Merge branch 'oprofile-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14
15 #include <asm/e820.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/uaccess.h>
21 #include <asm/pgalloc.h>
22 #include <asm/proto.h>
23 #include <asm/pat.h>
24
25 /*
26 * The current flushing context - we pass it instead of 5 arguments:
27 */
28 struct cpa_data {
29 unsigned long *vaddr;
30 pgprot_t mask_set;
31 pgprot_t mask_clr;
32 int numpages;
33 int flags;
34 unsigned long pfn;
35 unsigned force_split : 1;
36 int curpage;
37 struct page **pages;
38 };
39
40 /*
41 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
42 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
43 * entries change the page attribute in parallel to some other cpu
44 * splitting a large page entry along with changing the attribute.
45 */
46 static DEFINE_SPINLOCK(cpa_lock);
47
48 #define CPA_FLUSHTLB 1
49 #define CPA_ARRAY 2
50 #define CPA_PAGES_ARRAY 4
51
52 #ifdef CONFIG_PROC_FS
53 static unsigned long direct_pages_count[PG_LEVEL_NUM];
54
55 void update_page_count(int level, unsigned long pages)
56 {
57 unsigned long flags;
58
59 /* Protect against CPA */
60 spin_lock_irqsave(&pgd_lock, flags);
61 direct_pages_count[level] += pages;
62 spin_unlock_irqrestore(&pgd_lock, flags);
63 }
64
65 static void split_page_count(int level)
66 {
67 direct_pages_count[level]--;
68 direct_pages_count[level - 1] += PTRS_PER_PTE;
69 }
70
71 void arch_report_meminfo(struct seq_file *m)
72 {
73 seq_printf(m, "DirectMap4k: %8lu kB\n",
74 direct_pages_count[PG_LEVEL_4K] << 2);
75 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
76 seq_printf(m, "DirectMap2M: %8lu kB\n",
77 direct_pages_count[PG_LEVEL_2M] << 11);
78 #else
79 seq_printf(m, "DirectMap4M: %8lu kB\n",
80 direct_pages_count[PG_LEVEL_2M] << 12);
81 #endif
82 #ifdef CONFIG_X86_64
83 if (direct_gbpages)
84 seq_printf(m, "DirectMap1G: %8lu kB\n",
85 direct_pages_count[PG_LEVEL_1G] << 20);
86 #endif
87 }
88 #else
89 static inline void split_page_count(int level) { }
90 #endif
91
92 #ifdef CONFIG_X86_64
93
94 static inline unsigned long highmap_start_pfn(void)
95 {
96 return __pa(_text) >> PAGE_SHIFT;
97 }
98
99 static inline unsigned long highmap_end_pfn(void)
100 {
101 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
102 }
103
104 #endif
105
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
111
112 static inline int
113 within(unsigned long addr, unsigned long start, unsigned long end)
114 {
115 return addr >= start && addr < end;
116 }
117
118 /*
119 * Flushing functions
120 */
121
122 /**
123 * clflush_cache_range - flush a cache range with clflush
124 * @addr: virtual start address
125 * @size: number of bytes to flush
126 *
127 * clflush is an unordered instruction which needs fencing with mfence
128 * to avoid ordering issues.
129 */
130 void clflush_cache_range(void *vaddr, unsigned int size)
131 {
132 void *vend = vaddr + size - 1;
133
134 mb();
135
136 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
137 clflush(vaddr);
138 /*
139 * Flush any possible final partial cacheline:
140 */
141 clflush(vend);
142
143 mb();
144 }
145
146 static void __cpa_flush_all(void *arg)
147 {
148 unsigned long cache = (unsigned long)arg;
149
150 /*
151 * Flush all to work around Errata in early athlons regarding
152 * large page flushing.
153 */
154 __flush_tlb_all();
155
156 if (cache && boot_cpu_data.x86 >= 4)
157 wbinvd();
158 }
159
160 static void cpa_flush_all(unsigned long cache)
161 {
162 BUG_ON(irqs_disabled());
163
164 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
165 }
166
167 static void __cpa_flush_range(void *arg)
168 {
169 /*
170 * We could optimize that further and do individual per page
171 * tlb invalidates for a low number of pages. Caveat: we must
172 * flush the high aliases on 64bit as well.
173 */
174 __flush_tlb_all();
175 }
176
177 static void cpa_flush_range(unsigned long start, int numpages, int cache)
178 {
179 unsigned int i, level;
180 unsigned long addr;
181
182 BUG_ON(irqs_disabled());
183 WARN_ON(PAGE_ALIGN(start) != start);
184
185 on_each_cpu(__cpa_flush_range, NULL, 1);
186
187 if (!cache)
188 return;
189
190 /*
191 * We only need to flush on one CPU,
192 * clflush is a MESI-coherent instruction that
193 * will cause all other CPUs to flush the same
194 * cachelines:
195 */
196 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
197 pte_t *pte = lookup_address(addr, &level);
198
199 /*
200 * Only flush present addresses:
201 */
202 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
203 clflush_cache_range((void *) addr, PAGE_SIZE);
204 }
205 }
206
207 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
208 int in_flags, struct page **pages)
209 {
210 unsigned int i, level;
211 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
212
213 BUG_ON(irqs_disabled());
214
215 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
216
217 if (!cache || do_wbinvd)
218 return;
219
220 /*
221 * We only need to flush on one CPU,
222 * clflush is a MESI-coherent instruction that
223 * will cause all other CPUs to flush the same
224 * cachelines:
225 */
226 for (i = 0; i < numpages; i++) {
227 unsigned long addr;
228 pte_t *pte;
229
230 if (in_flags & CPA_PAGES_ARRAY)
231 addr = (unsigned long)page_address(pages[i]);
232 else
233 addr = start[i];
234
235 pte = lookup_address(addr, &level);
236
237 /*
238 * Only flush present addresses:
239 */
240 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
241 clflush_cache_range((void *)addr, PAGE_SIZE);
242 }
243 }
244
245 /*
246 * Certain areas of memory on x86 require very specific protection flags,
247 * for example the BIOS area or kernel text. Callers don't always get this
248 * right (again, ioremap() on BIOS memory is not uncommon) so this function
249 * checks and fixes these known static required protection bits.
250 */
251 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
252 unsigned long pfn)
253 {
254 pgprot_t forbidden = __pgprot(0);
255
256 /*
257 * The BIOS area between 640k and 1Mb needs to be executable for
258 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
259 */
260 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
261 pgprot_val(forbidden) |= _PAGE_NX;
262
263 /*
264 * The kernel text needs to be executable for obvious reasons
265 * Does not cover __inittext since that is gone later on. On
266 * 64bit we do not enforce !NX on the low mapping
267 */
268 if (within(address, (unsigned long)_text, (unsigned long)_etext))
269 pgprot_val(forbidden) |= _PAGE_NX;
270
271 /*
272 * The .rodata section needs to be read-only. Using the pfn
273 * catches all aliases.
274 */
275 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
276 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
277 pgprot_val(forbidden) |= _PAGE_RW;
278
279 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
280
281 return prot;
282 }
283
284 /*
285 * Lookup the page table entry for a virtual address. Return a pointer
286 * to the entry and the level of the mapping.
287 *
288 * Note: We return pud and pmd either when the entry is marked large
289 * or when the present bit is not set. Otherwise we would return a
290 * pointer to a nonexisting mapping.
291 */
292 pte_t *lookup_address(unsigned long address, unsigned int *level)
293 {
294 pgd_t *pgd = pgd_offset_k(address);
295 pud_t *pud;
296 pmd_t *pmd;
297
298 *level = PG_LEVEL_NONE;
299
300 if (pgd_none(*pgd))
301 return NULL;
302
303 pud = pud_offset(pgd, address);
304 if (pud_none(*pud))
305 return NULL;
306
307 *level = PG_LEVEL_1G;
308 if (pud_large(*pud) || !pud_present(*pud))
309 return (pte_t *)pud;
310
311 pmd = pmd_offset(pud, address);
312 if (pmd_none(*pmd))
313 return NULL;
314
315 *level = PG_LEVEL_2M;
316 if (pmd_large(*pmd) || !pmd_present(*pmd))
317 return (pte_t *)pmd;
318
319 *level = PG_LEVEL_4K;
320
321 return pte_offset_kernel(pmd, address);
322 }
323 EXPORT_SYMBOL_GPL(lookup_address);
324
325 /*
326 * Set the new pmd in all the pgds we know about:
327 */
328 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
329 {
330 /* change init_mm */
331 set_pte_atomic(kpte, pte);
332 #ifdef CONFIG_X86_32
333 if (!SHARED_KERNEL_PMD) {
334 struct page *page;
335
336 list_for_each_entry(page, &pgd_list, lru) {
337 pgd_t *pgd;
338 pud_t *pud;
339 pmd_t *pmd;
340
341 pgd = (pgd_t *)page_address(page) + pgd_index(address);
342 pud = pud_offset(pgd, address);
343 pmd = pmd_offset(pud, address);
344 set_pte_atomic((pte_t *)pmd, pte);
345 }
346 }
347 #endif
348 }
349
350 static int
351 try_preserve_large_page(pte_t *kpte, unsigned long address,
352 struct cpa_data *cpa)
353 {
354 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
355 pte_t new_pte, old_pte, *tmp;
356 pgprot_t old_prot, new_prot;
357 int i, do_split = 1;
358 unsigned int level;
359
360 if (cpa->force_split)
361 return 1;
362
363 spin_lock_irqsave(&pgd_lock, flags);
364 /*
365 * Check for races, another CPU might have split this page
366 * up already:
367 */
368 tmp = lookup_address(address, &level);
369 if (tmp != kpte)
370 goto out_unlock;
371
372 switch (level) {
373 case PG_LEVEL_2M:
374 psize = PMD_PAGE_SIZE;
375 pmask = PMD_PAGE_MASK;
376 break;
377 #ifdef CONFIG_X86_64
378 case PG_LEVEL_1G:
379 psize = PUD_PAGE_SIZE;
380 pmask = PUD_PAGE_MASK;
381 break;
382 #endif
383 default:
384 do_split = -EINVAL;
385 goto out_unlock;
386 }
387
388 /*
389 * Calculate the number of pages, which fit into this large
390 * page starting at address:
391 */
392 nextpage_addr = (address + psize) & pmask;
393 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
394 if (numpages < cpa->numpages)
395 cpa->numpages = numpages;
396
397 /*
398 * We are safe now. Check whether the new pgprot is the same:
399 */
400 old_pte = *kpte;
401 old_prot = new_prot = pte_pgprot(old_pte);
402
403 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
404 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
405
406 /*
407 * old_pte points to the large page base address. So we need
408 * to add the offset of the virtual address:
409 */
410 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
411 cpa->pfn = pfn;
412
413 new_prot = static_protections(new_prot, address, pfn);
414
415 /*
416 * We need to check the full range, whether
417 * static_protection() requires a different pgprot for one of
418 * the pages in the range we try to preserve:
419 */
420 addr = address + PAGE_SIZE;
421 pfn++;
422 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
423 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
424
425 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
426 goto out_unlock;
427 }
428
429 /*
430 * If there are no changes, return. maxpages has been updated
431 * above:
432 */
433 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
434 do_split = 0;
435 goto out_unlock;
436 }
437
438 /*
439 * We need to change the attributes. Check, whether we can
440 * change the large page in one go. We request a split, when
441 * the address is not aligned and the number of pages is
442 * smaller than the number of pages in the large page. Note
443 * that we limited the number of possible pages already to
444 * the number of pages in the large page.
445 */
446 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
447 /*
448 * The address is aligned and the number of pages
449 * covers the full page.
450 */
451 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
452 __set_pmd_pte(kpte, address, new_pte);
453 cpa->flags |= CPA_FLUSHTLB;
454 do_split = 0;
455 }
456
457 out_unlock:
458 spin_unlock_irqrestore(&pgd_lock, flags);
459
460 return do_split;
461 }
462
463 static int split_large_page(pte_t *kpte, unsigned long address)
464 {
465 unsigned long flags, pfn, pfninc = 1;
466 unsigned int i, level;
467 pte_t *pbase, *tmp;
468 pgprot_t ref_prot;
469 struct page *base;
470
471 if (!debug_pagealloc)
472 spin_unlock(&cpa_lock);
473 base = alloc_pages(GFP_KERNEL, 0);
474 if (!debug_pagealloc)
475 spin_lock(&cpa_lock);
476 if (!base)
477 return -ENOMEM;
478
479 spin_lock_irqsave(&pgd_lock, flags);
480 /*
481 * Check for races, another CPU might have split this page
482 * up for us already:
483 */
484 tmp = lookup_address(address, &level);
485 if (tmp != kpte)
486 goto out_unlock;
487
488 pbase = (pte_t *)page_address(base);
489 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
490 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
491 /*
492 * If we ever want to utilize the PAT bit, we need to
493 * update this function to make sure it's converted from
494 * bit 12 to bit 7 when we cross from the 2MB level to
495 * the 4K level:
496 */
497 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
498
499 #ifdef CONFIG_X86_64
500 if (level == PG_LEVEL_1G) {
501 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
502 pgprot_val(ref_prot) |= _PAGE_PSE;
503 }
504 #endif
505
506 /*
507 * Get the target pfn from the original entry:
508 */
509 pfn = pte_pfn(*kpte);
510 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
511 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
512
513 if (address >= (unsigned long)__va(0) &&
514 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
515 split_page_count(level);
516
517 #ifdef CONFIG_X86_64
518 if (address >= (unsigned long)__va(1UL<<32) &&
519 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
520 split_page_count(level);
521 #endif
522
523 /*
524 * Install the new, split up pagetable.
525 *
526 * We use the standard kernel pagetable protections for the new
527 * pagetable protections, the actual ptes set above control the
528 * primary protection behavior:
529 */
530 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
531
532 /*
533 * Intel Atom errata AAH41 workaround.
534 *
535 * The real fix should be in hw or in a microcode update, but
536 * we also probabilistically try to reduce the window of having
537 * a large TLB mixed with 4K TLBs while instruction fetches are
538 * going on.
539 */
540 __flush_tlb_all();
541
542 base = NULL;
543
544 out_unlock:
545 /*
546 * If we dropped out via the lookup_address check under
547 * pgd_lock then stick the page back into the pool:
548 */
549 if (base)
550 __free_page(base);
551 spin_unlock_irqrestore(&pgd_lock, flags);
552
553 return 0;
554 }
555
556 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
557 int primary)
558 {
559 /*
560 * Ignore all non primary paths.
561 */
562 if (!primary)
563 return 0;
564
565 /*
566 * Ignore the NULL PTE for kernel identity mapping, as it is expected
567 * to have holes.
568 * Also set numpages to '1' indicating that we processed cpa req for
569 * one virtual address page and its pfn. TBD: numpages can be set based
570 * on the initial value and the level returned by lookup_address().
571 */
572 if (within(vaddr, PAGE_OFFSET,
573 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
574 cpa->numpages = 1;
575 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
576 return 0;
577 } else {
578 WARN(1, KERN_WARNING "CPA: called for zero pte. "
579 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
580 *cpa->vaddr);
581
582 return -EFAULT;
583 }
584 }
585
586 static int __change_page_attr(struct cpa_data *cpa, int primary)
587 {
588 unsigned long address;
589 int do_split, err;
590 unsigned int level;
591 pte_t *kpte, old_pte;
592
593 if (cpa->flags & CPA_PAGES_ARRAY)
594 address = (unsigned long)page_address(cpa->pages[cpa->curpage]);
595 else if (cpa->flags & CPA_ARRAY)
596 address = cpa->vaddr[cpa->curpage];
597 else
598 address = *cpa->vaddr;
599 repeat:
600 kpte = lookup_address(address, &level);
601 if (!kpte)
602 return __cpa_process_fault(cpa, address, primary);
603
604 old_pte = *kpte;
605 if (!pte_val(old_pte))
606 return __cpa_process_fault(cpa, address, primary);
607
608 if (level == PG_LEVEL_4K) {
609 pte_t new_pte;
610 pgprot_t new_prot = pte_pgprot(old_pte);
611 unsigned long pfn = pte_pfn(old_pte);
612
613 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
614 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
615
616 new_prot = static_protections(new_prot, address, pfn);
617
618 /*
619 * We need to keep the pfn from the existing PTE,
620 * after all we're only going to change it's attributes
621 * not the memory it points to
622 */
623 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
624 cpa->pfn = pfn;
625 /*
626 * Do we really change anything ?
627 */
628 if (pte_val(old_pte) != pte_val(new_pte)) {
629 set_pte_atomic(kpte, new_pte);
630 cpa->flags |= CPA_FLUSHTLB;
631 }
632 cpa->numpages = 1;
633 return 0;
634 }
635
636 /*
637 * Check, whether we can keep the large page intact
638 * and just change the pte:
639 */
640 do_split = try_preserve_large_page(kpte, address, cpa);
641 /*
642 * When the range fits into the existing large page,
643 * return. cp->numpages and cpa->tlbflush have been updated in
644 * try_large_page:
645 */
646 if (do_split <= 0)
647 return do_split;
648
649 /*
650 * We have to split the large page:
651 */
652 err = split_large_page(kpte, address);
653 if (!err) {
654 /*
655 * Do a global flush tlb after splitting the large page
656 * and before we do the actual change page attribute in the PTE.
657 *
658 * With out this, we violate the TLB application note, that says
659 * "The TLBs may contain both ordinary and large-page
660 * translations for a 4-KByte range of linear addresses. This
661 * may occur if software modifies the paging structures so that
662 * the page size used for the address range changes. If the two
663 * translations differ with respect to page frame or attributes
664 * (e.g., permissions), processor behavior is undefined and may
665 * be implementation-specific."
666 *
667 * We do this global tlb flush inside the cpa_lock, so that we
668 * don't allow any other cpu, with stale tlb entries change the
669 * page attribute in parallel, that also falls into the
670 * just split large page entry.
671 */
672 flush_tlb_all();
673 goto repeat;
674 }
675
676 return err;
677 }
678
679 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
680
681 static int cpa_process_alias(struct cpa_data *cpa)
682 {
683 struct cpa_data alias_cpa;
684 int ret = 0;
685 unsigned long temp_cpa_vaddr, vaddr;
686
687 if (cpa->pfn >= max_pfn_mapped)
688 return 0;
689
690 #ifdef CONFIG_X86_64
691 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
692 return 0;
693 #endif
694 /*
695 * No need to redo, when the primary call touched the direct
696 * mapping already:
697 */
698 if (cpa->flags & CPA_PAGES_ARRAY)
699 vaddr = (unsigned long)page_address(cpa->pages[cpa->curpage]);
700 else if (cpa->flags & CPA_ARRAY)
701 vaddr = cpa->vaddr[cpa->curpage];
702 else
703 vaddr = *cpa->vaddr;
704
705 if (!(within(vaddr, PAGE_OFFSET,
706 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
707
708 alias_cpa = *cpa;
709 temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
710 alias_cpa.vaddr = &temp_cpa_vaddr;
711 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
712
713
714 ret = __change_page_attr_set_clr(&alias_cpa, 0);
715 }
716
717 #ifdef CONFIG_X86_64
718 if (ret)
719 return ret;
720 /*
721 * No need to redo, when the primary call touched the high
722 * mapping already:
723 */
724 if (within(vaddr, (unsigned long) _text, _brk_end))
725 return 0;
726
727 /*
728 * If the physical address is inside the kernel map, we need
729 * to touch the high mapped kernel as well:
730 */
731 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
732 return 0;
733
734 alias_cpa = *cpa;
735 temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
736 alias_cpa.vaddr = &temp_cpa_vaddr;
737 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
738
739 /*
740 * The high mapping range is imprecise, so ignore the return value.
741 */
742 __change_page_attr_set_clr(&alias_cpa, 0);
743 #endif
744 return ret;
745 }
746
747 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
748 {
749 int ret, numpages = cpa->numpages;
750
751 while (numpages) {
752 /*
753 * Store the remaining nr of pages for the large page
754 * preservation check.
755 */
756 cpa->numpages = numpages;
757 /* for array changes, we can't use large page */
758 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
759 cpa->numpages = 1;
760
761 if (!debug_pagealloc)
762 spin_lock(&cpa_lock);
763 ret = __change_page_attr(cpa, checkalias);
764 if (!debug_pagealloc)
765 spin_unlock(&cpa_lock);
766 if (ret)
767 return ret;
768
769 if (checkalias) {
770 ret = cpa_process_alias(cpa);
771 if (ret)
772 return ret;
773 }
774
775 /*
776 * Adjust the number of pages with the result of the
777 * CPA operation. Either a large page has been
778 * preserved or a single page update happened.
779 */
780 BUG_ON(cpa->numpages > numpages);
781 numpages -= cpa->numpages;
782 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
783 cpa->curpage++;
784 else
785 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
786
787 }
788 return 0;
789 }
790
791 static inline int cache_attr(pgprot_t attr)
792 {
793 return pgprot_val(attr) &
794 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
795 }
796
797 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
798 pgprot_t mask_set, pgprot_t mask_clr,
799 int force_split, int in_flag,
800 struct page **pages)
801 {
802 struct cpa_data cpa;
803 int ret, cache, checkalias;
804
805 /*
806 * Check, if we are requested to change a not supported
807 * feature:
808 */
809 mask_set = canon_pgprot(mask_set);
810 mask_clr = canon_pgprot(mask_clr);
811 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
812 return 0;
813
814 /* Ensure we are PAGE_SIZE aligned */
815 if (in_flag & CPA_ARRAY) {
816 int i;
817 for (i = 0; i < numpages; i++) {
818 if (addr[i] & ~PAGE_MASK) {
819 addr[i] &= PAGE_MASK;
820 WARN_ON_ONCE(1);
821 }
822 }
823 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
824 /*
825 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
826 * No need to cehck in that case
827 */
828 if (*addr & ~PAGE_MASK) {
829 *addr &= PAGE_MASK;
830 /*
831 * People should not be passing in unaligned addresses:
832 */
833 WARN_ON_ONCE(1);
834 }
835 }
836
837 /* Must avoid aliasing mappings in the highmem code */
838 kmap_flush_unused();
839
840 vm_unmap_aliases();
841
842 cpa.vaddr = addr;
843 cpa.pages = pages;
844 cpa.numpages = numpages;
845 cpa.mask_set = mask_set;
846 cpa.mask_clr = mask_clr;
847 cpa.flags = 0;
848 cpa.curpage = 0;
849 cpa.force_split = force_split;
850
851 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
852 cpa.flags |= in_flag;
853
854 /* No alias checking for _NX bit modifications */
855 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
856
857 ret = __change_page_attr_set_clr(&cpa, checkalias);
858
859 /*
860 * Check whether we really changed something:
861 */
862 if (!(cpa.flags & CPA_FLUSHTLB))
863 goto out;
864
865 /*
866 * No need to flush, when we did not set any of the caching
867 * attributes:
868 */
869 cache = cache_attr(mask_set);
870
871 /*
872 * On success we use clflush, when the CPU supports it to
873 * avoid the wbindv. If the CPU does not support it and in the
874 * error case we fall back to cpa_flush_all (which uses
875 * wbindv):
876 */
877 if (!ret && cpu_has_clflush) {
878 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
879 cpa_flush_array(addr, numpages, cache,
880 cpa.flags, pages);
881 } else
882 cpa_flush_range(*addr, numpages, cache);
883 } else
884 cpa_flush_all(cache);
885
886 out:
887 return ret;
888 }
889
890 static inline int change_page_attr_set(unsigned long *addr, int numpages,
891 pgprot_t mask, int array)
892 {
893 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
894 (array ? CPA_ARRAY : 0), NULL);
895 }
896
897 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
898 pgprot_t mask, int array)
899 {
900 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
901 (array ? CPA_ARRAY : 0), NULL);
902 }
903
904 static inline int cpa_set_pages_array(struct page **pages, int numpages,
905 pgprot_t mask)
906 {
907 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
908 CPA_PAGES_ARRAY, pages);
909 }
910
911 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
912 pgprot_t mask)
913 {
914 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
915 CPA_PAGES_ARRAY, pages);
916 }
917
918 int _set_memory_uc(unsigned long addr, int numpages)
919 {
920 /*
921 * for now UC MINUS. see comments in ioremap_nocache()
922 */
923 return change_page_attr_set(&addr, numpages,
924 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
925 }
926
927 int set_memory_uc(unsigned long addr, int numpages)
928 {
929 int ret;
930
931 /*
932 * for now UC MINUS. see comments in ioremap_nocache()
933 */
934 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
935 _PAGE_CACHE_UC_MINUS, NULL);
936 if (ret)
937 goto out_err;
938
939 ret = _set_memory_uc(addr, numpages);
940 if (ret)
941 goto out_free;
942
943 return 0;
944
945 out_free:
946 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
947 out_err:
948 return ret;
949 }
950 EXPORT_SYMBOL(set_memory_uc);
951
952 int set_memory_array_uc(unsigned long *addr, int addrinarray)
953 {
954 int i, j;
955 int ret;
956
957 /*
958 * for now UC MINUS. see comments in ioremap_nocache()
959 */
960 for (i = 0; i < addrinarray; i++) {
961 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
962 _PAGE_CACHE_UC_MINUS, NULL);
963 if (ret)
964 goto out_free;
965 }
966
967 ret = change_page_attr_set(addr, addrinarray,
968 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
969 if (ret)
970 goto out_free;
971
972 return 0;
973
974 out_free:
975 for (j = 0; j < i; j++)
976 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
977
978 return ret;
979 }
980 EXPORT_SYMBOL(set_memory_array_uc);
981
982 int _set_memory_wc(unsigned long addr, int numpages)
983 {
984 int ret;
985 ret = change_page_attr_set(&addr, numpages,
986 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
987
988 if (!ret) {
989 ret = change_page_attr_set(&addr, numpages,
990 __pgprot(_PAGE_CACHE_WC), 0);
991 }
992 return ret;
993 }
994
995 int set_memory_wc(unsigned long addr, int numpages)
996 {
997 int ret;
998
999 if (!pat_enabled)
1000 return set_memory_uc(addr, numpages);
1001
1002 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1003 _PAGE_CACHE_WC, NULL);
1004 if (ret)
1005 goto out_err;
1006
1007 ret = _set_memory_wc(addr, numpages);
1008 if (ret)
1009 goto out_free;
1010
1011 return 0;
1012
1013 out_free:
1014 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1015 out_err:
1016 return ret;
1017 }
1018 EXPORT_SYMBOL(set_memory_wc);
1019
1020 int _set_memory_wb(unsigned long addr, int numpages)
1021 {
1022 return change_page_attr_clear(&addr, numpages,
1023 __pgprot(_PAGE_CACHE_MASK), 0);
1024 }
1025
1026 int set_memory_wb(unsigned long addr, int numpages)
1027 {
1028 int ret;
1029
1030 ret = _set_memory_wb(addr, numpages);
1031 if (ret)
1032 return ret;
1033
1034 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1035 return 0;
1036 }
1037 EXPORT_SYMBOL(set_memory_wb);
1038
1039 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1040 {
1041 int i;
1042 int ret;
1043
1044 ret = change_page_attr_clear(addr, addrinarray,
1045 __pgprot(_PAGE_CACHE_MASK), 1);
1046 if (ret)
1047 return ret;
1048
1049 for (i = 0; i < addrinarray; i++)
1050 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1051
1052 return 0;
1053 }
1054 EXPORT_SYMBOL(set_memory_array_wb);
1055
1056 int set_memory_x(unsigned long addr, int numpages)
1057 {
1058 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1059 }
1060 EXPORT_SYMBOL(set_memory_x);
1061
1062 int set_memory_nx(unsigned long addr, int numpages)
1063 {
1064 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1065 }
1066 EXPORT_SYMBOL(set_memory_nx);
1067
1068 int set_memory_ro(unsigned long addr, int numpages)
1069 {
1070 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1071 }
1072 EXPORT_SYMBOL_GPL(set_memory_ro);
1073
1074 int set_memory_rw(unsigned long addr, int numpages)
1075 {
1076 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1077 }
1078 EXPORT_SYMBOL_GPL(set_memory_rw);
1079
1080 int set_memory_np(unsigned long addr, int numpages)
1081 {
1082 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1083 }
1084
1085 int set_memory_4k(unsigned long addr, int numpages)
1086 {
1087 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1088 __pgprot(0), 1, 0, NULL);
1089 }
1090
1091 int set_pages_uc(struct page *page, int numpages)
1092 {
1093 unsigned long addr = (unsigned long)page_address(page);
1094
1095 return set_memory_uc(addr, numpages);
1096 }
1097 EXPORT_SYMBOL(set_pages_uc);
1098
1099 int set_pages_array_uc(struct page **pages, int addrinarray)
1100 {
1101 unsigned long start;
1102 unsigned long end;
1103 int i;
1104 int free_idx;
1105
1106 for (i = 0; i < addrinarray; i++) {
1107 start = (unsigned long)page_address(pages[i]);
1108 end = start + PAGE_SIZE;
1109 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1110 goto err_out;
1111 }
1112
1113 if (cpa_set_pages_array(pages, addrinarray,
1114 __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1115 return 0; /* Success */
1116 }
1117 err_out:
1118 free_idx = i;
1119 for (i = 0; i < free_idx; i++) {
1120 start = (unsigned long)page_address(pages[i]);
1121 end = start + PAGE_SIZE;
1122 free_memtype(start, end);
1123 }
1124 return -EINVAL;
1125 }
1126 EXPORT_SYMBOL(set_pages_array_uc);
1127
1128 int set_pages_wb(struct page *page, int numpages)
1129 {
1130 unsigned long addr = (unsigned long)page_address(page);
1131
1132 return set_memory_wb(addr, numpages);
1133 }
1134 EXPORT_SYMBOL(set_pages_wb);
1135
1136 int set_pages_array_wb(struct page **pages, int addrinarray)
1137 {
1138 int retval;
1139 unsigned long start;
1140 unsigned long end;
1141 int i;
1142
1143 retval = cpa_clear_pages_array(pages, addrinarray,
1144 __pgprot(_PAGE_CACHE_MASK));
1145 if (retval)
1146 return retval;
1147
1148 for (i = 0; i < addrinarray; i++) {
1149 start = (unsigned long)page_address(pages[i]);
1150 end = start + PAGE_SIZE;
1151 free_memtype(start, end);
1152 }
1153
1154 return 0;
1155 }
1156 EXPORT_SYMBOL(set_pages_array_wb);
1157
1158 int set_pages_x(struct page *page, int numpages)
1159 {
1160 unsigned long addr = (unsigned long)page_address(page);
1161
1162 return set_memory_x(addr, numpages);
1163 }
1164 EXPORT_SYMBOL(set_pages_x);
1165
1166 int set_pages_nx(struct page *page, int numpages)
1167 {
1168 unsigned long addr = (unsigned long)page_address(page);
1169
1170 return set_memory_nx(addr, numpages);
1171 }
1172 EXPORT_SYMBOL(set_pages_nx);
1173
1174 int set_pages_ro(struct page *page, int numpages)
1175 {
1176 unsigned long addr = (unsigned long)page_address(page);
1177
1178 return set_memory_ro(addr, numpages);
1179 }
1180
1181 int set_pages_rw(struct page *page, int numpages)
1182 {
1183 unsigned long addr = (unsigned long)page_address(page);
1184
1185 return set_memory_rw(addr, numpages);
1186 }
1187
1188 #ifdef CONFIG_DEBUG_PAGEALLOC
1189
1190 static int __set_pages_p(struct page *page, int numpages)
1191 {
1192 unsigned long tempaddr = (unsigned long) page_address(page);
1193 struct cpa_data cpa = { .vaddr = &tempaddr,
1194 .numpages = numpages,
1195 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1196 .mask_clr = __pgprot(0),
1197 .flags = 0};
1198
1199 /*
1200 * No alias checking needed for setting present flag. otherwise,
1201 * we may need to break large pages for 64-bit kernel text
1202 * mappings (this adds to complexity if we want to do this from
1203 * atomic context especially). Let's keep it simple!
1204 */
1205 return __change_page_attr_set_clr(&cpa, 0);
1206 }
1207
1208 static int __set_pages_np(struct page *page, int numpages)
1209 {
1210 unsigned long tempaddr = (unsigned long) page_address(page);
1211 struct cpa_data cpa = { .vaddr = &tempaddr,
1212 .numpages = numpages,
1213 .mask_set = __pgprot(0),
1214 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1215 .flags = 0};
1216
1217 /*
1218 * No alias checking needed for setting not present flag. otherwise,
1219 * we may need to break large pages for 64-bit kernel text
1220 * mappings (this adds to complexity if we want to do this from
1221 * atomic context especially). Let's keep it simple!
1222 */
1223 return __change_page_attr_set_clr(&cpa, 0);
1224 }
1225
1226 void kernel_map_pages(struct page *page, int numpages, int enable)
1227 {
1228 if (PageHighMem(page))
1229 return;
1230 if (!enable) {
1231 debug_check_no_locks_freed(page_address(page),
1232 numpages * PAGE_SIZE);
1233 }
1234
1235 /*
1236 * If page allocator is not up yet then do not call c_p_a():
1237 */
1238 if (!debug_pagealloc_enabled)
1239 return;
1240
1241 /*
1242 * The return value is ignored as the calls cannot fail.
1243 * Large pages for identity mappings are not used at boot time
1244 * and hence no memory allocations during large page split.
1245 */
1246 if (enable)
1247 __set_pages_p(page, numpages);
1248 else
1249 __set_pages_np(page, numpages);
1250
1251 /*
1252 * We should perform an IPI and flush all tlbs,
1253 * but that can deadlock->flush only current cpu:
1254 */
1255 __flush_tlb_all();
1256 }
1257
1258 #ifdef CONFIG_HIBERNATION
1259
1260 bool kernel_page_present(struct page *page)
1261 {
1262 unsigned int level;
1263 pte_t *pte;
1264
1265 if (PageHighMem(page))
1266 return false;
1267
1268 pte = lookup_address((unsigned long)page_address(page), &level);
1269 return (pte_val(*pte) & _PAGE_PRESENT);
1270 }
1271
1272 #endif /* CONFIG_HIBERNATION */
1273
1274 #endif /* CONFIG_DEBUG_PAGEALLOC */
1275
1276 /*
1277 * The testcases use internal knowledge of the implementation that shouldn't
1278 * be exposed to the rest of the kernel. Include these directly here.
1279 */
1280 #ifdef CONFIG_CPA_DEBUG
1281 #include "pageattr-test.c"
1282 #endif
This page took 0.059701 seconds and 5 git commands to generate.