x86/mm: Flush lazy MMU when DEBUG_PAGEALLOC is set
[deliverable/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgprot_t mask_set;
34 pgprot_t mask_clr;
35 int numpages;
36 int flags;
37 unsigned long pfn;
38 unsigned force_split : 1;
39 int curpage;
40 struct page **pages;
41 };
42
43 /*
44 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46 * entries change the page attribute in parallel to some other cpu
47 * splitting a large page entry along with changing the attribute.
48 */
49 static DEFINE_SPINLOCK(cpa_lock);
50
51 #define CPA_FLUSHTLB 1
52 #define CPA_ARRAY 2
53 #define CPA_PAGES_ARRAY 4
54
55 #ifdef CONFIG_PROC_FS
56 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57
58 void update_page_count(int level, unsigned long pages)
59 {
60 /* Protect against CPA */
61 spin_lock(&pgd_lock);
62 direct_pages_count[level] += pages;
63 spin_unlock(&pgd_lock);
64 }
65
66 static void split_page_count(int level)
67 {
68 direct_pages_count[level]--;
69 direct_pages_count[level - 1] += PTRS_PER_PTE;
70 }
71
72 void arch_report_meminfo(struct seq_file *m)
73 {
74 seq_printf(m, "DirectMap4k: %8lu kB\n",
75 direct_pages_count[PG_LEVEL_4K] << 2);
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77 seq_printf(m, "DirectMap2M: %8lu kB\n",
78 direct_pages_count[PG_LEVEL_2M] << 11);
79 #else
80 seq_printf(m, "DirectMap4M: %8lu kB\n",
81 direct_pages_count[PG_LEVEL_2M] << 12);
82 #endif
83 #ifdef CONFIG_X86_64
84 if (direct_gbpages)
85 seq_printf(m, "DirectMap1G: %8lu kB\n",
86 direct_pages_count[PG_LEVEL_1G] << 20);
87 #endif
88 }
89 #else
90 static inline void split_page_count(int level) { }
91 #endif
92
93 #ifdef CONFIG_X86_64
94
95 static inline unsigned long highmap_start_pfn(void)
96 {
97 return __pa_symbol(_text) >> PAGE_SHIFT;
98 }
99
100 static inline unsigned long highmap_end_pfn(void)
101 {
102 return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104
105 #endif
106
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112
113 static inline int
114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116 return addr >= start && addr < end;
117 }
118
119 /*
120 * Flushing functions
121 */
122
123 /**
124 * clflush_cache_range - flush a cache range with clflush
125 * @vaddr: virtual start address
126 * @size: number of bytes to flush
127 *
128 * clflush is an unordered instruction which needs fencing with mfence
129 * to avoid ordering issues.
130 */
131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133 void *vend = vaddr + size - 1;
134
135 mb();
136
137 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138 clflush(vaddr);
139 /*
140 * Flush any possible final partial cacheline:
141 */
142 clflush(vend);
143
144 mb();
145 }
146 EXPORT_SYMBOL_GPL(clflush_cache_range);
147
148 static void __cpa_flush_all(void *arg)
149 {
150 unsigned long cache = (unsigned long)arg;
151
152 /*
153 * Flush all to work around Errata in early athlons regarding
154 * large page flushing.
155 */
156 __flush_tlb_all();
157
158 if (cache && boot_cpu_data.x86 >= 4)
159 wbinvd();
160 }
161
162 static void cpa_flush_all(unsigned long cache)
163 {
164 BUG_ON(irqs_disabled());
165
166 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 }
168
169 static void __cpa_flush_range(void *arg)
170 {
171 /*
172 * We could optimize that further and do individual per page
173 * tlb invalidates for a low number of pages. Caveat: we must
174 * flush the high aliases on 64bit as well.
175 */
176 __flush_tlb_all();
177 }
178
179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 {
181 unsigned int i, level;
182 unsigned long addr;
183
184 BUG_ON(irqs_disabled());
185 WARN_ON(PAGE_ALIGN(start) != start);
186
187 on_each_cpu(__cpa_flush_range, NULL, 1);
188
189 if (!cache)
190 return;
191
192 /*
193 * We only need to flush on one CPU,
194 * clflush is a MESI-coherent instruction that
195 * will cause all other CPUs to flush the same
196 * cachelines:
197 */
198 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199 pte_t *pte = lookup_address(addr, &level);
200
201 /*
202 * Only flush present addresses:
203 */
204 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205 clflush_cache_range((void *) addr, PAGE_SIZE);
206 }
207 }
208
209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210 int in_flags, struct page **pages)
211 {
212 unsigned int i, level;
213 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214
215 BUG_ON(irqs_disabled());
216
217 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218
219 if (!cache || do_wbinvd)
220 return;
221
222 /*
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
226 * cachelines:
227 */
228 for (i = 0; i < numpages; i++) {
229 unsigned long addr;
230 pte_t *pte;
231
232 if (in_flags & CPA_PAGES_ARRAY)
233 addr = (unsigned long)page_address(pages[i]);
234 else
235 addr = start[i];
236
237 pte = lookup_address(addr, &level);
238
239 /*
240 * Only flush present addresses:
241 */
242 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243 clflush_cache_range((void *)addr, PAGE_SIZE);
244 }
245 }
246
247 /*
248 * Certain areas of memory on x86 require very specific protection flags,
249 * for example the BIOS area or kernel text. Callers don't always get this
250 * right (again, ioremap() on BIOS memory is not uncommon) so this function
251 * checks and fixes these known static required protection bits.
252 */
253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254 unsigned long pfn)
255 {
256 pgprot_t forbidden = __pgprot(0);
257
258 /*
259 * The BIOS area between 640k and 1Mb needs to be executable for
260 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261 */
262 #ifdef CONFIG_PCI_BIOS
263 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264 pgprot_val(forbidden) |= _PAGE_NX;
265 #endif
266
267 /*
268 * The kernel text needs to be executable for obvious reasons
269 * Does not cover __inittext since that is gone later on. On
270 * 64bit we do not enforce !NX on the low mapping
271 */
272 if (within(address, (unsigned long)_text, (unsigned long)_etext))
273 pgprot_val(forbidden) |= _PAGE_NX;
274
275 /*
276 * The .rodata section needs to be read-only. Using the pfn
277 * catches all aliases.
278 */
279 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
280 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
281 pgprot_val(forbidden) |= _PAGE_RW;
282
283 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
284 /*
285 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286 * kernel text mappings for the large page aligned text, rodata sections
287 * will be always read-only. For the kernel identity mappings covering
288 * the holes caused by this alignment can be anything that user asks.
289 *
290 * This will preserve the large page mappings for kernel text/data
291 * at no extra cost.
292 */
293 if (kernel_set_to_readonly &&
294 within(address, (unsigned long)_text,
295 (unsigned long)__end_rodata_hpage_align)) {
296 unsigned int level;
297
298 /*
299 * Don't enforce the !RW mapping for the kernel text mapping,
300 * if the current mapping is already using small page mapping.
301 * No need to work hard to preserve large page mappings in this
302 * case.
303 *
304 * This also fixes the Linux Xen paravirt guest boot failure
305 * (because of unexpected read-only mappings for kernel identity
306 * mappings). In this paravirt guest case, the kernel text
307 * mapping and the kernel identity mapping share the same
308 * page-table pages. Thus we can't really use different
309 * protections for the kernel text and identity mappings. Also,
310 * these shared mappings are made of small page mappings.
311 * Thus this don't enforce !RW mapping for small page kernel
312 * text mapping logic will help Linux Xen parvirt guest boot
313 * as well.
314 */
315 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316 pgprot_val(forbidden) |= _PAGE_RW;
317 }
318 #endif
319
320 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
321
322 return prot;
323 }
324
325 /*
326 * Lookup the page table entry for a virtual address. Return a pointer
327 * to the entry and the level of the mapping.
328 *
329 * Note: We return pud and pmd either when the entry is marked large
330 * or when the present bit is not set. Otherwise we would return a
331 * pointer to a nonexisting mapping.
332 */
333 pte_t *lookup_address(unsigned long address, unsigned int *level)
334 {
335 pgd_t *pgd = pgd_offset_k(address);
336 pud_t *pud;
337 pmd_t *pmd;
338
339 *level = PG_LEVEL_NONE;
340
341 if (pgd_none(*pgd))
342 return NULL;
343
344 pud = pud_offset(pgd, address);
345 if (pud_none(*pud))
346 return NULL;
347
348 *level = PG_LEVEL_1G;
349 if (pud_large(*pud) || !pud_present(*pud))
350 return (pte_t *)pud;
351
352 pmd = pmd_offset(pud, address);
353 if (pmd_none(*pmd))
354 return NULL;
355
356 *level = PG_LEVEL_2M;
357 if (pmd_large(*pmd) || !pmd_present(*pmd))
358 return (pte_t *)pmd;
359
360 *level = PG_LEVEL_4K;
361
362 return pte_offset_kernel(pmd, address);
363 }
364 EXPORT_SYMBOL_GPL(lookup_address);
365
366 /*
367 * This is necessary because __pa() does not work on some
368 * kinds of memory, like vmalloc() or the alloc_remap()
369 * areas on 32-bit NUMA systems. The percpu areas can
370 * end up in this kind of memory, for instance.
371 *
372 * This could be optimized, but it is only intended to be
373 * used at inititalization time, and keeping it
374 * unoptimized should increase the testing coverage for
375 * the more obscure platforms.
376 */
377 phys_addr_t slow_virt_to_phys(void *__virt_addr)
378 {
379 unsigned long virt_addr = (unsigned long)__virt_addr;
380 phys_addr_t phys_addr;
381 unsigned long offset;
382 enum pg_level level;
383 unsigned long psize;
384 unsigned long pmask;
385 pte_t *pte;
386
387 pte = lookup_address(virt_addr, &level);
388 BUG_ON(!pte);
389 psize = page_level_size(level);
390 pmask = page_level_mask(level);
391 offset = virt_addr & ~pmask;
392 phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
393 return (phys_addr | offset);
394 }
395 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
396
397 /*
398 * Set the new pmd in all the pgds we know about:
399 */
400 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
401 {
402 /* change init_mm */
403 set_pte_atomic(kpte, pte);
404 #ifdef CONFIG_X86_32
405 if (!SHARED_KERNEL_PMD) {
406 struct page *page;
407
408 list_for_each_entry(page, &pgd_list, lru) {
409 pgd_t *pgd;
410 pud_t *pud;
411 pmd_t *pmd;
412
413 pgd = (pgd_t *)page_address(page) + pgd_index(address);
414 pud = pud_offset(pgd, address);
415 pmd = pmd_offset(pud, address);
416 set_pte_atomic((pte_t *)pmd, pte);
417 }
418 }
419 #endif
420 }
421
422 static int
423 try_preserve_large_page(pte_t *kpte, unsigned long address,
424 struct cpa_data *cpa)
425 {
426 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
427 pte_t new_pte, old_pte, *tmp;
428 pgprot_t old_prot, new_prot, req_prot;
429 int i, do_split = 1;
430 enum pg_level level;
431
432 if (cpa->force_split)
433 return 1;
434
435 spin_lock(&pgd_lock);
436 /*
437 * Check for races, another CPU might have split this page
438 * up already:
439 */
440 tmp = lookup_address(address, &level);
441 if (tmp != kpte)
442 goto out_unlock;
443
444 switch (level) {
445 case PG_LEVEL_2M:
446 #ifdef CONFIG_X86_64
447 case PG_LEVEL_1G:
448 #endif
449 psize = page_level_size(level);
450 pmask = page_level_mask(level);
451 break;
452 default:
453 do_split = -EINVAL;
454 goto out_unlock;
455 }
456
457 /*
458 * Calculate the number of pages, which fit into this large
459 * page starting at address:
460 */
461 nextpage_addr = (address + psize) & pmask;
462 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
463 if (numpages < cpa->numpages)
464 cpa->numpages = numpages;
465
466 /*
467 * We are safe now. Check whether the new pgprot is the same:
468 */
469 old_pte = *kpte;
470 old_prot = req_prot = pte_pgprot(old_pte);
471
472 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
473 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
474
475 /*
476 * Set the PSE and GLOBAL flags only if the PRESENT flag is
477 * set otherwise pmd_present/pmd_huge will return true even on
478 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
479 * for the ancient hardware that doesn't support it.
480 */
481 if (pgprot_val(req_prot) & _PAGE_PRESENT)
482 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
483 else
484 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
485
486 req_prot = canon_pgprot(req_prot);
487
488 /*
489 * old_pte points to the large page base address. So we need
490 * to add the offset of the virtual address:
491 */
492 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
493 cpa->pfn = pfn;
494
495 new_prot = static_protections(req_prot, address, pfn);
496
497 /*
498 * We need to check the full range, whether
499 * static_protection() requires a different pgprot for one of
500 * the pages in the range we try to preserve:
501 */
502 addr = address & pmask;
503 pfn = pte_pfn(old_pte);
504 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
505 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
506
507 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
508 goto out_unlock;
509 }
510
511 /*
512 * If there are no changes, return. maxpages has been updated
513 * above:
514 */
515 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
516 do_split = 0;
517 goto out_unlock;
518 }
519
520 /*
521 * We need to change the attributes. Check, whether we can
522 * change the large page in one go. We request a split, when
523 * the address is not aligned and the number of pages is
524 * smaller than the number of pages in the large page. Note
525 * that we limited the number of possible pages already to
526 * the number of pages in the large page.
527 */
528 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
529 /*
530 * The address is aligned and the number of pages
531 * covers the full page.
532 */
533 new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
534 __set_pmd_pte(kpte, address, new_pte);
535 cpa->flags |= CPA_FLUSHTLB;
536 do_split = 0;
537 }
538
539 out_unlock:
540 spin_unlock(&pgd_lock);
541
542 return do_split;
543 }
544
545 int __split_large_page(pte_t *kpte, unsigned long address, pte_t *pbase)
546 {
547 unsigned long pfn, pfninc = 1;
548 unsigned int i, level;
549 pte_t *tmp;
550 pgprot_t ref_prot;
551 struct page *base = virt_to_page(pbase);
552
553 spin_lock(&pgd_lock);
554 /*
555 * Check for races, another CPU might have split this page
556 * up for us already:
557 */
558 tmp = lookup_address(address, &level);
559 if (tmp != kpte) {
560 spin_unlock(&pgd_lock);
561 return 1;
562 }
563
564 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
565 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
566 /*
567 * If we ever want to utilize the PAT bit, we need to
568 * update this function to make sure it's converted from
569 * bit 12 to bit 7 when we cross from the 2MB level to
570 * the 4K level:
571 */
572 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
573
574 #ifdef CONFIG_X86_64
575 if (level == PG_LEVEL_1G) {
576 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
577 /*
578 * Set the PSE flags only if the PRESENT flag is set
579 * otherwise pmd_present/pmd_huge will return true
580 * even on a non present pmd.
581 */
582 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
583 pgprot_val(ref_prot) |= _PAGE_PSE;
584 else
585 pgprot_val(ref_prot) &= ~_PAGE_PSE;
586 }
587 #endif
588
589 /*
590 * Set the GLOBAL flags only if the PRESENT flag is set
591 * otherwise pmd/pte_present will return true even on a non
592 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
593 * for the ancient hardware that doesn't support it.
594 */
595 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
596 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
597 else
598 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
599
600 /*
601 * Get the target pfn from the original entry:
602 */
603 pfn = pte_pfn(*kpte);
604 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
605 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
606
607 if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
608 PFN_DOWN(__pa(address)) + 1))
609 split_page_count(level);
610
611 /*
612 * Install the new, split up pagetable.
613 *
614 * We use the standard kernel pagetable protections for the new
615 * pagetable protections, the actual ptes set above control the
616 * primary protection behavior:
617 */
618 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
619
620 /*
621 * Intel Atom errata AAH41 workaround.
622 *
623 * The real fix should be in hw or in a microcode update, but
624 * we also probabilistically try to reduce the window of having
625 * a large TLB mixed with 4K TLBs while instruction fetches are
626 * going on.
627 */
628 __flush_tlb_all();
629 spin_unlock(&pgd_lock);
630
631 return 0;
632 }
633
634 static int split_large_page(pte_t *kpte, unsigned long address)
635 {
636 pte_t *pbase;
637 struct page *base;
638
639 if (!debug_pagealloc)
640 spin_unlock(&cpa_lock);
641 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
642 if (!debug_pagealloc)
643 spin_lock(&cpa_lock);
644 if (!base)
645 return -ENOMEM;
646
647 pbase = (pte_t *)page_address(base);
648 if (__split_large_page(kpte, address, pbase))
649 __free_page(base);
650
651 return 0;
652 }
653
654 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
655 int primary)
656 {
657 /*
658 * Ignore all non primary paths.
659 */
660 if (!primary)
661 return 0;
662
663 /*
664 * Ignore the NULL PTE for kernel identity mapping, as it is expected
665 * to have holes.
666 * Also set numpages to '1' indicating that we processed cpa req for
667 * one virtual address page and its pfn. TBD: numpages can be set based
668 * on the initial value and the level returned by lookup_address().
669 */
670 if (within(vaddr, PAGE_OFFSET,
671 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
672 cpa->numpages = 1;
673 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
674 return 0;
675 } else {
676 WARN(1, KERN_WARNING "CPA: called for zero pte. "
677 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
678 *cpa->vaddr);
679
680 return -EFAULT;
681 }
682 }
683
684 static int __change_page_attr(struct cpa_data *cpa, int primary)
685 {
686 unsigned long address;
687 int do_split, err;
688 unsigned int level;
689 pte_t *kpte, old_pte;
690
691 if (cpa->flags & CPA_PAGES_ARRAY) {
692 struct page *page = cpa->pages[cpa->curpage];
693 if (unlikely(PageHighMem(page)))
694 return 0;
695 address = (unsigned long)page_address(page);
696 } else if (cpa->flags & CPA_ARRAY)
697 address = cpa->vaddr[cpa->curpage];
698 else
699 address = *cpa->vaddr;
700 repeat:
701 kpte = lookup_address(address, &level);
702 if (!kpte)
703 return __cpa_process_fault(cpa, address, primary);
704
705 old_pte = *kpte;
706 if (!pte_val(old_pte))
707 return __cpa_process_fault(cpa, address, primary);
708
709 if (level == PG_LEVEL_4K) {
710 pte_t new_pte;
711 pgprot_t new_prot = pte_pgprot(old_pte);
712 unsigned long pfn = pte_pfn(old_pte);
713
714 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
715 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
716
717 new_prot = static_protections(new_prot, address, pfn);
718
719 /*
720 * Set the GLOBAL flags only if the PRESENT flag is
721 * set otherwise pte_present will return true even on
722 * a non present pte. The canon_pgprot will clear
723 * _PAGE_GLOBAL for the ancient hardware that doesn't
724 * support it.
725 */
726 if (pgprot_val(new_prot) & _PAGE_PRESENT)
727 pgprot_val(new_prot) |= _PAGE_GLOBAL;
728 else
729 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
730
731 /*
732 * We need to keep the pfn from the existing PTE,
733 * after all we're only going to change it's attributes
734 * not the memory it points to
735 */
736 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
737 cpa->pfn = pfn;
738 /*
739 * Do we really change anything ?
740 */
741 if (pte_val(old_pte) != pte_val(new_pte)) {
742 set_pte_atomic(kpte, new_pte);
743 cpa->flags |= CPA_FLUSHTLB;
744 }
745 cpa->numpages = 1;
746 return 0;
747 }
748
749 /*
750 * Check, whether we can keep the large page intact
751 * and just change the pte:
752 */
753 do_split = try_preserve_large_page(kpte, address, cpa);
754 /*
755 * When the range fits into the existing large page,
756 * return. cp->numpages and cpa->tlbflush have been updated in
757 * try_large_page:
758 */
759 if (do_split <= 0)
760 return do_split;
761
762 /*
763 * We have to split the large page:
764 */
765 err = split_large_page(kpte, address);
766 if (!err) {
767 /*
768 * Do a global flush tlb after splitting the large page
769 * and before we do the actual change page attribute in the PTE.
770 *
771 * With out this, we violate the TLB application note, that says
772 * "The TLBs may contain both ordinary and large-page
773 * translations for a 4-KByte range of linear addresses. This
774 * may occur if software modifies the paging structures so that
775 * the page size used for the address range changes. If the two
776 * translations differ with respect to page frame or attributes
777 * (e.g., permissions), processor behavior is undefined and may
778 * be implementation-specific."
779 *
780 * We do this global tlb flush inside the cpa_lock, so that we
781 * don't allow any other cpu, with stale tlb entries change the
782 * page attribute in parallel, that also falls into the
783 * just split large page entry.
784 */
785 flush_tlb_all();
786 goto repeat;
787 }
788
789 return err;
790 }
791
792 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
793
794 static int cpa_process_alias(struct cpa_data *cpa)
795 {
796 struct cpa_data alias_cpa;
797 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
798 unsigned long vaddr;
799 int ret;
800
801 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
802 return 0;
803
804 /*
805 * No need to redo, when the primary call touched the direct
806 * mapping already:
807 */
808 if (cpa->flags & CPA_PAGES_ARRAY) {
809 struct page *page = cpa->pages[cpa->curpage];
810 if (unlikely(PageHighMem(page)))
811 return 0;
812 vaddr = (unsigned long)page_address(page);
813 } else if (cpa->flags & CPA_ARRAY)
814 vaddr = cpa->vaddr[cpa->curpage];
815 else
816 vaddr = *cpa->vaddr;
817
818 if (!(within(vaddr, PAGE_OFFSET,
819 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
820
821 alias_cpa = *cpa;
822 alias_cpa.vaddr = &laddr;
823 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
824
825 ret = __change_page_attr_set_clr(&alias_cpa, 0);
826 if (ret)
827 return ret;
828 }
829
830 #ifdef CONFIG_X86_64
831 /*
832 * If the primary call didn't touch the high mapping already
833 * and the physical address is inside the kernel map, we need
834 * to touch the high mapped kernel as well:
835 */
836 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
837 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
838 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
839 __START_KERNEL_map - phys_base;
840 alias_cpa = *cpa;
841 alias_cpa.vaddr = &temp_cpa_vaddr;
842 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
843
844 /*
845 * The high mapping range is imprecise, so ignore the
846 * return value.
847 */
848 __change_page_attr_set_clr(&alias_cpa, 0);
849 }
850 #endif
851
852 return 0;
853 }
854
855 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
856 {
857 int ret, numpages = cpa->numpages;
858
859 while (numpages) {
860 /*
861 * Store the remaining nr of pages for the large page
862 * preservation check.
863 */
864 cpa->numpages = numpages;
865 /* for array changes, we can't use large page */
866 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
867 cpa->numpages = 1;
868
869 if (!debug_pagealloc)
870 spin_lock(&cpa_lock);
871 ret = __change_page_attr(cpa, checkalias);
872 if (!debug_pagealloc)
873 spin_unlock(&cpa_lock);
874 if (ret)
875 return ret;
876
877 if (checkalias) {
878 ret = cpa_process_alias(cpa);
879 if (ret)
880 return ret;
881 }
882
883 /*
884 * Adjust the number of pages with the result of the
885 * CPA operation. Either a large page has been
886 * preserved or a single page update happened.
887 */
888 BUG_ON(cpa->numpages > numpages);
889 numpages -= cpa->numpages;
890 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
891 cpa->curpage++;
892 else
893 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
894
895 }
896 return 0;
897 }
898
899 static inline int cache_attr(pgprot_t attr)
900 {
901 return pgprot_val(attr) &
902 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
903 }
904
905 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
906 pgprot_t mask_set, pgprot_t mask_clr,
907 int force_split, int in_flag,
908 struct page **pages)
909 {
910 struct cpa_data cpa;
911 int ret, cache, checkalias;
912 unsigned long baddr = 0;
913
914 /*
915 * Check, if we are requested to change a not supported
916 * feature:
917 */
918 mask_set = canon_pgprot(mask_set);
919 mask_clr = canon_pgprot(mask_clr);
920 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
921 return 0;
922
923 /* Ensure we are PAGE_SIZE aligned */
924 if (in_flag & CPA_ARRAY) {
925 int i;
926 for (i = 0; i < numpages; i++) {
927 if (addr[i] & ~PAGE_MASK) {
928 addr[i] &= PAGE_MASK;
929 WARN_ON_ONCE(1);
930 }
931 }
932 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
933 /*
934 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
935 * No need to cehck in that case
936 */
937 if (*addr & ~PAGE_MASK) {
938 *addr &= PAGE_MASK;
939 /*
940 * People should not be passing in unaligned addresses:
941 */
942 WARN_ON_ONCE(1);
943 }
944 /*
945 * Save address for cache flush. *addr is modified in the call
946 * to __change_page_attr_set_clr() below.
947 */
948 baddr = *addr;
949 }
950
951 /* Must avoid aliasing mappings in the highmem code */
952 kmap_flush_unused();
953
954 vm_unmap_aliases();
955
956 cpa.vaddr = addr;
957 cpa.pages = pages;
958 cpa.numpages = numpages;
959 cpa.mask_set = mask_set;
960 cpa.mask_clr = mask_clr;
961 cpa.flags = 0;
962 cpa.curpage = 0;
963 cpa.force_split = force_split;
964
965 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
966 cpa.flags |= in_flag;
967
968 /* No alias checking for _NX bit modifications */
969 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
970
971 ret = __change_page_attr_set_clr(&cpa, checkalias);
972
973 /*
974 * Check whether we really changed something:
975 */
976 if (!(cpa.flags & CPA_FLUSHTLB))
977 goto out;
978
979 /*
980 * No need to flush, when we did not set any of the caching
981 * attributes:
982 */
983 cache = cache_attr(mask_set);
984
985 /*
986 * On success we use clflush, when the CPU supports it to
987 * avoid the wbindv. If the CPU does not support it and in the
988 * error case we fall back to cpa_flush_all (which uses
989 * wbindv):
990 */
991 if (!ret && cpu_has_clflush) {
992 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
993 cpa_flush_array(addr, numpages, cache,
994 cpa.flags, pages);
995 } else
996 cpa_flush_range(baddr, numpages, cache);
997 } else
998 cpa_flush_all(cache);
999
1000 out:
1001 return ret;
1002 }
1003
1004 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1005 pgprot_t mask, int array)
1006 {
1007 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1008 (array ? CPA_ARRAY : 0), NULL);
1009 }
1010
1011 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1012 pgprot_t mask, int array)
1013 {
1014 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1015 (array ? CPA_ARRAY : 0), NULL);
1016 }
1017
1018 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1019 pgprot_t mask)
1020 {
1021 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1022 CPA_PAGES_ARRAY, pages);
1023 }
1024
1025 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1026 pgprot_t mask)
1027 {
1028 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1029 CPA_PAGES_ARRAY, pages);
1030 }
1031
1032 int _set_memory_uc(unsigned long addr, int numpages)
1033 {
1034 /*
1035 * for now UC MINUS. see comments in ioremap_nocache()
1036 */
1037 return change_page_attr_set(&addr, numpages,
1038 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1039 }
1040
1041 int set_memory_uc(unsigned long addr, int numpages)
1042 {
1043 int ret;
1044
1045 /*
1046 * for now UC MINUS. see comments in ioremap_nocache()
1047 */
1048 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1049 _PAGE_CACHE_UC_MINUS, NULL);
1050 if (ret)
1051 goto out_err;
1052
1053 ret = _set_memory_uc(addr, numpages);
1054 if (ret)
1055 goto out_free;
1056
1057 return 0;
1058
1059 out_free:
1060 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1061 out_err:
1062 return ret;
1063 }
1064 EXPORT_SYMBOL(set_memory_uc);
1065
1066 static int _set_memory_array(unsigned long *addr, int addrinarray,
1067 unsigned long new_type)
1068 {
1069 int i, j;
1070 int ret;
1071
1072 /*
1073 * for now UC MINUS. see comments in ioremap_nocache()
1074 */
1075 for (i = 0; i < addrinarray; i++) {
1076 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1077 new_type, NULL);
1078 if (ret)
1079 goto out_free;
1080 }
1081
1082 ret = change_page_attr_set(addr, addrinarray,
1083 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1084
1085 if (!ret && new_type == _PAGE_CACHE_WC)
1086 ret = change_page_attr_set_clr(addr, addrinarray,
1087 __pgprot(_PAGE_CACHE_WC),
1088 __pgprot(_PAGE_CACHE_MASK),
1089 0, CPA_ARRAY, NULL);
1090 if (ret)
1091 goto out_free;
1092
1093 return 0;
1094
1095 out_free:
1096 for (j = 0; j < i; j++)
1097 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1098
1099 return ret;
1100 }
1101
1102 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1103 {
1104 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1105 }
1106 EXPORT_SYMBOL(set_memory_array_uc);
1107
1108 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1109 {
1110 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1111 }
1112 EXPORT_SYMBOL(set_memory_array_wc);
1113
1114 int _set_memory_wc(unsigned long addr, int numpages)
1115 {
1116 int ret;
1117 unsigned long addr_copy = addr;
1118
1119 ret = change_page_attr_set(&addr, numpages,
1120 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1121 if (!ret) {
1122 ret = change_page_attr_set_clr(&addr_copy, numpages,
1123 __pgprot(_PAGE_CACHE_WC),
1124 __pgprot(_PAGE_CACHE_MASK),
1125 0, 0, NULL);
1126 }
1127 return ret;
1128 }
1129
1130 int set_memory_wc(unsigned long addr, int numpages)
1131 {
1132 int ret;
1133
1134 if (!pat_enabled)
1135 return set_memory_uc(addr, numpages);
1136
1137 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1138 _PAGE_CACHE_WC, NULL);
1139 if (ret)
1140 goto out_err;
1141
1142 ret = _set_memory_wc(addr, numpages);
1143 if (ret)
1144 goto out_free;
1145
1146 return 0;
1147
1148 out_free:
1149 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1150 out_err:
1151 return ret;
1152 }
1153 EXPORT_SYMBOL(set_memory_wc);
1154
1155 int _set_memory_wb(unsigned long addr, int numpages)
1156 {
1157 return change_page_attr_clear(&addr, numpages,
1158 __pgprot(_PAGE_CACHE_MASK), 0);
1159 }
1160
1161 int set_memory_wb(unsigned long addr, int numpages)
1162 {
1163 int ret;
1164
1165 ret = _set_memory_wb(addr, numpages);
1166 if (ret)
1167 return ret;
1168
1169 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1170 return 0;
1171 }
1172 EXPORT_SYMBOL(set_memory_wb);
1173
1174 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1175 {
1176 int i;
1177 int ret;
1178
1179 ret = change_page_attr_clear(addr, addrinarray,
1180 __pgprot(_PAGE_CACHE_MASK), 1);
1181 if (ret)
1182 return ret;
1183
1184 for (i = 0; i < addrinarray; i++)
1185 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1186
1187 return 0;
1188 }
1189 EXPORT_SYMBOL(set_memory_array_wb);
1190
1191 int set_memory_x(unsigned long addr, int numpages)
1192 {
1193 if (!(__supported_pte_mask & _PAGE_NX))
1194 return 0;
1195
1196 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1197 }
1198 EXPORT_SYMBOL(set_memory_x);
1199
1200 int set_memory_nx(unsigned long addr, int numpages)
1201 {
1202 if (!(__supported_pte_mask & _PAGE_NX))
1203 return 0;
1204
1205 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1206 }
1207 EXPORT_SYMBOL(set_memory_nx);
1208
1209 int set_memory_ro(unsigned long addr, int numpages)
1210 {
1211 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1212 }
1213 EXPORT_SYMBOL_GPL(set_memory_ro);
1214
1215 int set_memory_rw(unsigned long addr, int numpages)
1216 {
1217 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1218 }
1219 EXPORT_SYMBOL_GPL(set_memory_rw);
1220
1221 int set_memory_np(unsigned long addr, int numpages)
1222 {
1223 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1224 }
1225
1226 int set_memory_4k(unsigned long addr, int numpages)
1227 {
1228 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1229 __pgprot(0), 1, 0, NULL);
1230 }
1231
1232 int set_pages_uc(struct page *page, int numpages)
1233 {
1234 unsigned long addr = (unsigned long)page_address(page);
1235
1236 return set_memory_uc(addr, numpages);
1237 }
1238 EXPORT_SYMBOL(set_pages_uc);
1239
1240 static int _set_pages_array(struct page **pages, int addrinarray,
1241 unsigned long new_type)
1242 {
1243 unsigned long start;
1244 unsigned long end;
1245 int i;
1246 int free_idx;
1247 int ret;
1248
1249 for (i = 0; i < addrinarray; i++) {
1250 if (PageHighMem(pages[i]))
1251 continue;
1252 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1253 end = start + PAGE_SIZE;
1254 if (reserve_memtype(start, end, new_type, NULL))
1255 goto err_out;
1256 }
1257
1258 ret = cpa_set_pages_array(pages, addrinarray,
1259 __pgprot(_PAGE_CACHE_UC_MINUS));
1260 if (!ret && new_type == _PAGE_CACHE_WC)
1261 ret = change_page_attr_set_clr(NULL, addrinarray,
1262 __pgprot(_PAGE_CACHE_WC),
1263 __pgprot(_PAGE_CACHE_MASK),
1264 0, CPA_PAGES_ARRAY, pages);
1265 if (ret)
1266 goto err_out;
1267 return 0; /* Success */
1268 err_out:
1269 free_idx = i;
1270 for (i = 0; i < free_idx; i++) {
1271 if (PageHighMem(pages[i]))
1272 continue;
1273 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1274 end = start + PAGE_SIZE;
1275 free_memtype(start, end);
1276 }
1277 return -EINVAL;
1278 }
1279
1280 int set_pages_array_uc(struct page **pages, int addrinarray)
1281 {
1282 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1283 }
1284 EXPORT_SYMBOL(set_pages_array_uc);
1285
1286 int set_pages_array_wc(struct page **pages, int addrinarray)
1287 {
1288 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1289 }
1290 EXPORT_SYMBOL(set_pages_array_wc);
1291
1292 int set_pages_wb(struct page *page, int numpages)
1293 {
1294 unsigned long addr = (unsigned long)page_address(page);
1295
1296 return set_memory_wb(addr, numpages);
1297 }
1298 EXPORT_SYMBOL(set_pages_wb);
1299
1300 int set_pages_array_wb(struct page **pages, int addrinarray)
1301 {
1302 int retval;
1303 unsigned long start;
1304 unsigned long end;
1305 int i;
1306
1307 retval = cpa_clear_pages_array(pages, addrinarray,
1308 __pgprot(_PAGE_CACHE_MASK));
1309 if (retval)
1310 return retval;
1311
1312 for (i = 0; i < addrinarray; i++) {
1313 if (PageHighMem(pages[i]))
1314 continue;
1315 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1316 end = start + PAGE_SIZE;
1317 free_memtype(start, end);
1318 }
1319
1320 return 0;
1321 }
1322 EXPORT_SYMBOL(set_pages_array_wb);
1323
1324 int set_pages_x(struct page *page, int numpages)
1325 {
1326 unsigned long addr = (unsigned long)page_address(page);
1327
1328 return set_memory_x(addr, numpages);
1329 }
1330 EXPORT_SYMBOL(set_pages_x);
1331
1332 int set_pages_nx(struct page *page, int numpages)
1333 {
1334 unsigned long addr = (unsigned long)page_address(page);
1335
1336 return set_memory_nx(addr, numpages);
1337 }
1338 EXPORT_SYMBOL(set_pages_nx);
1339
1340 int set_pages_ro(struct page *page, int numpages)
1341 {
1342 unsigned long addr = (unsigned long)page_address(page);
1343
1344 return set_memory_ro(addr, numpages);
1345 }
1346
1347 int set_pages_rw(struct page *page, int numpages)
1348 {
1349 unsigned long addr = (unsigned long)page_address(page);
1350
1351 return set_memory_rw(addr, numpages);
1352 }
1353
1354 #ifdef CONFIG_DEBUG_PAGEALLOC
1355
1356 static int __set_pages_p(struct page *page, int numpages)
1357 {
1358 unsigned long tempaddr = (unsigned long) page_address(page);
1359 struct cpa_data cpa = { .vaddr = &tempaddr,
1360 .numpages = numpages,
1361 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1362 .mask_clr = __pgprot(0),
1363 .flags = 0};
1364
1365 /*
1366 * No alias checking needed for setting present flag. otherwise,
1367 * we may need to break large pages for 64-bit kernel text
1368 * mappings (this adds to complexity if we want to do this from
1369 * atomic context especially). Let's keep it simple!
1370 */
1371 return __change_page_attr_set_clr(&cpa, 0);
1372 }
1373
1374 static int __set_pages_np(struct page *page, int numpages)
1375 {
1376 unsigned long tempaddr = (unsigned long) page_address(page);
1377 struct cpa_data cpa = { .vaddr = &tempaddr,
1378 .numpages = numpages,
1379 .mask_set = __pgprot(0),
1380 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1381 .flags = 0};
1382
1383 /*
1384 * No alias checking needed for setting not present flag. otherwise,
1385 * we may need to break large pages for 64-bit kernel text
1386 * mappings (this adds to complexity if we want to do this from
1387 * atomic context especially). Let's keep it simple!
1388 */
1389 return __change_page_attr_set_clr(&cpa, 0);
1390 }
1391
1392 void kernel_map_pages(struct page *page, int numpages, int enable)
1393 {
1394 if (PageHighMem(page))
1395 return;
1396 if (!enable) {
1397 debug_check_no_locks_freed(page_address(page),
1398 numpages * PAGE_SIZE);
1399 }
1400
1401 /*
1402 * The return value is ignored as the calls cannot fail.
1403 * Large pages for identity mappings are not used at boot time
1404 * and hence no memory allocations during large page split.
1405 */
1406 if (enable)
1407 __set_pages_p(page, numpages);
1408 else
1409 __set_pages_np(page, numpages);
1410
1411 /*
1412 * We should perform an IPI and flush all tlbs,
1413 * but that can deadlock->flush only current cpu:
1414 */
1415 __flush_tlb_all();
1416
1417 arch_flush_lazy_mmu_mode();
1418 }
1419
1420 #ifdef CONFIG_HIBERNATION
1421
1422 bool kernel_page_present(struct page *page)
1423 {
1424 unsigned int level;
1425 pte_t *pte;
1426
1427 if (PageHighMem(page))
1428 return false;
1429
1430 pte = lookup_address((unsigned long)page_address(page), &level);
1431 return (pte_val(*pte) & _PAGE_PRESENT);
1432 }
1433
1434 #endif /* CONFIG_HIBERNATION */
1435
1436 #endif /* CONFIG_DEBUG_PAGEALLOC */
1437
1438 /*
1439 * The testcases use internal knowledge of the implementation that shouldn't
1440 * be exposed to the rest of the kernel. Include these directly here.
1441 */
1442 #ifdef CONFIG_CPA_DEBUG
1443 #include "pageattr-test.c"
1444 #endif
This page took 0.063944 seconds and 5 git commands to generate.