '1' indicating that we processed cpa req for
604 * one virtual address page and its pfn. TBD: numpages can be set based
605 * on the initial value and the level returned by lookup_address().
606 */
607 if (within(vaddr, PAGE_OFFSET,
608 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
609 cpa->numpages = 1;
610 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
611 return 0;
612 } else {
613 WARN(1, KERN_WARNING "CPA: called for zero pte. "
614 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
615 *cpa->vaddr);
616
617 return -EFAULT;
618 }
619 }
620
621 static int __change_page_attr(struct cpa_data *cpa, int primary)
622 {
623 unsigned long address;
624 int do_split, err;
625 unsigned int level;
626 pte_t *kpte, old_pte;
627
628 if (cpa->flags & CPA_PAGES_ARRAY) {
629 struct page *page = cpa->pages[cpa->curpage];
630 if (unlikely(PageHighMem(page)))
631 return 0;
632 address = (unsigned long)page_address(page);
633 } else if (cpa->flags & CPA_ARRAY)
634 address = cpa->vaddr[cpa->curpage];
635 else
636 address = *cpa->vaddr;
637 repeat:
638 kpte = lookup_address(address, &level);
639 if (!kpte)
640 return __cpa_process_fault(cpa, address, primary);
641
642 old_pte = *kpte;
643 if (!pte_val(old_pte))
644 return __cpa_process_fault(cpa, address, primary);
645
646 if (level == PG_LEVEL_4K) {
647 pte_t new_pte;
648 pgprot_t new_prot = pte_pgprot(old_pte);
649 unsigned long pfn = pte_pfn(old_pte);
650
651 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
652 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
653
654 new_prot = static_protections(new_prot, address, pfn);
655
656 /*
657 * We need to keep the pfn from the existing PTE,
658 * after all we're only going to change it's attributes
659 * not the memory it points to
660 */
661 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
662 cpa->pfn = pfn;
663 /*
664 * Do we really change anything ?
665 */
666 if (pte_val(old_pte) != pte_val(new_pte)) {
667 set_pte_atomic(kpte, new_pte);
668 cpa->flags |= CPA_FLUSHTLB;
669 }
670 cpa->numpages = 1;
671 return 0;
672 }
673
674 /*
675 * Check, whether we can keep the large page intact
676 * and just change the pte:
677 */
678 do_split = try_preserve_large_page(kpte, address, cpa);
679 /*
680 * When the range fits into the existing large page,
681 * return. cp->numpages and cpa->tlbflush have been updated in
682 * try_large_page:
683 */
684 if (do_split <= 0)
685 return do_split;
686
687 /*
688 * We have to split the large page:
689 */
690 err = split_large_page(kpte, address);
691 if (!err) {
692 /*
693 * Do a global flush tlb after splitting the large page
694 * and before we do the actual change page attribute in the PTE.
695 *
696 * With out this, we violate the TLB application note, that says
697 * "The TLBs may contain both ordinary and large-page
698 * translations for a 4-KByte range of linear addresses. This
699 * may occur if software modifies the paging structures so that
700 * the page size used for the address range changes. If the two
701 * translations differ with respect to page frame or attributes
702 * (e.g., permissions), processor behavior is undefined and may
703 * be implementation-specific."
704 *
705 * We do this global tlb flush inside the cpa_lock, so that we
706 * don't allow any other cpu, with stale tlb entries change the
707 * page attribute in parallel, that also falls into the
708 * just split large page entry.
709 */
710 flush_tlb_all();
711 goto repeat;
712 }
713
714 return err;
715 }
716
717 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
718
719 static int cpa_process_alias(struct cpa_data *cpa)
720 {
721 struct cpa_data alias_cpa;
722 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
723 unsigned long vaddr;
724 int ret;
725
726 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
727 return 0;
728
729 /*
730 * No need to redo, when the primary call touched the direct
731 * mapping already:
732 */
733 if (cpa->flags & CPA_PAGES_ARRAY) {
734 struct page *page = cpa->pages[cpa->curpage];
735 if (unlikely(PageHighMem(page)))
736 return 0;
737 vaddr = (unsigned long)page_address(page);
738 } else if (cpa->flags & CPA_ARRAY)
739 vaddr = cpa->vaddr[cpa->curpage];
740 else
741 vaddr = *cpa->vaddr;
742
743 if (!(within(vaddr, PAGE_OFFSET,
744 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
745
746 alias_cpa = *cpa;
747 alias_cpa.vaddr = &laddr;
748 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
749
750 ret = __change_page_attr_set_clr(&alias_cpa, 0);
751 if (ret)
752 return ret;
753 }
754
755 #ifdef CONFIG_X86_64
756 /*
757 * If the primary call didn't touch the high mapping already
758 * and the physical address is inside the kernel map, we need
759 * to touch the high mapped kernel as well:
760 */
761 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
762 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
763 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
764 __START_KERNEL_map - phys_base;
765 alias_cpa = *cpa;
766 alias_cpa.vaddr = &temp_cpa_vaddr;
767 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
768
769 /*
770 * The high mapping range is imprecise, so ignore the
771 * return value.
772 */
773 __change_page_attr_set_clr(&alias_cpa, 0);
774 }
775 #endif
776
777 return 0;
778 }
779
780 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
781 {
782 int ret, numpages = cpa->numpages;
783
784 while (numpages) {
785 /*
786 * Store the remaining nr of pages for the large page
787 * preservation check.
788 */
789 cpa->numpages = numpages;
790 /* for array changes, we can't use large page */
791 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
792 cpa->numpages = 1;
793
794 if (!debug_pagealloc)
795 spin_lock(&cpa_lock);
796 ret = __change_page_attr(cpa, checkalias);
797 if (!debug_pagealloc)
798 spin_unlock(&cpa_lock);
799 if (ret)
800 return ret;
801
802 if (checkalias) {
803 ret = cpa_process_alias(cpa);
804 if (ret)
805 return ret;
806 }
807
808 /*
809 * Adjust the number of pages with the result of the
810 * CPA operation. Either a large page has been
811 * preserved or a single page update happened.
812 */
813 BUG_ON(cpa->numpages > numpages);
814 numpages -= cpa->numpages;
815 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
816 cpa->curpage++;
817 else
818 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
819
820 }
821 return 0;
822 }
823
824 static inline int cache_attr(pgprot_t attr)
825 {
826 return pgprot_val(attr) &
827 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
828 }
829
830 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
831 pgprot_t mask_set, pgprot_t mask_clr,
832 int force_split, int in_flag,
833 struct page **pages)
834 {
835 struct cpa_data cpa;
836 int ret, cache, checkalias;
837 unsigned long baddr = 0;
838
839 /*
840 * Check, if we are requested to change a not supported
841 * feature:
842 */
843 mask_set = canon_pgprot(mask_set);
844 mask_clr = canon_pgprot(mask_clr);
845 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
846 return 0;
847
848 /* Ensure we are PAGE_SIZE aligned */
849 if (in_flag & CPA_ARRAY) {
850 int i;
851 for (i = 0; i < numpages; i++) {
852 if (addr[i] & ~PAGE_MASK) {
853 addr[i] &= PAGE_MASK;
854 WARN_ON_ONCE(1);
855 }
856 }
857 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
858 /*
859 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
860 * No need to cehck in that case
861 */
862 if (*addr & ~PAGE_MASK) {
863 *addr &= PAGE_MASK;
864 /*
865 * People should not be passing in unaligned addresses:
866 */
867 WARN_ON_ONCE(1);
868 }
869 /*
870 * Save address for cache flush. *addr is modified in the call
871 * to __change_page_attr_set_clr() below.
872 */
873 baddr = *addr;
874 }
875
876 /* Must avoid aliasing mappings in the highmem code */
877 kmap_flush_unused();
878
879 vm_unmap_aliases();
880
881 cpa.vaddr = addr;
882 cpa.pages = pages;
883 cpa.numpages = numpages;
884 cpa.mask_set = mask_set;
885 cpa.mask_clr = mask_clr;
886 cpa.flags = 0;
887 cpa.curpage = 0;
888 cpa.force_split = force_split;
889
890 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
891 cpa.flags |= in_flag;
892
893 /* No alias checking for _NX bit modifications */
894 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
895
896 ret = __change_page_attr_set_clr(&cpa, checkalias);
897
898 /*
899 * Check whether we really changed something:
900 */
901 if (!(cpa.flags & CPA_FLUSHTLB))
902 goto out;
903
904 /*
905 * No need to flush, when we did not set any of the caching
906 * attributes:
907 */
908 cache = cache_attr(mask_set);
909
910 /*
911 * On success we use clflush, when the CPU supports it to
912 * avoid the wbindv. If the CPU does not support it and in the
913 * error case we fall back to cpa_flush_all (which uses
914 * wbindv):
915 */
916 if (!ret && cpu_has_clflush) {
917 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
918 cpa_flush_array(addr, numpages, cache,
919 cpa.flags, pages);
920 } else
921 cpa_flush_range(baddr, numpages, cache);
922 } else
923 cpa_flush_all(cache);
924
925 out:
926 return ret;
927 }
928
929 static inline int change_page_attr_set(unsigned long *addr, int numpages,
930 pgprot_t mask, int array)
931 {
932 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
933 (array ? CPA_ARRAY : 0), NULL);
934 }
935
936 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
937 pgprot_t mask, int array)
938 {
939 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
940 (array ? CPA_ARRAY : 0), NULL);
941 }
942
943 static inline int cpa_set_pages_array(struct page **pages, int numpages,
944 pgprot_t mask)
945 {
946 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
947 CPA_PAGES_ARRAY, pages);
948 }
949
950 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
951 pgprot_t mask)
952 {
953 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
954 CPA_PAGES_ARRAY, pages);
955 }
956
957 int _set_memory_uc(unsigned long addr, int numpages)
958 {
959 /*
960 * for now UC MINUS. see comments in ioremap_nocache()
961 */
962 return change_page_attr_set(&addr, numpages,
963 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
964 }
965
966 int set_memory_uc(unsigned long addr, int numpages)
967 {
968 int ret;
969
970 /*
971 * for now UC MINUS. see comments in ioremap_nocache()
972 */
973 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
974 _PAGE_CACHE_UC_MINUS, NULL);
975 if (ret)
976 goto out_err;
977
978 ret = _set_memory_uc(addr, numpages);
979 if (ret)
980 goto out_free;
981
982 return 0;
983
984 out_free:
985 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
986 out_err:
987 return ret;
988 }
989 EXPORT_SYMBOL(set_memory_uc);
990
991 static int _set_memory_array(unsigned long *addr, int addrinarray,
992 unsigned long new_type)
993 {
994 int i, j;
995 int ret;
996
997 /*
998 * for now UC MINUS. see comments in ioremap_nocache()
999 */
1000 for (i = 0; i < addrinarray; i++) {
1001 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1002 new_type, NULL);
1003 if (ret)
1004 goto out_free;
1005 }
1006
1007 ret = change_page_attr_set(addr, addrinarray,
1008 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1009
1010 if (!ret && new_type == _PAGE_CACHE_WC)
1011 ret = change_page_attr_set_clr(addr, addrinarray,
1012 __pgprot(_PAGE_CACHE_WC),
1013 __pgprot(_PAGE_CACHE_MASK),
1014 0, CPA_ARRAY, NULL);
1015 if (ret)
1016 goto out_free;
1017
1018 return 0;
1019
1020 out_free:
1021 for (j = 0; j < i; j++)
1022 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1023
1024 return ret;
1025 }
1026
1027 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1028 {
1029 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1030 }
1031 EXPORT_SYMBOL(set_memory_array_uc);
1032
1033 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1034 {
1035 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1036 }
1037 EXPORT_SYMBOL(set_memory_array_wc);
1038
1039 int _set_memory_wc(unsigned long addr, int numpages)
1040 {
1041 int ret;
1042 unsigned long addr_copy = addr;
1043
1044 ret = change_page_attr_set(&addr, numpages,
1045 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1046 if (!ret) {
1047 ret = change_page_attr_set_clr(&addr_copy, numpages,
1048 __pgprot(_PAGE_CACHE_WC),
1049 __pgprot(_PAGE_CACHE_MASK),
1050 0, 0, NULL);
1051 }
1052 return ret;
1053 }
1054
1055 int set_memory_wc(unsigned long addr, int numpages)
1056 {
1057 int ret;
1058
1059 if (!pat_enabled)
1060 return set_memory_uc(addr, numpages);
1061
1062 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1063 _PAGE_CACHE_WC, NULL);
1064 if (ret)
1065 goto out_err;
1066
1067 ret = _set_memory_wc(addr, numpages);
1068 if (ret)
1069 goto out_free;
1070
1071 return 0;
1072
1073 out_free:
1074 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1075 out_err:
1076 return ret;
1077 }
1078 EXPORT_SYMBOL(set_memory_wc);
1079
1080 int _set_memory_wb(unsigned long addr, int numpages)
1081 {
1082 return change_page_attr_clear(&addr, numpages,
1083 __pgprot(_PAGE_CACHE_MASK), 0);
1084 }
1085
1086 int set_memory_wb(unsigned long addr, int numpages)
1087 {
1088 int ret;
1089
1090 ret = _set_memory_wb(addr, numpages);
1091 if (ret)
1092 return ret;
1093
1094 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1095 return 0;
1096 }
1097 EXPORT_SYMBOL(set_memory_wb);
1098
1099 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1100 {
1101 int i;
1102 int ret;
1103
1104 ret = change_page_attr_clear(addr, addrinarray,
1105 __pgprot(_PAGE_CACHE_MASK), 1);
1106 if (ret)
1107 return ret;
1108
1109 for (i = 0; i < addrinarray; i++)
1110 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1111
1112 return 0;
1113 }
1114 EXPORT_SYMBOL(set_memory_array_wb);
1115
1116 int set_memory_x(unsigned long addr, int numpages)
1117 {
1118 if (!(__supported_pte_mask & _PAGE_NX))
1119 return 0;
1120
1121 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1122 }
1123 EXPORT_SYMBOL(set_memory_x);
1124
1125 int set_memory_nx(unsigned long addr, int numpages)
1126 {
1127 if (!(__supported_pte_mask & _PAGE_NX))
1128 return 0;
1129
1130 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1131 }
1132 EXPORT_SYMBOL(set_memory_nx);
1133
1134 int set_memory_ro(unsigned long addr, int numpages)
1135 {
1136 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1137 }
1138 EXPORT_SYMBOL_GPL(set_memory_ro);
1139
1140 int set_memory_rw(unsigned long addr, int numpages)
1141 {
1142 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1143 }
1144 EXPORT_SYMBOL_GPL(set_memory_rw);
1145
1146 int set_memory_np(unsigned long addr, int numpages)
1147 {
1148 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1149 }
1150
1151 int set_memory_4k(unsigned long addr, int numpages)
1152 {
1153 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1154 __pgprot(0), 1, 0, NULL);
1155 }
1156
1157 int set_pages_uc(struct page *page, int numpages)
1158 {
1159 unsigned long addr = (unsigned long)page_address(page);
1160
1161 return set_memory_uc(addr, numpages);
1162 }
1163 EXPORT_SYMBOL(set_pages_uc);
1164
1165 static int _set_pages_array(struct page **pages, int addrinarray,
1166 unsigned long new_type)
1167 {
1168 unsigned long start;
1169 unsigned long end;
1170 int i;
1171 int free_idx;
1172 int ret;
1173
1174 for (i = 0; i < addrinarray; i++) {
1175 if (PageHighMem(pages[i]))
1176 continue;
1177 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1178 end = start + PAGE_SIZE;
1179 if (reserve_memtype(start, end, new_type, NULL))
1180 goto err_out;
1181 }
1182
1183 ret = cpa_set_pages_array(pages, addrinarray,
1184 __pgprot(_PAGE_CACHE_UC_MINUS));
1185 if (!ret && new_type == _PAGE_CACHE_WC)
1186 ret = change_page_attr_set_clr(NULL, addrinarray,
1187 __pgprot(_PAGE_CACHE_WC),
1188 __pgprot(_PAGE_CACHE_MASK),
1189 0, CPA_PAGES_ARRAY, pages);
1190 if (ret)
1191 goto err_out;
1192 return 0; /* Success */
1193 err_out:
1194 free_idx = i;
1195 for (i = 0; i < free_idx; i++) {
1196 if (PageHighMem(pages[i]))
1197 continue;
1198 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1199 end = start + PAGE_SIZE;
1200 free_memtype(start, end);
1201 }
1202 return -EINVAL;
1203 }
1204
1205 int set_pages_array_uc(struct page **pages, int addrinarray)
1206 {
1207 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1208 }
1209 EXPORT_SYMBOL(set_pages_array_uc);
1210
1211 int set_pages_array_wc(struct page **pages, int addrinarray)
1212 {
1213 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1214 }
1215 EXPORT_SYMBOL(set_pages_array_wc);
1216
1217 int set_pages_wb(struct page *page, int numpages)
1218 {
1219 unsigned long addr = (unsigned long)page_address(page);
1220
1221 return set_memory_wb(addr, numpages);
1222 }
1223 EXPORT_SYMBOL(set_pages_wb);
1224
1225 int set_pages_array_wb(struct page **pages, int addrinarray)
1226 {
1227 int retval;
1228 unsigned long start;
1229 unsigned long end;
1230 int i;
1231
1232 retval = cpa_clear_pages_array(pages, addrinarray,
1233 __pgprot(_PAGE_CACHE_MASK));
1234 if (retval)
1235 return retval;
1236
1237 for (i = 0; i < addrinarray; i++) {
1238 if (PageHighMem(pages[i]))
1239 continue;
1240 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1241 end = start + PAGE_SIZE;
1242 free_memtype(start, end);
1243 }
1244
1245 return 0;
1246 }
1247 EXPORT_SYMBOL(set_pages_array_wb);
1248
1249 int set_pages_x(struct page *page, int numpages)
1250 {
1251 unsigned long addr = (unsigned long)page_address(page);
1252
1253 return set_memory_x(addr, numpages);
1254 }
1255 EXPORT_SYMBOL(set_pages_x);
1256
1257 int set_pages_nx(struct page *page, int numpages)
1258 {
1259 unsigned long addr = (unsigned long)page_address(page);
1260
1261 return set_memory_nx(addr, numpages);
1262 }
1263 EXPORT_SYMBOL(set_pages_nx);
1264
1265 int set_pages_ro(struct page *page, int numpages)
1266 {
1267 unsigned long addr = (unsigned long)page_address(page);
1268
1269 return set_memory_ro(addr, numpages);
1270 }
1271
1272 int set_pages_rw(struct page *page, int numpages)
1273 {
1274 unsigned long addr = (unsigned long)page_address(page);
1275
1276 return set_memory_rw(addr, numpages);
1277 }
1278
1279 #ifdef CONFIG_DEBUG_PAGEALLOC
1280
1281 static int __set_pages_p(struct page *page, int numpages)
1282 {
1283 unsigned long tempaddr = (unsigned long) page_address(page);
1284 struct cpa_data cpa = { .vaddr = &tempaddr,
1285 .numpages = numpages,
1286 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1287 .mask_clr = __pgprot(0),
1288 .flags = 0};
1289
1290 /*
1291 * No alias checking needed for setting present flag. otherwise,
1292 * we may need to break large pages for 64-bit kernel text
1293 * mappings (this adds to complexity if we want to do this from
1294 * atomic context especially). Let's keep it simple!
1295 */
1296 return __change_page_attr_set_clr(&cpa, 0);
1297 }
1298
1299 static int __set_pages_np(struct page *page, int numpages)
1300 {
1301 unsigned long tempaddr = (unsigned long) page_address(page);
1302 struct cpa_data cpa = { .vaddr = &tempaddr,
1303 .numpages = numpages,
1304 .mask_set = __pgprot(0),
1305 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1306 .flags = 0};
1307
1308 /*
1309 * No alias checking needed for setting not present flag. otherwise,
1310 * we may need to break large pages for 64-bit kernel text
1311 * mappings (this adds to complexity if we want to do this from
1312 * atomic context especially). Let's keep it simple!
1313 */
1314 return __change_page_attr_set_clr(&cpa, 0);
1315 }
1316
1317 void kernel_map_pages(struct page *page, int numpages, int enable)
1318 {
1319 if (PageHighMem(page))
1320 return;
1321 if (!enable) {
1322 debug_check_no_locks_freed(page_address(page),
1323 numpages * PAGE_SIZE);
1324 }
1325
1326 /*
1327 * The return value is ignored as the calls cannot fail.
1328 * Large pages for identity mappings are not used at boot time
1329 * and hence no memory allocations during large page split.
1330 */
1331 if (enable)
1332 __set_pages_p(page, numpages);
1333 else
1334 __set_pages_np(page, numpages);
1335
1336 /*
1337 * We should perform an IPI and flush all tlbs,
1338 * but that can deadlock->flush only current cpu:
1339 */
1340 __flush_tlb_all();
1341 }
1342
1343 #ifdef CONFIG_HIBERNATION
1344
1345 bool kernel_page_present(struct page *page)
1346 {
1347 unsigned int level;
1348 pte_t *pte;
1349
1350 if (PageHighMem(page))
1351 return false;
1352
1353 pte = lookup_address((unsigned long)page_address(page), &level);
1354 return (pte_val(*pte) & _PAGE_PRESENT);
1355 }
1356
1357 #endif /* CONFIG_HIBERNATION */
1358
1359 #endif /* CONFIG_DEBUG_PAGEALLOC */
1360
1361 /*
1362 * The testcases use internal knowledge of the implementation that shouldn't
1363 * be exposed to the rest of the kernel. Include these directly here.
1364 */
1365 #ifdef CONFIG_CPA_DEBUG
1366 #include "pageattr-test.c"
1367 #endif
This page took 0.059044 seconds and 5 git commands to generate.