Merge branches 'x86/paravirt', 'x86/pat', 'x86/setup-v2', 'x86/subarch', 'x86/uaccess...
[deliverable/linux.git] / arch / x86 / mm / pat.c
1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/fs.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/pgtable.h>
22 #include <asm/fcntl.h>
23 #include <asm/e820.h>
24 #include <asm/mtrr.h>
25 #include <asm/page.h>
26 #include <asm/msr.h>
27 #include <asm/pat.h>
28 #include <asm/io.h>
29
30 #ifdef CONFIG_X86_PAT
31 int __read_mostly pat_enabled = 1;
32
33 void __cpuinit pat_disable(const char *reason)
34 {
35 pat_enabled = 0;
36 printk(KERN_INFO "%s\n", reason);
37 }
38
39 static int __init nopat(char *str)
40 {
41 pat_disable("PAT support disabled.");
42 return 0;
43 }
44 early_param("nopat", nopat);
45 #else
46 static inline void pat_disable(const char *reason)
47 {
48 (void)reason;
49 }
50 #endif
51
52
53 static int debug_enable;
54
55 static int __init pat_debug_setup(char *str)
56 {
57 debug_enable = 1;
58 return 0;
59 }
60 __setup("debugpat", pat_debug_setup);
61
62 #define dprintk(fmt, arg...) \
63 do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
64
65
66 static u64 __read_mostly boot_pat_state;
67
68 enum {
69 PAT_UC = 0, /* uncached */
70 PAT_WC = 1, /* Write combining */
71 PAT_WT = 4, /* Write Through */
72 PAT_WP = 5, /* Write Protected */
73 PAT_WB = 6, /* Write Back (default) */
74 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
75 };
76
77 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
78
79 void pat_init(void)
80 {
81 u64 pat;
82
83 if (!pat_enabled)
84 return;
85
86 if (!cpu_has_pat) {
87 if (!boot_pat_state) {
88 pat_disable("PAT not supported by CPU.");
89 return;
90 } else {
91 /*
92 * If this happens we are on a secondary CPU, but
93 * switched to PAT on the boot CPU. We have no way to
94 * undo PAT.
95 */
96 printk(KERN_ERR "PAT enabled, "
97 "but not supported by secondary CPU\n");
98 BUG();
99 }
100 }
101
102 /* Set PWT to Write-Combining. All other bits stay the same */
103 /*
104 * PTE encoding used in Linux:
105 * PAT
106 * |PCD
107 * ||PWT
108 * |||
109 * 000 WB _PAGE_CACHE_WB
110 * 001 WC _PAGE_CACHE_WC
111 * 010 UC- _PAGE_CACHE_UC_MINUS
112 * 011 UC _PAGE_CACHE_UC
113 * PAT bit unused
114 */
115 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
116 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
117
118 /* Boot CPU check */
119 if (!boot_pat_state)
120 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
121
122 wrmsrl(MSR_IA32_CR_PAT, pat);
123 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
124 smp_processor_id(), boot_pat_state, pat);
125 }
126
127 #undef PAT
128
129 static char *cattr_name(unsigned long flags)
130 {
131 switch (flags & _PAGE_CACHE_MASK) {
132 case _PAGE_CACHE_UC: return "uncached";
133 case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
134 case _PAGE_CACHE_WB: return "write-back";
135 case _PAGE_CACHE_WC: return "write-combining";
136 default: return "broken";
137 }
138 }
139
140 /*
141 * The global memtype list keeps track of memory type for specific
142 * physical memory areas. Conflicting memory types in different
143 * mappings can cause CPU cache corruption. To avoid this we keep track.
144 *
145 * The list is sorted based on starting address and can contain multiple
146 * entries for each address (this allows reference counting for overlapping
147 * areas). All the aliases have the same cache attributes of course.
148 * Zero attributes are represented as holes.
149 *
150 * Currently the data structure is a list because the number of mappings
151 * are expected to be relatively small. If this should be a problem
152 * it could be changed to a rbtree or similar.
153 *
154 * memtype_lock protects the whole list.
155 */
156
157 struct memtype {
158 u64 start;
159 u64 end;
160 unsigned long type;
161 struct list_head nd;
162 };
163
164 static LIST_HEAD(memtype_list);
165 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
166
167 /*
168 * Does intersection of PAT memory type and MTRR memory type and returns
169 * the resulting memory type as PAT understands it.
170 * (Type in pat and mtrr will not have same value)
171 * The intersection is based on "Effective Memory Type" tables in IA-32
172 * SDM vol 3a
173 */
174 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
175 {
176 /*
177 * Look for MTRR hint to get the effective type in case where PAT
178 * request is for WB.
179 */
180 if (req_type == _PAGE_CACHE_WB) {
181 u8 mtrr_type;
182
183 mtrr_type = mtrr_type_lookup(start, end);
184 if (mtrr_type == MTRR_TYPE_UNCACHABLE)
185 return _PAGE_CACHE_UC;
186 if (mtrr_type == MTRR_TYPE_WRCOMB)
187 return _PAGE_CACHE_WC;
188 }
189
190 return req_type;
191 }
192
193 static int
194 chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
195 {
196 if (new->type != entry->type) {
197 if (type) {
198 new->type = entry->type;
199 *type = entry->type;
200 } else
201 goto conflict;
202 }
203
204 /* check overlaps with more than one entry in the list */
205 list_for_each_entry_continue(entry, &memtype_list, nd) {
206 if (new->end <= entry->start)
207 break;
208 else if (new->type != entry->type)
209 goto conflict;
210 }
211 return 0;
212
213 conflict:
214 printk(KERN_INFO "%s:%d conflicting memory types "
215 "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
216 new->end, cattr_name(new->type), cattr_name(entry->type));
217 return -EBUSY;
218 }
219
220 static struct memtype *cached_entry;
221 static u64 cached_start;
222
223 static int pat_pagerange_is_ram(unsigned long start, unsigned long end)
224 {
225 int ram_page = 0, not_rampage = 0;
226 unsigned long page_nr;
227
228 for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
229 ++page_nr) {
230 /*
231 * For legacy reasons, physical address range in the legacy ISA
232 * region is tracked as non-RAM. This will allow users of
233 * /dev/mem to map portions of legacy ISA region, even when
234 * some of those portions are listed(or not even listed) with
235 * different e820 types(RAM/reserved/..)
236 */
237 if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
238 page_is_ram(page_nr))
239 ram_page = 1;
240 else
241 not_rampage = 1;
242
243 if (ram_page == not_rampage)
244 return -1;
245 }
246
247 return ram_page;
248 }
249
250 /*
251 * For RAM pages, mark the pages as non WB memory type using
252 * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
253 * set_memory_wc() on a RAM page at a time before marking it as WB again.
254 * This is ok, because only one driver will be owning the page and
255 * doing set_memory_*() calls.
256 *
257 * For now, we use PageNonWB to track that the RAM page is being mapped
258 * as non WB. In future, we will have to use one more flag
259 * (or some other mechanism in page_struct) to distinguish between
260 * UC and WC mapping.
261 */
262 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
263 unsigned long *new_type)
264 {
265 struct page *page;
266 u64 pfn, end_pfn;
267
268 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
269 page = pfn_to_page(pfn);
270 if (page_mapped(page) || PageNonWB(page))
271 goto out;
272
273 SetPageNonWB(page);
274 }
275 return 0;
276
277 out:
278 end_pfn = pfn;
279 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
280 page = pfn_to_page(pfn);
281 ClearPageNonWB(page);
282 }
283
284 return -EINVAL;
285 }
286
287 static int free_ram_pages_type(u64 start, u64 end)
288 {
289 struct page *page;
290 u64 pfn, end_pfn;
291
292 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
293 page = pfn_to_page(pfn);
294 if (page_mapped(page) || !PageNonWB(page))
295 goto out;
296
297 ClearPageNonWB(page);
298 }
299 return 0;
300
301 out:
302 end_pfn = pfn;
303 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
304 page = pfn_to_page(pfn);
305 SetPageNonWB(page);
306 }
307 return -EINVAL;
308 }
309
310 /*
311 * req_type typically has one of the:
312 * - _PAGE_CACHE_WB
313 * - _PAGE_CACHE_WC
314 * - _PAGE_CACHE_UC_MINUS
315 * - _PAGE_CACHE_UC
316 *
317 * req_type will have a special case value '-1', when requester want to inherit
318 * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
319 *
320 * If new_type is NULL, function will return an error if it cannot reserve the
321 * region with req_type. If new_type is non-NULL, function will return
322 * available type in new_type in case of no error. In case of any error
323 * it will return a negative return value.
324 */
325 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
326 unsigned long *new_type)
327 {
328 struct memtype *new, *entry;
329 unsigned long actual_type;
330 struct list_head *where;
331 int is_range_ram;
332 int err = 0;
333
334 BUG_ON(start >= end); /* end is exclusive */
335
336 if (!pat_enabled) {
337 /* This is identical to page table setting without PAT */
338 if (new_type) {
339 if (req_type == -1)
340 *new_type = _PAGE_CACHE_WB;
341 else
342 *new_type = req_type & _PAGE_CACHE_MASK;
343 }
344 return 0;
345 }
346
347 /* Low ISA region is always mapped WB in page table. No need to track */
348 if (is_ISA_range(start, end - 1)) {
349 if (new_type)
350 *new_type = _PAGE_CACHE_WB;
351 return 0;
352 }
353
354 if (req_type == -1) {
355 /*
356 * Call mtrr_lookup to get the type hint. This is an
357 * optimization for /dev/mem mmap'ers into WB memory (BIOS
358 * tools and ACPI tools). Use WB request for WB memory and use
359 * UC_MINUS otherwise.
360 */
361 u8 mtrr_type = mtrr_type_lookup(start, end);
362
363 if (mtrr_type == MTRR_TYPE_WRBACK)
364 actual_type = _PAGE_CACHE_WB;
365 else
366 actual_type = _PAGE_CACHE_UC_MINUS;
367 } else {
368 actual_type = pat_x_mtrr_type(start, end,
369 req_type & _PAGE_CACHE_MASK);
370 }
371
372 if (new_type)
373 *new_type = actual_type;
374
375 is_range_ram = pat_pagerange_is_ram(start, end);
376 if (is_range_ram == 1)
377 return reserve_ram_pages_type(start, end, req_type,
378 new_type);
379 else if (is_range_ram < 0)
380 return -EINVAL;
381
382 new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
383 if (!new)
384 return -ENOMEM;
385
386 new->start = start;
387 new->end = end;
388 new->type = actual_type;
389
390 spin_lock(&memtype_lock);
391
392 if (cached_entry && start >= cached_start)
393 entry = cached_entry;
394 else
395 entry = list_entry(&memtype_list, struct memtype, nd);
396
397 /* Search for existing mapping that overlaps the current range */
398 where = NULL;
399 list_for_each_entry_continue(entry, &memtype_list, nd) {
400 if (end <= entry->start) {
401 where = entry->nd.prev;
402 cached_entry = list_entry(where, struct memtype, nd);
403 break;
404 } else if (start <= entry->start) { /* end > entry->start */
405 err = chk_conflict(new, entry, new_type);
406 if (!err) {
407 dprintk("Overlap at 0x%Lx-0x%Lx\n",
408 entry->start, entry->end);
409 where = entry->nd.prev;
410 cached_entry = list_entry(where,
411 struct memtype, nd);
412 }
413 break;
414 } else if (start < entry->end) { /* start > entry->start */
415 err = chk_conflict(new, entry, new_type);
416 if (!err) {
417 dprintk("Overlap at 0x%Lx-0x%Lx\n",
418 entry->start, entry->end);
419 cached_entry = list_entry(entry->nd.prev,
420 struct memtype, nd);
421
422 /*
423 * Move to right position in the linked
424 * list to add this new entry
425 */
426 list_for_each_entry_continue(entry,
427 &memtype_list, nd) {
428 if (start <= entry->start) {
429 where = entry->nd.prev;
430 break;
431 }
432 }
433 }
434 break;
435 }
436 }
437
438 if (err) {
439 printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
440 "track %s, req %s\n",
441 start, end, cattr_name(new->type), cattr_name(req_type));
442 kfree(new);
443 spin_unlock(&memtype_lock);
444
445 return err;
446 }
447
448 cached_start = start;
449
450 if (where)
451 list_add(&new->nd, where);
452 else
453 list_add_tail(&new->nd, &memtype_list);
454
455 spin_unlock(&memtype_lock);
456
457 dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
458 start, end, cattr_name(new->type), cattr_name(req_type),
459 new_type ? cattr_name(*new_type) : "-");
460
461 return err;
462 }
463
464 int free_memtype(u64 start, u64 end)
465 {
466 struct memtype *entry;
467 int err = -EINVAL;
468 int is_range_ram;
469
470 if (!pat_enabled)
471 return 0;
472
473 /* Low ISA region is always mapped WB. No need to track */
474 if (is_ISA_range(start, end - 1))
475 return 0;
476
477 is_range_ram = pat_pagerange_is_ram(start, end);
478 if (is_range_ram == 1)
479 return free_ram_pages_type(start, end);
480 else if (is_range_ram < 0)
481 return -EINVAL;
482
483 spin_lock(&memtype_lock);
484 list_for_each_entry(entry, &memtype_list, nd) {
485 if (entry->start == start && entry->end == end) {
486 if (cached_entry == entry || cached_start == start)
487 cached_entry = NULL;
488
489 list_del(&entry->nd);
490 kfree(entry);
491 err = 0;
492 break;
493 }
494 }
495 spin_unlock(&memtype_lock);
496
497 if (err) {
498 printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
499 current->comm, current->pid, start, end);
500 }
501
502 dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
503
504 return err;
505 }
506
507
508 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
509 unsigned long size, pgprot_t vma_prot)
510 {
511 return vma_prot;
512 }
513
514 #ifdef CONFIG_STRICT_DEVMEM
515 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
516 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
517 {
518 return 1;
519 }
520 #else
521 /* This check is needed to avoid cache aliasing when PAT is enabled */
522 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
523 {
524 u64 from = ((u64)pfn) << PAGE_SHIFT;
525 u64 to = from + size;
526 u64 cursor = from;
527
528 if (!pat_enabled)
529 return 1;
530
531 while (cursor < to) {
532 if (!devmem_is_allowed(pfn)) {
533 printk(KERN_INFO
534 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
535 current->comm, from, to);
536 return 0;
537 }
538 cursor += PAGE_SIZE;
539 pfn++;
540 }
541 return 1;
542 }
543 #endif /* CONFIG_STRICT_DEVMEM */
544
545 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
546 unsigned long size, pgprot_t *vma_prot)
547 {
548 u64 offset = ((u64) pfn) << PAGE_SHIFT;
549 unsigned long flags = -1;
550 int retval;
551
552 if (!range_is_allowed(pfn, size))
553 return 0;
554
555 if (file->f_flags & O_SYNC) {
556 flags = _PAGE_CACHE_UC_MINUS;
557 }
558
559 #ifdef CONFIG_X86_32
560 /*
561 * On the PPro and successors, the MTRRs are used to set
562 * memory types for physical addresses outside main memory,
563 * so blindly setting UC or PWT on those pages is wrong.
564 * For Pentiums and earlier, the surround logic should disable
565 * caching for the high addresses through the KEN pin, but
566 * we maintain the tradition of paranoia in this code.
567 */
568 if (!pat_enabled &&
569 !(boot_cpu_has(X86_FEATURE_MTRR) ||
570 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
571 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
572 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
573 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
574 flags = _PAGE_CACHE_UC;
575 }
576 #endif
577
578 /*
579 * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
580 *
581 * Without O_SYNC, we want to get
582 * - WB for WB-able memory and no other conflicting mappings
583 * - UC_MINUS for non-WB-able memory with no other conflicting mappings
584 * - Inherit from confliting mappings otherwise
585 */
586 if (flags != -1) {
587 retval = reserve_memtype(offset, offset + size, flags, NULL);
588 } else {
589 retval = reserve_memtype(offset, offset + size, -1, &flags);
590 }
591
592 if (retval < 0)
593 return 0;
594
595 if (((pfn < max_low_pfn_mapped) ||
596 (pfn >= (1UL<<(32 - PAGE_SHIFT)) && pfn < max_pfn_mapped)) &&
597 ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) {
598 free_memtype(offset, offset + size);
599 printk(KERN_INFO
600 "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
601 current->comm, current->pid,
602 cattr_name(flags),
603 offset, (unsigned long long)(offset + size));
604 return 0;
605 }
606
607 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
608 flags);
609 return 1;
610 }
611
612 void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
613 {
614 unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
615 u64 addr = (u64)pfn << PAGE_SHIFT;
616 unsigned long flags;
617
618 reserve_memtype(addr, addr + size, want_flags, &flags);
619 if (flags != want_flags) {
620 printk(KERN_INFO
621 "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
622 current->comm, current->pid,
623 cattr_name(want_flags),
624 addr, (unsigned long long)(addr + size),
625 cattr_name(flags));
626 }
627 }
628
629 void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
630 {
631 u64 addr = (u64)pfn << PAGE_SHIFT;
632
633 free_memtype(addr, addr + size);
634 }
635
636 /*
637 * Internal interface to reserve a range of physical memory with prot.
638 * Reserved non RAM regions only and after successful reserve_memtype,
639 * this func also keeps identity mapping (if any) in sync with this new prot.
640 */
641 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
642 int strict_prot)
643 {
644 int is_ram = 0;
645 int id_sz, ret;
646 unsigned long flags;
647 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
648
649 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
650
651 /*
652 * reserve_pfn_range() doesn't support RAM pages.
653 */
654 if (is_ram != 0)
655 return -EINVAL;
656
657 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
658 if (ret)
659 return ret;
660
661 if (flags != want_flags) {
662 if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
663 free_memtype(paddr, paddr + size);
664 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
665 " for %Lx-%Lx, got %s\n",
666 current->comm, current->pid,
667 cattr_name(want_flags),
668 (unsigned long long)paddr,
669 (unsigned long long)(paddr + size),
670 cattr_name(flags));
671 return -EINVAL;
672 }
673 /*
674 * We allow returning different type than the one requested in
675 * non strict case.
676 */
677 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
678 (~_PAGE_CACHE_MASK)) |
679 flags);
680 }
681
682 /* Need to keep identity mapping in sync */
683 if (paddr >= __pa(high_memory))
684 return 0;
685
686 id_sz = (__pa(high_memory) < paddr + size) ?
687 __pa(high_memory) - paddr :
688 size;
689
690 if (ioremap_change_attr((unsigned long)__va(paddr), id_sz, flags) < 0) {
691 free_memtype(paddr, paddr + size);
692 printk(KERN_ERR
693 "%s:%d reserve_pfn_range ioremap_change_attr failed %s "
694 "for %Lx-%Lx\n",
695 current->comm, current->pid,
696 cattr_name(flags),
697 (unsigned long long)paddr,
698 (unsigned long long)(paddr + size));
699 return -EINVAL;
700 }
701 return 0;
702 }
703
704 /*
705 * Internal interface to free a range of physical memory.
706 * Frees non RAM regions only.
707 */
708 static void free_pfn_range(u64 paddr, unsigned long size)
709 {
710 int is_ram;
711
712 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
713 if (is_ram == 0)
714 free_memtype(paddr, paddr + size);
715 }
716
717 /*
718 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
719 * copied through copy_page_range().
720 *
721 * If the vma has a linear pfn mapping for the entire range, we get the prot
722 * from pte and reserve the entire vma range with single reserve_pfn_range call.
723 * Otherwise, we reserve the entire vma range, my ging through the PTEs page
724 * by page to get physical address and protection.
725 */
726 int track_pfn_vma_copy(struct vm_area_struct *vma)
727 {
728 int retval = 0;
729 unsigned long i, j;
730 resource_size_t paddr;
731 unsigned long prot;
732 unsigned long vma_start = vma->vm_start;
733 unsigned long vma_end = vma->vm_end;
734 unsigned long vma_size = vma_end - vma_start;
735 pgprot_t pgprot;
736
737 if (!pat_enabled)
738 return 0;
739
740 if (is_linear_pfn_mapping(vma)) {
741 /*
742 * reserve the whole chunk covered by vma. We need the
743 * starting address and protection from pte.
744 */
745 if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
746 WARN_ON_ONCE(1);
747 return -EINVAL;
748 }
749 pgprot = __pgprot(prot);
750 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
751 }
752
753 /* reserve entire vma page by page, using pfn and prot from pte */
754 for (i = 0; i < vma_size; i += PAGE_SIZE) {
755 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
756 continue;
757
758 pgprot = __pgprot(prot);
759 retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
760 if (retval)
761 goto cleanup_ret;
762 }
763 return 0;
764
765 cleanup_ret:
766 /* Reserve error: Cleanup partial reservation and return error */
767 for (j = 0; j < i; j += PAGE_SIZE) {
768 if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
769 continue;
770
771 free_pfn_range(paddr, PAGE_SIZE);
772 }
773
774 return retval;
775 }
776
777 /*
778 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
779 * for physical range indicated by pfn and size.
780 *
781 * prot is passed in as a parameter for the new mapping. If the vma has a
782 * linear pfn mapping for the entire range reserve the entire vma range with
783 * single reserve_pfn_range call.
784 * Otherwise, we look t the pfn and size and reserve only the specified range
785 * page by page.
786 *
787 * Note that this function can be called with caller trying to map only a
788 * subrange/page inside the vma.
789 */
790 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
791 unsigned long pfn, unsigned long size)
792 {
793 int retval = 0;
794 unsigned long i, j;
795 resource_size_t base_paddr;
796 resource_size_t paddr;
797 unsigned long vma_start = vma->vm_start;
798 unsigned long vma_end = vma->vm_end;
799 unsigned long vma_size = vma_end - vma_start;
800
801 if (!pat_enabled)
802 return 0;
803
804 if (is_linear_pfn_mapping(vma)) {
805 /* reserve the whole chunk starting from vm_pgoff */
806 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
807 return reserve_pfn_range(paddr, vma_size, prot, 0);
808 }
809
810 /* reserve page by page using pfn and size */
811 base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
812 for (i = 0; i < size; i += PAGE_SIZE) {
813 paddr = base_paddr + i;
814 retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
815 if (retval)
816 goto cleanup_ret;
817 }
818 return 0;
819
820 cleanup_ret:
821 /* Reserve error: Cleanup partial reservation and return error */
822 for (j = 0; j < i; j += PAGE_SIZE) {
823 paddr = base_paddr + j;
824 free_pfn_range(paddr, PAGE_SIZE);
825 }
826
827 return retval;
828 }
829
830 /*
831 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
832 * untrack can be called for a specific region indicated by pfn and size or
833 * can be for the entire vma (in which case size can be zero).
834 */
835 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
836 unsigned long size)
837 {
838 unsigned long i;
839 resource_size_t paddr;
840 unsigned long prot;
841 unsigned long vma_start = vma->vm_start;
842 unsigned long vma_end = vma->vm_end;
843 unsigned long vma_size = vma_end - vma_start;
844
845 if (!pat_enabled)
846 return;
847
848 if (is_linear_pfn_mapping(vma)) {
849 /* free the whole chunk starting from vm_pgoff */
850 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
851 free_pfn_range(paddr, vma_size);
852 return;
853 }
854
855 if (size != 0 && size != vma_size) {
856 /* free page by page, using pfn and size */
857 paddr = (resource_size_t)pfn << PAGE_SHIFT;
858 for (i = 0; i < size; i += PAGE_SIZE) {
859 paddr = paddr + i;
860 free_pfn_range(paddr, PAGE_SIZE);
861 }
862 } else {
863 /* free entire vma, page by page, using the pfn from pte */
864 for (i = 0; i < vma_size; i += PAGE_SIZE) {
865 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
866 continue;
867
868 free_pfn_range(paddr, PAGE_SIZE);
869 }
870 }
871 }
872
873 pgprot_t pgprot_writecombine(pgprot_t prot)
874 {
875 if (pat_enabled)
876 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
877 else
878 return pgprot_noncached(prot);
879 }
880
881 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
882
883 /* get Nth element of the linked list */
884 static struct memtype *memtype_get_idx(loff_t pos)
885 {
886 struct memtype *list_node, *print_entry;
887 int i = 1;
888
889 print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
890 if (!print_entry)
891 return NULL;
892
893 spin_lock(&memtype_lock);
894 list_for_each_entry(list_node, &memtype_list, nd) {
895 if (pos == i) {
896 *print_entry = *list_node;
897 spin_unlock(&memtype_lock);
898 return print_entry;
899 }
900 ++i;
901 }
902 spin_unlock(&memtype_lock);
903 kfree(print_entry);
904
905 return NULL;
906 }
907
908 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
909 {
910 if (*pos == 0) {
911 ++*pos;
912 seq_printf(seq, "PAT memtype list:\n");
913 }
914
915 return memtype_get_idx(*pos);
916 }
917
918 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
919 {
920 ++*pos;
921 return memtype_get_idx(*pos);
922 }
923
924 static void memtype_seq_stop(struct seq_file *seq, void *v)
925 {
926 }
927
928 static int memtype_seq_show(struct seq_file *seq, void *v)
929 {
930 struct memtype *print_entry = (struct memtype *)v;
931
932 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
933 print_entry->start, print_entry->end);
934 kfree(print_entry);
935
936 return 0;
937 }
938
939 static struct seq_operations memtype_seq_ops = {
940 .start = memtype_seq_start,
941 .next = memtype_seq_next,
942 .stop = memtype_seq_stop,
943 .show = memtype_seq_show,
944 };
945
946 static int memtype_seq_open(struct inode *inode, struct file *file)
947 {
948 return seq_open(file, &memtype_seq_ops);
949 }
950
951 static const struct file_operations memtype_fops = {
952 .open = memtype_seq_open,
953 .read = seq_read,
954 .llseek = seq_lseek,
955 .release = seq_release,
956 };
957
958 static int __init pat_memtype_list_init(void)
959 {
960 debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
961 NULL, &memtype_fops);
962 return 0;
963 }
964
965 late_initcall(pat_memtype_list_init);
966
967 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
This page took 0.05061 seconds and 5 git commands to generate.