x86: Use new cache mode type in asm/pgtable.h
[deliverable/linux.git] / arch / x86 / mm / pat.c
1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18 #include <linux/rbtree.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/x86_init.h>
24 #include <asm/pgtable.h>
25 #include <asm/fcntl.h>
26 #include <asm/e820.h>
27 #include <asm/mtrr.h>
28 #include <asm/page.h>
29 #include <asm/msr.h>
30 #include <asm/pat.h>
31 #include <asm/io.h>
32
33 #include "pat_internal.h"
34
35 #ifdef CONFIG_X86_PAT
36 int __read_mostly pat_enabled = 1;
37
38 static inline void pat_disable(const char *reason)
39 {
40 pat_enabled = 0;
41 printk(KERN_INFO "%s\n", reason);
42 }
43
44 static int __init nopat(char *str)
45 {
46 pat_disable("PAT support disabled.");
47 return 0;
48 }
49 early_param("nopat", nopat);
50 #else
51 static inline void pat_disable(const char *reason)
52 {
53 (void)reason;
54 }
55 #endif
56
57
58 int pat_debug_enable;
59
60 static int __init pat_debug_setup(char *str)
61 {
62 pat_debug_enable = 1;
63 return 0;
64 }
65 __setup("debugpat", pat_debug_setup);
66
67 static u64 __read_mostly boot_pat_state;
68
69 enum {
70 PAT_UC = 0, /* uncached */
71 PAT_WC = 1, /* Write combining */
72 PAT_WT = 4, /* Write Through */
73 PAT_WP = 5, /* Write Protected */
74 PAT_WB = 6, /* Write Back (default) */
75 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
76 };
77
78 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
79
80 void pat_init(void)
81 {
82 u64 pat;
83 bool boot_cpu = !boot_pat_state;
84
85 if (!pat_enabled)
86 return;
87
88 if (!cpu_has_pat) {
89 if (!boot_pat_state) {
90 pat_disable("PAT not supported by CPU.");
91 return;
92 } else {
93 /*
94 * If this happens we are on a secondary CPU, but
95 * switched to PAT on the boot CPU. We have no way to
96 * undo PAT.
97 */
98 printk(KERN_ERR "PAT enabled, "
99 "but not supported by secondary CPU\n");
100 BUG();
101 }
102 }
103
104 /* Set PWT to Write-Combining. All other bits stay the same */
105 /*
106 * PTE encoding used in Linux:
107 * PAT
108 * |PCD
109 * ||PWT
110 * |||
111 * 000 WB _PAGE_CACHE_WB
112 * 001 WC _PAGE_CACHE_WC
113 * 010 UC- _PAGE_CACHE_UC_MINUS
114 * 011 UC _PAGE_CACHE_UC
115 * PAT bit unused
116 */
117 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
118 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
119
120 /* Boot CPU check */
121 if (!boot_pat_state)
122 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
123
124 wrmsrl(MSR_IA32_CR_PAT, pat);
125
126 if (boot_cpu)
127 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
128 smp_processor_id(), boot_pat_state, pat);
129 }
130
131 #undef PAT
132
133 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
134
135 /*
136 * Does intersection of PAT memory type and MTRR memory type and returns
137 * the resulting memory type as PAT understands it.
138 * (Type in pat and mtrr will not have same value)
139 * The intersection is based on "Effective Memory Type" tables in IA-32
140 * SDM vol 3a
141 */
142 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
143 {
144 /*
145 * Look for MTRR hint to get the effective type in case where PAT
146 * request is for WB.
147 */
148 if (req_type == _PAGE_CACHE_WB) {
149 u8 mtrr_type;
150
151 mtrr_type = mtrr_type_lookup(start, end);
152 if (mtrr_type != MTRR_TYPE_WRBACK)
153 return _PAGE_CACHE_UC_MINUS;
154
155 return _PAGE_CACHE_WB;
156 }
157
158 return req_type;
159 }
160
161 struct pagerange_state {
162 unsigned long cur_pfn;
163 int ram;
164 int not_ram;
165 };
166
167 static int
168 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
169 {
170 struct pagerange_state *state = arg;
171
172 state->not_ram |= initial_pfn > state->cur_pfn;
173 state->ram |= total_nr_pages > 0;
174 state->cur_pfn = initial_pfn + total_nr_pages;
175
176 return state->ram && state->not_ram;
177 }
178
179 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
180 {
181 int ret = 0;
182 unsigned long start_pfn = start >> PAGE_SHIFT;
183 unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
184 struct pagerange_state state = {start_pfn, 0, 0};
185
186 /*
187 * For legacy reasons, physical address range in the legacy ISA
188 * region is tracked as non-RAM. This will allow users of
189 * /dev/mem to map portions of legacy ISA region, even when
190 * some of those portions are listed(or not even listed) with
191 * different e820 types(RAM/reserved/..)
192 */
193 if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
194 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
195
196 if (start_pfn < end_pfn) {
197 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
198 &state, pagerange_is_ram_callback);
199 }
200
201 return (ret > 0) ? -1 : (state.ram ? 1 : 0);
202 }
203
204 /*
205 * For RAM pages, we use page flags to mark the pages with appropriate type.
206 * Here we do two pass:
207 * - Find the memtype of all the pages in the range, look for any conflicts
208 * - In case of no conflicts, set the new memtype for pages in the range
209 */
210 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
211 unsigned long *new_type)
212 {
213 struct page *page;
214 u64 pfn;
215
216 if (req_type == _PAGE_CACHE_UC) {
217 /* We do not support strong UC */
218 WARN_ON_ONCE(1);
219 req_type = _PAGE_CACHE_UC_MINUS;
220 }
221
222 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
223 unsigned long type;
224
225 page = pfn_to_page(pfn);
226 type = get_page_memtype(page);
227 if (type != -1) {
228 printk(KERN_INFO "reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%lx, req 0x%lx\n",
229 start, end - 1, type, req_type);
230 if (new_type)
231 *new_type = type;
232
233 return -EBUSY;
234 }
235 }
236
237 if (new_type)
238 *new_type = req_type;
239
240 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
241 page = pfn_to_page(pfn);
242 set_page_memtype(page, req_type);
243 }
244 return 0;
245 }
246
247 static int free_ram_pages_type(u64 start, u64 end)
248 {
249 struct page *page;
250 u64 pfn;
251
252 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
253 page = pfn_to_page(pfn);
254 set_page_memtype(page, -1);
255 }
256 return 0;
257 }
258
259 /*
260 * req_type typically has one of the:
261 * - _PAGE_CACHE_WB
262 * - _PAGE_CACHE_WC
263 * - _PAGE_CACHE_UC_MINUS
264 * - _PAGE_CACHE_UC
265 *
266 * If new_type is NULL, function will return an error if it cannot reserve the
267 * region with req_type. If new_type is non-NULL, function will return
268 * available type in new_type in case of no error. In case of any error
269 * it will return a negative return value.
270 */
271 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
272 unsigned long *new_type)
273 {
274 struct memtype *new;
275 unsigned long actual_type;
276 int is_range_ram;
277 int err = 0;
278
279 BUG_ON(start >= end); /* end is exclusive */
280
281 if (!pat_enabled) {
282 /* This is identical to page table setting without PAT */
283 if (new_type) {
284 if (req_type == _PAGE_CACHE_WC)
285 *new_type = _PAGE_CACHE_UC_MINUS;
286 else
287 *new_type = req_type & _PAGE_CACHE_MASK;
288 }
289 return 0;
290 }
291
292 /* Low ISA region is always mapped WB in page table. No need to track */
293 if (x86_platform.is_untracked_pat_range(start, end)) {
294 if (new_type)
295 *new_type = _PAGE_CACHE_WB;
296 return 0;
297 }
298
299 /*
300 * Call mtrr_lookup to get the type hint. This is an
301 * optimization for /dev/mem mmap'ers into WB memory (BIOS
302 * tools and ACPI tools). Use WB request for WB memory and use
303 * UC_MINUS otherwise.
304 */
305 actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK);
306
307 if (new_type)
308 *new_type = actual_type;
309
310 is_range_ram = pat_pagerange_is_ram(start, end);
311 if (is_range_ram == 1) {
312
313 err = reserve_ram_pages_type(start, end, req_type, new_type);
314
315 return err;
316 } else if (is_range_ram < 0) {
317 return -EINVAL;
318 }
319
320 new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
321 if (!new)
322 return -ENOMEM;
323
324 new->start = start;
325 new->end = end;
326 new->type = actual_type;
327
328 spin_lock(&memtype_lock);
329
330 err = rbt_memtype_check_insert(new, new_type);
331 if (err) {
332 printk(KERN_INFO "reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
333 start, end - 1,
334 cattr_name(new->type), cattr_name(req_type));
335 kfree(new);
336 spin_unlock(&memtype_lock);
337
338 return err;
339 }
340
341 spin_unlock(&memtype_lock);
342
343 dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
344 start, end - 1, cattr_name(new->type), cattr_name(req_type),
345 new_type ? cattr_name(*new_type) : "-");
346
347 return err;
348 }
349
350 int free_memtype(u64 start, u64 end)
351 {
352 int err = -EINVAL;
353 int is_range_ram;
354 struct memtype *entry;
355
356 if (!pat_enabled)
357 return 0;
358
359 /* Low ISA region is always mapped WB. No need to track */
360 if (x86_platform.is_untracked_pat_range(start, end))
361 return 0;
362
363 is_range_ram = pat_pagerange_is_ram(start, end);
364 if (is_range_ram == 1) {
365
366 err = free_ram_pages_type(start, end);
367
368 return err;
369 } else if (is_range_ram < 0) {
370 return -EINVAL;
371 }
372
373 spin_lock(&memtype_lock);
374 entry = rbt_memtype_erase(start, end);
375 spin_unlock(&memtype_lock);
376
377 if (!entry) {
378 printk(KERN_INFO "%s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
379 current->comm, current->pid, start, end - 1);
380 return -EINVAL;
381 }
382
383 kfree(entry);
384
385 dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
386
387 return 0;
388 }
389
390
391 /**
392 * lookup_memtype - Looksup the memory type for a physical address
393 * @paddr: physical address of which memory type needs to be looked up
394 *
395 * Only to be called when PAT is enabled
396 *
397 * Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or
398 * _PAGE_CACHE_UC
399 */
400 static unsigned long lookup_memtype(u64 paddr)
401 {
402 int rettype = _PAGE_CACHE_WB;
403 struct memtype *entry;
404
405 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
406 return rettype;
407
408 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
409 struct page *page;
410 page = pfn_to_page(paddr >> PAGE_SHIFT);
411 rettype = get_page_memtype(page);
412 /*
413 * -1 from get_page_memtype() implies RAM page is in its
414 * default state and not reserved, and hence of type WB
415 */
416 if (rettype == -1)
417 rettype = _PAGE_CACHE_WB;
418
419 return rettype;
420 }
421
422 spin_lock(&memtype_lock);
423
424 entry = rbt_memtype_lookup(paddr);
425 if (entry != NULL)
426 rettype = entry->type;
427 else
428 rettype = _PAGE_CACHE_UC_MINUS;
429
430 spin_unlock(&memtype_lock);
431 return rettype;
432 }
433
434 /**
435 * io_reserve_memtype - Request a memory type mapping for a region of memory
436 * @start: start (physical address) of the region
437 * @end: end (physical address) of the region
438 * @type: A pointer to memtype, with requested type. On success, requested
439 * or any other compatible type that was available for the region is returned
440 *
441 * On success, returns 0
442 * On failure, returns non-zero
443 */
444 int io_reserve_memtype(resource_size_t start, resource_size_t end,
445 unsigned long *type)
446 {
447 resource_size_t size = end - start;
448 unsigned long req_type = *type;
449 unsigned long new_type;
450 int ret;
451
452 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
453
454 ret = reserve_memtype(start, end, req_type, &new_type);
455 if (ret)
456 goto out_err;
457
458 if (!is_new_memtype_allowed(start, size,
459 pgprot2cachemode(__pgprot(req_type)),
460 pgprot2cachemode(__pgprot(new_type))))
461 goto out_free;
462
463 if (kernel_map_sync_memtype(start, size, new_type) < 0)
464 goto out_free;
465
466 *type = new_type;
467 return 0;
468
469 out_free:
470 free_memtype(start, end);
471 ret = -EBUSY;
472 out_err:
473 return ret;
474 }
475
476 /**
477 * io_free_memtype - Release a memory type mapping for a region of memory
478 * @start: start (physical address) of the region
479 * @end: end (physical address) of the region
480 */
481 void io_free_memtype(resource_size_t start, resource_size_t end)
482 {
483 free_memtype(start, end);
484 }
485
486 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
487 unsigned long size, pgprot_t vma_prot)
488 {
489 return vma_prot;
490 }
491
492 #ifdef CONFIG_STRICT_DEVMEM
493 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
494 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
495 {
496 return 1;
497 }
498 #else
499 /* This check is needed to avoid cache aliasing when PAT is enabled */
500 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
501 {
502 u64 from = ((u64)pfn) << PAGE_SHIFT;
503 u64 to = from + size;
504 u64 cursor = from;
505
506 if (!pat_enabled)
507 return 1;
508
509 while (cursor < to) {
510 if (!devmem_is_allowed(pfn)) {
511 printk(KERN_INFO "Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx]\n",
512 current->comm, from, to - 1);
513 return 0;
514 }
515 cursor += PAGE_SIZE;
516 pfn++;
517 }
518 return 1;
519 }
520 #endif /* CONFIG_STRICT_DEVMEM */
521
522 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
523 unsigned long size, pgprot_t *vma_prot)
524 {
525 unsigned long flags = _PAGE_CACHE_WB;
526
527 if (!range_is_allowed(pfn, size))
528 return 0;
529
530 if (file->f_flags & O_DSYNC)
531 flags = _PAGE_CACHE_UC_MINUS;
532
533 #ifdef CONFIG_X86_32
534 /*
535 * On the PPro and successors, the MTRRs are used to set
536 * memory types for physical addresses outside main memory,
537 * so blindly setting UC or PWT on those pages is wrong.
538 * For Pentiums and earlier, the surround logic should disable
539 * caching for the high addresses through the KEN pin, but
540 * we maintain the tradition of paranoia in this code.
541 */
542 if (!pat_enabled &&
543 !(boot_cpu_has(X86_FEATURE_MTRR) ||
544 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
545 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
546 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
547 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
548 flags = _PAGE_CACHE_UC;
549 }
550 #endif
551
552 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
553 flags);
554 return 1;
555 }
556
557 /*
558 * Change the memory type for the physial address range in kernel identity
559 * mapping space if that range is a part of identity map.
560 */
561 int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
562 {
563 unsigned long id_sz;
564
565 if (base > __pa(high_memory-1))
566 return 0;
567
568 /*
569 * some areas in the middle of the kernel identity range
570 * are not mapped, like the PCI space.
571 */
572 if (!page_is_ram(base >> PAGE_SHIFT))
573 return 0;
574
575 id_sz = (__pa(high_memory-1) <= base + size) ?
576 __pa(high_memory) - base :
577 size;
578
579 if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
580 printk(KERN_INFO "%s:%d ioremap_change_attr failed %s "
581 "for [mem %#010Lx-%#010Lx]\n",
582 current->comm, current->pid,
583 cattr_name(flags),
584 base, (unsigned long long)(base + size-1));
585 return -EINVAL;
586 }
587 return 0;
588 }
589
590 /*
591 * Internal interface to reserve a range of physical memory with prot.
592 * Reserved non RAM regions only and after successful reserve_memtype,
593 * this func also keeps identity mapping (if any) in sync with this new prot.
594 */
595 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
596 int strict_prot)
597 {
598 int is_ram = 0;
599 int ret;
600 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
601 unsigned long flags = want_flags;
602
603 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
604
605 /*
606 * reserve_pfn_range() for RAM pages. We do not refcount to keep
607 * track of number of mappings of RAM pages. We can assert that
608 * the type requested matches the type of first page in the range.
609 */
610 if (is_ram) {
611 if (!pat_enabled)
612 return 0;
613
614 flags = lookup_memtype(paddr);
615 if (want_flags != flags) {
616 printk(KERN_WARNING "%s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
617 current->comm, current->pid,
618 cattr_name(want_flags),
619 (unsigned long long)paddr,
620 (unsigned long long)(paddr + size - 1),
621 cattr_name(flags));
622 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
623 (~_PAGE_CACHE_MASK)) |
624 flags);
625 }
626 return 0;
627 }
628
629 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
630 if (ret)
631 return ret;
632
633 if (flags != want_flags) {
634 if (strict_prot ||
635 !is_new_memtype_allowed(paddr, size,
636 pgprot2cachemode(__pgprot(want_flags)),
637 pgprot2cachemode(__pgprot(flags)))) {
638 free_memtype(paddr, paddr + size);
639 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
640 " for [mem %#010Lx-%#010Lx], got %s\n",
641 current->comm, current->pid,
642 cattr_name(want_flags),
643 (unsigned long long)paddr,
644 (unsigned long long)(paddr + size - 1),
645 cattr_name(flags));
646 return -EINVAL;
647 }
648 /*
649 * We allow returning different type than the one requested in
650 * non strict case.
651 */
652 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
653 (~_PAGE_CACHE_MASK)) |
654 flags);
655 }
656
657 if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
658 free_memtype(paddr, paddr + size);
659 return -EINVAL;
660 }
661 return 0;
662 }
663
664 /*
665 * Internal interface to free a range of physical memory.
666 * Frees non RAM regions only.
667 */
668 static void free_pfn_range(u64 paddr, unsigned long size)
669 {
670 int is_ram;
671
672 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
673 if (is_ram == 0)
674 free_memtype(paddr, paddr + size);
675 }
676
677 /*
678 * track_pfn_copy is called when vma that is covering the pfnmap gets
679 * copied through copy_page_range().
680 *
681 * If the vma has a linear pfn mapping for the entire range, we get the prot
682 * from pte and reserve the entire vma range with single reserve_pfn_range call.
683 */
684 int track_pfn_copy(struct vm_area_struct *vma)
685 {
686 resource_size_t paddr;
687 unsigned long prot;
688 unsigned long vma_size = vma->vm_end - vma->vm_start;
689 pgprot_t pgprot;
690
691 if (vma->vm_flags & VM_PAT) {
692 /*
693 * reserve the whole chunk covered by vma. We need the
694 * starting address and protection from pte.
695 */
696 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
697 WARN_ON_ONCE(1);
698 return -EINVAL;
699 }
700 pgprot = __pgprot(prot);
701 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
702 }
703
704 return 0;
705 }
706
707 /*
708 * prot is passed in as a parameter for the new mapping. If the vma has a
709 * linear pfn mapping for the entire range reserve the entire vma range with
710 * single reserve_pfn_range call.
711 */
712 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
713 unsigned long pfn, unsigned long addr, unsigned long size)
714 {
715 resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
716 unsigned long flags;
717
718 /* reserve the whole chunk starting from paddr */
719 if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
720 int ret;
721
722 ret = reserve_pfn_range(paddr, size, prot, 0);
723 if (!ret)
724 vma->vm_flags |= VM_PAT;
725 return ret;
726 }
727
728 if (!pat_enabled)
729 return 0;
730
731 /*
732 * For anything smaller than the vma size we set prot based on the
733 * lookup.
734 */
735 flags = lookup_memtype(paddr);
736
737 /* Check memtype for the remaining pages */
738 while (size > PAGE_SIZE) {
739 size -= PAGE_SIZE;
740 paddr += PAGE_SIZE;
741 if (flags != lookup_memtype(paddr))
742 return -EINVAL;
743 }
744
745 *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
746 flags);
747
748 return 0;
749 }
750
751 int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
752 unsigned long pfn)
753 {
754 unsigned long flags;
755
756 if (!pat_enabled)
757 return 0;
758
759 /* Set prot based on lookup */
760 flags = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT);
761 *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
762 flags);
763
764 return 0;
765 }
766
767 /*
768 * untrack_pfn is called while unmapping a pfnmap for a region.
769 * untrack can be called for a specific region indicated by pfn and size or
770 * can be for the entire vma (in which case pfn, size are zero).
771 */
772 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
773 unsigned long size)
774 {
775 resource_size_t paddr;
776 unsigned long prot;
777
778 if (!(vma->vm_flags & VM_PAT))
779 return;
780
781 /* free the chunk starting from pfn or the whole chunk */
782 paddr = (resource_size_t)pfn << PAGE_SHIFT;
783 if (!paddr && !size) {
784 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
785 WARN_ON_ONCE(1);
786 return;
787 }
788
789 size = vma->vm_end - vma->vm_start;
790 }
791 free_pfn_range(paddr, size);
792 vma->vm_flags &= ~VM_PAT;
793 }
794
795 pgprot_t pgprot_writecombine(pgprot_t prot)
796 {
797 if (pat_enabled)
798 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
799 else
800 return pgprot_noncached(prot);
801 }
802 EXPORT_SYMBOL_GPL(pgprot_writecombine);
803
804 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
805
806 static struct memtype *memtype_get_idx(loff_t pos)
807 {
808 struct memtype *print_entry;
809 int ret;
810
811 print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
812 if (!print_entry)
813 return NULL;
814
815 spin_lock(&memtype_lock);
816 ret = rbt_memtype_copy_nth_element(print_entry, pos);
817 spin_unlock(&memtype_lock);
818
819 if (!ret) {
820 return print_entry;
821 } else {
822 kfree(print_entry);
823 return NULL;
824 }
825 }
826
827 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
828 {
829 if (*pos == 0) {
830 ++*pos;
831 seq_printf(seq, "PAT memtype list:\n");
832 }
833
834 return memtype_get_idx(*pos);
835 }
836
837 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
838 {
839 ++*pos;
840 return memtype_get_idx(*pos);
841 }
842
843 static void memtype_seq_stop(struct seq_file *seq, void *v)
844 {
845 }
846
847 static int memtype_seq_show(struct seq_file *seq, void *v)
848 {
849 struct memtype *print_entry = (struct memtype *)v;
850
851 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
852 print_entry->start, print_entry->end);
853 kfree(print_entry);
854
855 return 0;
856 }
857
858 static const struct seq_operations memtype_seq_ops = {
859 .start = memtype_seq_start,
860 .next = memtype_seq_next,
861 .stop = memtype_seq_stop,
862 .show = memtype_seq_show,
863 };
864
865 static int memtype_seq_open(struct inode *inode, struct file *file)
866 {
867 return seq_open(file, &memtype_seq_ops);
868 }
869
870 static const struct file_operations memtype_fops = {
871 .open = memtype_seq_open,
872 .read = seq_read,
873 .llseek = seq_lseek,
874 .release = seq_release,
875 };
876
877 static int __init pat_memtype_list_init(void)
878 {
879 if (pat_enabled) {
880 debugfs_create_file("pat_memtype_list", S_IRUSR,
881 arch_debugfs_dir, NULL, &memtype_fops);
882 }
883 return 0;
884 }
885
886 late_initcall(pat_memtype_list_init);
887
888 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
This page took 0.05153 seconds and 5 git commands to generate.