Merge branch 'x86/mm' into x86/core
[deliverable/linux.git] / arch / x86 / mm / pat.c
1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/fs.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/pgtable.h>
22 #include <asm/fcntl.h>
23 #include <asm/e820.h>
24 #include <asm/mtrr.h>
25 #include <asm/page.h>
26 #include <asm/msr.h>
27 #include <asm/pat.h>
28 #include <asm/io.h>
29
30 #ifdef CONFIG_X86_PAT
31 int __read_mostly pat_enabled = 1;
32
33 void __cpuinit pat_disable(const char *reason)
34 {
35 pat_enabled = 0;
36 printk(KERN_INFO "%s\n", reason);
37 }
38
39 static int __init nopat(char *str)
40 {
41 pat_disable("PAT support disabled.");
42 return 0;
43 }
44 early_param("nopat", nopat);
45 #else
46 static inline void pat_disable(const char *reason)
47 {
48 (void)reason;
49 }
50 #endif
51
52
53 static int debug_enable;
54
55 static int __init pat_debug_setup(char *str)
56 {
57 debug_enable = 1;
58 return 0;
59 }
60 __setup("debugpat", pat_debug_setup);
61
62 #define dprintk(fmt, arg...) \
63 do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
64
65
66 static u64 __read_mostly boot_pat_state;
67
68 enum {
69 PAT_UC = 0, /* uncached */
70 PAT_WC = 1, /* Write combining */
71 PAT_WT = 4, /* Write Through */
72 PAT_WP = 5, /* Write Protected */
73 PAT_WB = 6, /* Write Back (default) */
74 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
75 };
76
77 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
78
79 void pat_init(void)
80 {
81 u64 pat;
82
83 if (!pat_enabled)
84 return;
85
86 if (!cpu_has_pat) {
87 if (!boot_pat_state) {
88 pat_disable("PAT not supported by CPU.");
89 return;
90 } else {
91 /*
92 * If this happens we are on a secondary CPU, but
93 * switched to PAT on the boot CPU. We have no way to
94 * undo PAT.
95 */
96 printk(KERN_ERR "PAT enabled, "
97 "but not supported by secondary CPU\n");
98 BUG();
99 }
100 }
101
102 /* Set PWT to Write-Combining. All other bits stay the same */
103 /*
104 * PTE encoding used in Linux:
105 * PAT
106 * |PCD
107 * ||PWT
108 * |||
109 * 000 WB _PAGE_CACHE_WB
110 * 001 WC _PAGE_CACHE_WC
111 * 010 UC- _PAGE_CACHE_UC_MINUS
112 * 011 UC _PAGE_CACHE_UC
113 * PAT bit unused
114 */
115 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
116 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
117
118 /* Boot CPU check */
119 if (!boot_pat_state)
120 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
121
122 wrmsrl(MSR_IA32_CR_PAT, pat);
123 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
124 smp_processor_id(), boot_pat_state, pat);
125 }
126
127 #undef PAT
128
129 static char *cattr_name(unsigned long flags)
130 {
131 switch (flags & _PAGE_CACHE_MASK) {
132 case _PAGE_CACHE_UC: return "uncached";
133 case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
134 case _PAGE_CACHE_WB: return "write-back";
135 case _PAGE_CACHE_WC: return "write-combining";
136 default: return "broken";
137 }
138 }
139
140 /*
141 * The global memtype list keeps track of memory type for specific
142 * physical memory areas. Conflicting memory types in different
143 * mappings can cause CPU cache corruption. To avoid this we keep track.
144 *
145 * The list is sorted based on starting address and can contain multiple
146 * entries for each address (this allows reference counting for overlapping
147 * areas). All the aliases have the same cache attributes of course.
148 * Zero attributes are represented as holes.
149 *
150 * Currently the data structure is a list because the number of mappings
151 * are expected to be relatively small. If this should be a problem
152 * it could be changed to a rbtree or similar.
153 *
154 * memtype_lock protects the whole list.
155 */
156
157 struct memtype {
158 u64 start;
159 u64 end;
160 unsigned long type;
161 struct list_head nd;
162 };
163
164 static LIST_HEAD(memtype_list);
165 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
166
167 /*
168 * Does intersection of PAT memory type and MTRR memory type and returns
169 * the resulting memory type as PAT understands it.
170 * (Type in pat and mtrr will not have same value)
171 * The intersection is based on "Effective Memory Type" tables in IA-32
172 * SDM vol 3a
173 */
174 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
175 {
176 /*
177 * Look for MTRR hint to get the effective type in case where PAT
178 * request is for WB.
179 */
180 if (req_type == _PAGE_CACHE_WB) {
181 u8 mtrr_type;
182
183 mtrr_type = mtrr_type_lookup(start, end);
184 if (mtrr_type == MTRR_TYPE_UNCACHABLE)
185 return _PAGE_CACHE_UC;
186 if (mtrr_type == MTRR_TYPE_WRCOMB)
187 return _PAGE_CACHE_WC;
188 }
189
190 return req_type;
191 }
192
193 static int
194 chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
195 {
196 if (new->type != entry->type) {
197 if (type) {
198 new->type = entry->type;
199 *type = entry->type;
200 } else
201 goto conflict;
202 }
203
204 /* check overlaps with more than one entry in the list */
205 list_for_each_entry_continue(entry, &memtype_list, nd) {
206 if (new->end <= entry->start)
207 break;
208 else if (new->type != entry->type)
209 goto conflict;
210 }
211 return 0;
212
213 conflict:
214 printk(KERN_INFO "%s:%d conflicting memory types "
215 "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
216 new->end, cattr_name(new->type), cattr_name(entry->type));
217 return -EBUSY;
218 }
219
220 static struct memtype *cached_entry;
221 static u64 cached_start;
222
223 /*
224 * For RAM pages, mark the pages as non WB memory type using
225 * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
226 * set_memory_wc() on a RAM page at a time before marking it as WB again.
227 * This is ok, because only one driver will be owning the page and
228 * doing set_memory_*() calls.
229 *
230 * For now, we use PageNonWB to track that the RAM page is being mapped
231 * as non WB. In future, we will have to use one more flag
232 * (or some other mechanism in page_struct) to distinguish between
233 * UC and WC mapping.
234 */
235 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
236 unsigned long *new_type)
237 {
238 struct page *page;
239 u64 pfn, end_pfn;
240
241 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
242 page = pfn_to_page(pfn);
243 if (page_mapped(page) || PageNonWB(page))
244 goto out;
245
246 SetPageNonWB(page);
247 }
248 return 0;
249
250 out:
251 end_pfn = pfn;
252 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
253 page = pfn_to_page(pfn);
254 ClearPageNonWB(page);
255 }
256
257 return -EINVAL;
258 }
259
260 static int free_ram_pages_type(u64 start, u64 end)
261 {
262 struct page *page;
263 u64 pfn, end_pfn;
264
265 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
266 page = pfn_to_page(pfn);
267 if (page_mapped(page) || !PageNonWB(page))
268 goto out;
269
270 ClearPageNonWB(page);
271 }
272 return 0;
273
274 out:
275 end_pfn = pfn;
276 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
277 page = pfn_to_page(pfn);
278 SetPageNonWB(page);
279 }
280 return -EINVAL;
281 }
282
283 /*
284 * req_type typically has one of the:
285 * - _PAGE_CACHE_WB
286 * - _PAGE_CACHE_WC
287 * - _PAGE_CACHE_UC_MINUS
288 * - _PAGE_CACHE_UC
289 *
290 * req_type will have a special case value '-1', when requester want to inherit
291 * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
292 *
293 * If new_type is NULL, function will return an error if it cannot reserve the
294 * region with req_type. If new_type is non-NULL, function will return
295 * available type in new_type in case of no error. In case of any error
296 * it will return a negative return value.
297 */
298 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
299 unsigned long *new_type)
300 {
301 struct memtype *new, *entry;
302 unsigned long actual_type;
303 struct list_head *where;
304 int is_range_ram;
305 int err = 0;
306
307 BUG_ON(start >= end); /* end is exclusive */
308
309 if (!pat_enabled) {
310 /* This is identical to page table setting without PAT */
311 if (new_type) {
312 if (req_type == -1)
313 *new_type = _PAGE_CACHE_WB;
314 else
315 *new_type = req_type & _PAGE_CACHE_MASK;
316 }
317 return 0;
318 }
319
320 /* Low ISA region is always mapped WB in page table. No need to track */
321 if (is_ISA_range(start, end - 1)) {
322 if (new_type)
323 *new_type = _PAGE_CACHE_WB;
324 return 0;
325 }
326
327 if (req_type == -1) {
328 /*
329 * Call mtrr_lookup to get the type hint. This is an
330 * optimization for /dev/mem mmap'ers into WB memory (BIOS
331 * tools and ACPI tools). Use WB request for WB memory and use
332 * UC_MINUS otherwise.
333 */
334 u8 mtrr_type = mtrr_type_lookup(start, end);
335
336 if (mtrr_type == MTRR_TYPE_WRBACK)
337 actual_type = _PAGE_CACHE_WB;
338 else
339 actual_type = _PAGE_CACHE_UC_MINUS;
340 } else {
341 actual_type = pat_x_mtrr_type(start, end,
342 req_type & _PAGE_CACHE_MASK);
343 }
344
345 if (new_type)
346 *new_type = actual_type;
347
348 /*
349 * For legacy reasons, some parts of the physical address range in the
350 * legacy 1MB region is treated as non-RAM (even when listed as RAM in
351 * the e820 tables). So we will track the memory attributes of this
352 * legacy 1MB region using the linear memtype_list always.
353 */
354 if (end >= ISA_END_ADDRESS) {
355 is_range_ram = pagerange_is_ram(start, end);
356 if (is_range_ram == 1)
357 return reserve_ram_pages_type(start, end, req_type,
358 new_type);
359 else if (is_range_ram < 0)
360 return -EINVAL;
361 }
362
363 new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
364 if (!new)
365 return -ENOMEM;
366
367 new->start = start;
368 new->end = end;
369 new->type = actual_type;
370
371 spin_lock(&memtype_lock);
372
373 if (cached_entry && start >= cached_start)
374 entry = cached_entry;
375 else
376 entry = list_entry(&memtype_list, struct memtype, nd);
377
378 /* Search for existing mapping that overlaps the current range */
379 where = NULL;
380 list_for_each_entry_continue(entry, &memtype_list, nd) {
381 if (end <= entry->start) {
382 where = entry->nd.prev;
383 cached_entry = list_entry(where, struct memtype, nd);
384 break;
385 } else if (start <= entry->start) { /* end > entry->start */
386 err = chk_conflict(new, entry, new_type);
387 if (!err) {
388 dprintk("Overlap at 0x%Lx-0x%Lx\n",
389 entry->start, entry->end);
390 where = entry->nd.prev;
391 cached_entry = list_entry(where,
392 struct memtype, nd);
393 }
394 break;
395 } else if (start < entry->end) { /* start > entry->start */
396 err = chk_conflict(new, entry, new_type);
397 if (!err) {
398 dprintk("Overlap at 0x%Lx-0x%Lx\n",
399 entry->start, entry->end);
400 cached_entry = list_entry(entry->nd.prev,
401 struct memtype, nd);
402
403 /*
404 * Move to right position in the linked
405 * list to add this new entry
406 */
407 list_for_each_entry_continue(entry,
408 &memtype_list, nd) {
409 if (start <= entry->start) {
410 where = entry->nd.prev;
411 break;
412 }
413 }
414 }
415 break;
416 }
417 }
418
419 if (err) {
420 printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
421 "track %s, req %s\n",
422 start, end, cattr_name(new->type), cattr_name(req_type));
423 kfree(new);
424 spin_unlock(&memtype_lock);
425
426 return err;
427 }
428
429 cached_start = start;
430
431 if (where)
432 list_add(&new->nd, where);
433 else
434 list_add_tail(&new->nd, &memtype_list);
435
436 spin_unlock(&memtype_lock);
437
438 dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
439 start, end, cattr_name(new->type), cattr_name(req_type),
440 new_type ? cattr_name(*new_type) : "-");
441
442 return err;
443 }
444
445 int free_memtype(u64 start, u64 end)
446 {
447 struct memtype *entry;
448 int err = -EINVAL;
449 int is_range_ram;
450
451 if (!pat_enabled)
452 return 0;
453
454 /* Low ISA region is always mapped WB. No need to track */
455 if (is_ISA_range(start, end - 1))
456 return 0;
457
458 /*
459 * For legacy reasons, some parts of the physical address range in the
460 * legacy 1MB region is treated as non-RAM (even when listed as RAM in
461 * the e820 tables). So we will track the memory attributes of this
462 * legacy 1MB region using the linear memtype_list always.
463 */
464 if (end >= ISA_END_ADDRESS) {
465 is_range_ram = pagerange_is_ram(start, end);
466 if (is_range_ram == 1)
467 return free_ram_pages_type(start, end);
468 else if (is_range_ram < 0)
469 return -EINVAL;
470 }
471
472 spin_lock(&memtype_lock);
473 list_for_each_entry(entry, &memtype_list, nd) {
474 if (entry->start == start && entry->end == end) {
475 if (cached_entry == entry || cached_start == start)
476 cached_entry = NULL;
477
478 list_del(&entry->nd);
479 kfree(entry);
480 err = 0;
481 break;
482 }
483 }
484 spin_unlock(&memtype_lock);
485
486 if (err) {
487 printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
488 current->comm, current->pid, start, end);
489 }
490
491 dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
492
493 return err;
494 }
495
496
497 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
498 unsigned long size, pgprot_t vma_prot)
499 {
500 return vma_prot;
501 }
502
503 #ifdef CONFIG_STRICT_DEVMEM
504 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
505 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
506 {
507 return 1;
508 }
509 #else
510 /* This check is needed to avoid cache aliasing when PAT is enabled */
511 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
512 {
513 u64 from = ((u64)pfn) << PAGE_SHIFT;
514 u64 to = from + size;
515 u64 cursor = from;
516
517 if (!pat_enabled)
518 return 1;
519
520 while (cursor < to) {
521 if (!devmem_is_allowed(pfn)) {
522 printk(KERN_INFO
523 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
524 current->comm, from, to);
525 return 0;
526 }
527 cursor += PAGE_SIZE;
528 pfn++;
529 }
530 return 1;
531 }
532 #endif /* CONFIG_STRICT_DEVMEM */
533
534 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
535 unsigned long size, pgprot_t *vma_prot)
536 {
537 u64 offset = ((u64) pfn) << PAGE_SHIFT;
538 unsigned long flags = -1;
539 int retval;
540
541 if (!range_is_allowed(pfn, size))
542 return 0;
543
544 if (file->f_flags & O_SYNC) {
545 flags = _PAGE_CACHE_UC_MINUS;
546 }
547
548 #ifdef CONFIG_X86_32
549 /*
550 * On the PPro and successors, the MTRRs are used to set
551 * memory types for physical addresses outside main memory,
552 * so blindly setting UC or PWT on those pages is wrong.
553 * For Pentiums and earlier, the surround logic should disable
554 * caching for the high addresses through the KEN pin, but
555 * we maintain the tradition of paranoia in this code.
556 */
557 if (!pat_enabled &&
558 !(boot_cpu_has(X86_FEATURE_MTRR) ||
559 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
560 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
561 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
562 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
563 flags = _PAGE_CACHE_UC;
564 }
565 #endif
566
567 /*
568 * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
569 *
570 * Without O_SYNC, we want to get
571 * - WB for WB-able memory and no other conflicting mappings
572 * - UC_MINUS for non-WB-able memory with no other conflicting mappings
573 * - Inherit from confliting mappings otherwise
574 */
575 if (flags != -1) {
576 retval = reserve_memtype(offset, offset + size, flags, NULL);
577 } else {
578 retval = reserve_memtype(offset, offset + size, -1, &flags);
579 }
580
581 if (retval < 0)
582 return 0;
583
584 if (((pfn < max_low_pfn_mapped) ||
585 (pfn >= (1UL<<(32 - PAGE_SHIFT)) && pfn < max_pfn_mapped)) &&
586 ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) {
587 free_memtype(offset, offset + size);
588 printk(KERN_INFO
589 "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
590 current->comm, current->pid,
591 cattr_name(flags),
592 offset, (unsigned long long)(offset + size));
593 return 0;
594 }
595
596 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
597 flags);
598 return 1;
599 }
600
601 void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
602 {
603 unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
604 u64 addr = (u64)pfn << PAGE_SHIFT;
605 unsigned long flags;
606
607 reserve_memtype(addr, addr + size, want_flags, &flags);
608 if (flags != want_flags) {
609 printk(KERN_INFO
610 "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
611 current->comm, current->pid,
612 cattr_name(want_flags),
613 addr, (unsigned long long)(addr + size),
614 cattr_name(flags));
615 }
616 }
617
618 void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
619 {
620 u64 addr = (u64)pfn << PAGE_SHIFT;
621
622 free_memtype(addr, addr + size);
623 }
624
625 /*
626 * Internal interface to reserve a range of physical memory with prot.
627 * Reserved non RAM regions only and after successful reserve_memtype,
628 * this func also keeps identity mapping (if any) in sync with this new prot.
629 */
630 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
631 int strict_prot)
632 {
633 int is_ram = 0;
634 int id_sz, ret;
635 unsigned long flags;
636 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
637
638 is_ram = pagerange_is_ram(paddr, paddr + size);
639
640 if (is_ram != 0) {
641 /*
642 * For mapping RAM pages, drivers need to call
643 * set_memory_[uc|wc|wb] directly, for reserve and free, before
644 * setting up the PTE.
645 */
646 WARN_ON_ONCE(1);
647 return 0;
648 }
649
650 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
651 if (ret)
652 return ret;
653
654 if (flags != want_flags) {
655 if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
656 free_memtype(paddr, paddr + size);
657 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
658 " for %Lx-%Lx, got %s\n",
659 current->comm, current->pid,
660 cattr_name(want_flags),
661 (unsigned long long)paddr,
662 (unsigned long long)(paddr + size),
663 cattr_name(flags));
664 return -EINVAL;
665 }
666 /*
667 * We allow returning different type than the one requested in
668 * non strict case.
669 */
670 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
671 (~_PAGE_CACHE_MASK)) |
672 flags);
673 }
674
675 /* Need to keep identity mapping in sync */
676 if (paddr >= __pa(high_memory))
677 return 0;
678
679 id_sz = (__pa(high_memory) < paddr + size) ?
680 __pa(high_memory) - paddr :
681 size;
682
683 if (ioremap_change_attr((unsigned long)__va(paddr), id_sz, flags) < 0) {
684 free_memtype(paddr, paddr + size);
685 printk(KERN_ERR
686 "%s:%d reserve_pfn_range ioremap_change_attr failed %s "
687 "for %Lx-%Lx\n",
688 current->comm, current->pid,
689 cattr_name(flags),
690 (unsigned long long)paddr,
691 (unsigned long long)(paddr + size));
692 return -EINVAL;
693 }
694 return 0;
695 }
696
697 /*
698 * Internal interface to free a range of physical memory.
699 * Frees non RAM regions only.
700 */
701 static void free_pfn_range(u64 paddr, unsigned long size)
702 {
703 int is_ram;
704
705 is_ram = pagerange_is_ram(paddr, paddr + size);
706 if (is_ram == 0)
707 free_memtype(paddr, paddr + size);
708 }
709
710 /*
711 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
712 * copied through copy_page_range().
713 *
714 * If the vma has a linear pfn mapping for the entire range, we get the prot
715 * from pte and reserve the entire vma range with single reserve_pfn_range call.
716 * Otherwise, we reserve the entire vma range, my ging through the PTEs page
717 * by page to get physical address and protection.
718 */
719 int track_pfn_vma_copy(struct vm_area_struct *vma)
720 {
721 int retval = 0;
722 unsigned long i, j;
723 resource_size_t paddr;
724 unsigned long prot;
725 unsigned long vma_start = vma->vm_start;
726 unsigned long vma_end = vma->vm_end;
727 unsigned long vma_size = vma_end - vma_start;
728 pgprot_t pgprot;
729
730 if (!pat_enabled)
731 return 0;
732
733 if (is_linear_pfn_mapping(vma)) {
734 /*
735 * reserve the whole chunk covered by vma. We need the
736 * starting address and protection from pte.
737 */
738 if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
739 WARN_ON_ONCE(1);
740 return -EINVAL;
741 }
742 pgprot = __pgprot(prot);
743 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
744 }
745
746 /* reserve entire vma page by page, using pfn and prot from pte */
747 for (i = 0; i < vma_size; i += PAGE_SIZE) {
748 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
749 continue;
750
751 pgprot = __pgprot(prot);
752 retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
753 if (retval)
754 goto cleanup_ret;
755 }
756 return 0;
757
758 cleanup_ret:
759 /* Reserve error: Cleanup partial reservation and return error */
760 for (j = 0; j < i; j += PAGE_SIZE) {
761 if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
762 continue;
763
764 free_pfn_range(paddr, PAGE_SIZE);
765 }
766
767 return retval;
768 }
769
770 /*
771 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
772 * for physical range indicated by pfn and size.
773 *
774 * prot is passed in as a parameter for the new mapping. If the vma has a
775 * linear pfn mapping for the entire range reserve the entire vma range with
776 * single reserve_pfn_range call.
777 * Otherwise, we look t the pfn and size and reserve only the specified range
778 * page by page.
779 *
780 * Note that this function can be called with caller trying to map only a
781 * subrange/page inside the vma.
782 */
783 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
784 unsigned long pfn, unsigned long size)
785 {
786 int retval = 0;
787 unsigned long i, j;
788 resource_size_t base_paddr;
789 resource_size_t paddr;
790 unsigned long vma_start = vma->vm_start;
791 unsigned long vma_end = vma->vm_end;
792 unsigned long vma_size = vma_end - vma_start;
793
794 if (!pat_enabled)
795 return 0;
796
797 if (is_linear_pfn_mapping(vma)) {
798 /* reserve the whole chunk starting from vm_pgoff */
799 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
800 return reserve_pfn_range(paddr, vma_size, prot, 0);
801 }
802
803 /* reserve page by page using pfn and size */
804 base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
805 for (i = 0; i < size; i += PAGE_SIZE) {
806 paddr = base_paddr + i;
807 retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
808 if (retval)
809 goto cleanup_ret;
810 }
811 return 0;
812
813 cleanup_ret:
814 /* Reserve error: Cleanup partial reservation and return error */
815 for (j = 0; j < i; j += PAGE_SIZE) {
816 paddr = base_paddr + j;
817 free_pfn_range(paddr, PAGE_SIZE);
818 }
819
820 return retval;
821 }
822
823 /*
824 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
825 * untrack can be called for a specific region indicated by pfn and size or
826 * can be for the entire vma (in which case size can be zero).
827 */
828 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
829 unsigned long size)
830 {
831 unsigned long i;
832 resource_size_t paddr;
833 unsigned long prot;
834 unsigned long vma_start = vma->vm_start;
835 unsigned long vma_end = vma->vm_end;
836 unsigned long vma_size = vma_end - vma_start;
837
838 if (!pat_enabled)
839 return;
840
841 if (is_linear_pfn_mapping(vma)) {
842 /* free the whole chunk starting from vm_pgoff */
843 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
844 free_pfn_range(paddr, vma_size);
845 return;
846 }
847
848 if (size != 0 && size != vma_size) {
849 /* free page by page, using pfn and size */
850 paddr = (resource_size_t)pfn << PAGE_SHIFT;
851 for (i = 0; i < size; i += PAGE_SIZE) {
852 paddr = paddr + i;
853 free_pfn_range(paddr, PAGE_SIZE);
854 }
855 } else {
856 /* free entire vma, page by page, using the pfn from pte */
857 for (i = 0; i < vma_size; i += PAGE_SIZE) {
858 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
859 continue;
860
861 free_pfn_range(paddr, PAGE_SIZE);
862 }
863 }
864 }
865
866 pgprot_t pgprot_writecombine(pgprot_t prot)
867 {
868 if (pat_enabled)
869 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
870 else
871 return pgprot_noncached(prot);
872 }
873
874 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
875
876 /* get Nth element of the linked list */
877 static struct memtype *memtype_get_idx(loff_t pos)
878 {
879 struct memtype *list_node, *print_entry;
880 int i = 1;
881
882 print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
883 if (!print_entry)
884 return NULL;
885
886 spin_lock(&memtype_lock);
887 list_for_each_entry(list_node, &memtype_list, nd) {
888 if (pos == i) {
889 *print_entry = *list_node;
890 spin_unlock(&memtype_lock);
891 return print_entry;
892 }
893 ++i;
894 }
895 spin_unlock(&memtype_lock);
896 kfree(print_entry);
897
898 return NULL;
899 }
900
901 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
902 {
903 if (*pos == 0) {
904 ++*pos;
905 seq_printf(seq, "PAT memtype list:\n");
906 }
907
908 return memtype_get_idx(*pos);
909 }
910
911 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
912 {
913 ++*pos;
914 return memtype_get_idx(*pos);
915 }
916
917 static void memtype_seq_stop(struct seq_file *seq, void *v)
918 {
919 }
920
921 static int memtype_seq_show(struct seq_file *seq, void *v)
922 {
923 struct memtype *print_entry = (struct memtype *)v;
924
925 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
926 print_entry->start, print_entry->end);
927 kfree(print_entry);
928
929 return 0;
930 }
931
932 static struct seq_operations memtype_seq_ops = {
933 .start = memtype_seq_start,
934 .next = memtype_seq_next,
935 .stop = memtype_seq_stop,
936 .show = memtype_seq_show,
937 };
938
939 static int memtype_seq_open(struct inode *inode, struct file *file)
940 {
941 return seq_open(file, &memtype_seq_ops);
942 }
943
944 static const struct file_operations memtype_fops = {
945 .open = memtype_seq_open,
946 .read = seq_read,
947 .llseek = seq_lseek,
948 .release = seq_release,
949 };
950
951 static int __init pat_memtype_list_init(void)
952 {
953 debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
954 NULL, &memtype_fops);
955 return 0;
956 }
957
958 late_initcall(pat_memtype_list_init);
959
960 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
This page took 0.051429 seconds and 5 git commands to generate.