Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[deliverable/linux.git] / arch / x86 / mm / pat.c
1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/gfp.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18 #include <linux/rbtree.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/pgtable.h>
24 #include <asm/fcntl.h>
25 #include <asm/e820.h>
26 #include <asm/mtrr.h>
27 #include <asm/page.h>
28 #include <asm/msr.h>
29 #include <asm/pat.h>
30 #include <asm/io.h>
31
32 #ifdef CONFIG_X86_PAT
33 int __read_mostly pat_enabled = 1;
34
35 static inline void pat_disable(const char *reason)
36 {
37 pat_enabled = 0;
38 printk(KERN_INFO "%s\n", reason);
39 }
40
41 static int __init nopat(char *str)
42 {
43 pat_disable("PAT support disabled.");
44 return 0;
45 }
46 early_param("nopat", nopat);
47 #else
48 static inline void pat_disable(const char *reason)
49 {
50 (void)reason;
51 }
52 #endif
53
54
55 static int debug_enable;
56
57 static int __init pat_debug_setup(char *str)
58 {
59 debug_enable = 1;
60 return 0;
61 }
62 __setup("debugpat", pat_debug_setup);
63
64 #define dprintk(fmt, arg...) \
65 do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
66
67
68 static u64 __read_mostly boot_pat_state;
69
70 enum {
71 PAT_UC = 0, /* uncached */
72 PAT_WC = 1, /* Write combining */
73 PAT_WT = 4, /* Write Through */
74 PAT_WP = 5, /* Write Protected */
75 PAT_WB = 6, /* Write Back (default) */
76 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
77 };
78
79 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
80
81 void pat_init(void)
82 {
83 u64 pat;
84
85 if (!pat_enabled)
86 return;
87
88 if (!cpu_has_pat) {
89 if (!boot_pat_state) {
90 pat_disable("PAT not supported by CPU.");
91 return;
92 } else {
93 /*
94 * If this happens we are on a secondary CPU, but
95 * switched to PAT on the boot CPU. We have no way to
96 * undo PAT.
97 */
98 printk(KERN_ERR "PAT enabled, "
99 "but not supported by secondary CPU\n");
100 BUG();
101 }
102 }
103
104 /* Set PWT to Write-Combining. All other bits stay the same */
105 /*
106 * PTE encoding used in Linux:
107 * PAT
108 * |PCD
109 * ||PWT
110 * |||
111 * 000 WB _PAGE_CACHE_WB
112 * 001 WC _PAGE_CACHE_WC
113 * 010 UC- _PAGE_CACHE_UC_MINUS
114 * 011 UC _PAGE_CACHE_UC
115 * PAT bit unused
116 */
117 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
118 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
119
120 /* Boot CPU check */
121 if (!boot_pat_state)
122 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
123
124 wrmsrl(MSR_IA32_CR_PAT, pat);
125 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
126 smp_processor_id(), boot_pat_state, pat);
127 }
128
129 #undef PAT
130
131 static char *cattr_name(unsigned long flags)
132 {
133 switch (flags & _PAGE_CACHE_MASK) {
134 case _PAGE_CACHE_UC: return "uncached";
135 case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
136 case _PAGE_CACHE_WB: return "write-back";
137 case _PAGE_CACHE_WC: return "write-combining";
138 default: return "broken";
139 }
140 }
141
142 /*
143 * The global memtype list keeps track of memory type for specific
144 * physical memory areas. Conflicting memory types in different
145 * mappings can cause CPU cache corruption. To avoid this we keep track.
146 *
147 * The list is sorted based on starting address and can contain multiple
148 * entries for each address (this allows reference counting for overlapping
149 * areas). All the aliases have the same cache attributes of course.
150 * Zero attributes are represented as holes.
151 *
152 * The data structure is a list that is also organized as an rbtree
153 * sorted on the start address of memtype range.
154 *
155 * memtype_lock protects both the linear list and rbtree.
156 */
157
158 struct memtype {
159 u64 start;
160 u64 end;
161 unsigned long type;
162 struct list_head nd;
163 struct rb_node rb;
164 };
165
166 static struct rb_root memtype_rbroot = RB_ROOT;
167 static LIST_HEAD(memtype_list);
168 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
169
170 static struct memtype *memtype_rb_search(struct rb_root *root, u64 start)
171 {
172 struct rb_node *node = root->rb_node;
173 struct memtype *last_lower = NULL;
174
175 while (node) {
176 struct memtype *data = container_of(node, struct memtype, rb);
177
178 if (data->start < start) {
179 last_lower = data;
180 node = node->rb_right;
181 } else if (data->start > start) {
182 node = node->rb_left;
183 } else
184 return data;
185 }
186
187 /* Will return NULL if there is no entry with its start <= start */
188 return last_lower;
189 }
190
191 static void memtype_rb_insert(struct rb_root *root, struct memtype *data)
192 {
193 struct rb_node **new = &(root->rb_node);
194 struct rb_node *parent = NULL;
195
196 while (*new) {
197 struct memtype *this = container_of(*new, struct memtype, rb);
198
199 parent = *new;
200 if (data->start <= this->start)
201 new = &((*new)->rb_left);
202 else if (data->start > this->start)
203 new = &((*new)->rb_right);
204 }
205
206 rb_link_node(&data->rb, parent, new);
207 rb_insert_color(&data->rb, root);
208 }
209
210 /*
211 * Does intersection of PAT memory type and MTRR memory type and returns
212 * the resulting memory type as PAT understands it.
213 * (Type in pat and mtrr will not have same value)
214 * The intersection is based on "Effective Memory Type" tables in IA-32
215 * SDM vol 3a
216 */
217 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
218 {
219 /*
220 * Look for MTRR hint to get the effective type in case where PAT
221 * request is for WB.
222 */
223 if (req_type == _PAGE_CACHE_WB) {
224 u8 mtrr_type;
225
226 mtrr_type = mtrr_type_lookup(start, end);
227 if (mtrr_type != MTRR_TYPE_WRBACK)
228 return _PAGE_CACHE_UC_MINUS;
229
230 return _PAGE_CACHE_WB;
231 }
232
233 return req_type;
234 }
235
236 static int
237 chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
238 {
239 if (new->type != entry->type) {
240 if (type) {
241 new->type = entry->type;
242 *type = entry->type;
243 } else
244 goto conflict;
245 }
246
247 /* check overlaps with more than one entry in the list */
248 list_for_each_entry_continue(entry, &memtype_list, nd) {
249 if (new->end <= entry->start)
250 break;
251 else if (new->type != entry->type)
252 goto conflict;
253 }
254 return 0;
255
256 conflict:
257 printk(KERN_INFO "%s:%d conflicting memory types "
258 "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
259 new->end, cattr_name(new->type), cattr_name(entry->type));
260 return -EBUSY;
261 }
262
263 static int pat_pagerange_is_ram(unsigned long start, unsigned long end)
264 {
265 int ram_page = 0, not_rampage = 0;
266 unsigned long page_nr;
267
268 for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
269 ++page_nr) {
270 /*
271 * For legacy reasons, physical address range in the legacy ISA
272 * region is tracked as non-RAM. This will allow users of
273 * /dev/mem to map portions of legacy ISA region, even when
274 * some of those portions are listed(or not even listed) with
275 * different e820 types(RAM/reserved/..)
276 */
277 if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
278 page_is_ram(page_nr))
279 ram_page = 1;
280 else
281 not_rampage = 1;
282
283 if (ram_page == not_rampage)
284 return -1;
285 }
286
287 return ram_page;
288 }
289
290 /*
291 * For RAM pages, we use page flags to mark the pages with appropriate type.
292 * Here we do two pass:
293 * - Find the memtype of all the pages in the range, look for any conflicts
294 * - In case of no conflicts, set the new memtype for pages in the range
295 *
296 * Caller must hold memtype_lock for atomicity.
297 */
298 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
299 unsigned long *new_type)
300 {
301 struct page *page;
302 u64 pfn;
303
304 if (req_type == _PAGE_CACHE_UC) {
305 /* We do not support strong UC */
306 WARN_ON_ONCE(1);
307 req_type = _PAGE_CACHE_UC_MINUS;
308 }
309
310 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
311 unsigned long type;
312
313 page = pfn_to_page(pfn);
314 type = get_page_memtype(page);
315 if (type != -1) {
316 printk(KERN_INFO "reserve_ram_pages_type failed "
317 "0x%Lx-0x%Lx, track 0x%lx, req 0x%lx\n",
318 start, end, type, req_type);
319 if (new_type)
320 *new_type = type;
321
322 return -EBUSY;
323 }
324 }
325
326 if (new_type)
327 *new_type = req_type;
328
329 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
330 page = pfn_to_page(pfn);
331 set_page_memtype(page, req_type);
332 }
333 return 0;
334 }
335
336 static int free_ram_pages_type(u64 start, u64 end)
337 {
338 struct page *page;
339 u64 pfn;
340
341 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
342 page = pfn_to_page(pfn);
343 set_page_memtype(page, -1);
344 }
345 return 0;
346 }
347
348 /*
349 * req_type typically has one of the:
350 * - _PAGE_CACHE_WB
351 * - _PAGE_CACHE_WC
352 * - _PAGE_CACHE_UC_MINUS
353 * - _PAGE_CACHE_UC
354 *
355 * req_type will have a special case value '-1', when requester want to inherit
356 * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
357 *
358 * If new_type is NULL, function will return an error if it cannot reserve the
359 * region with req_type. If new_type is non-NULL, function will return
360 * available type in new_type in case of no error. In case of any error
361 * it will return a negative return value.
362 */
363 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
364 unsigned long *new_type)
365 {
366 struct memtype *new, *entry;
367 unsigned long actual_type;
368 struct list_head *where;
369 int is_range_ram;
370 int err = 0;
371
372 BUG_ON(start >= end); /* end is exclusive */
373
374 if (!pat_enabled) {
375 /* This is identical to page table setting without PAT */
376 if (new_type) {
377 if (req_type == -1)
378 *new_type = _PAGE_CACHE_WB;
379 else if (req_type == _PAGE_CACHE_WC)
380 *new_type = _PAGE_CACHE_UC_MINUS;
381 else
382 *new_type = req_type & _PAGE_CACHE_MASK;
383 }
384 return 0;
385 }
386
387 /* Low ISA region is always mapped WB in page table. No need to track */
388 if (is_ISA_range(start, end - 1)) {
389 if (new_type)
390 *new_type = _PAGE_CACHE_WB;
391 return 0;
392 }
393
394 /*
395 * Call mtrr_lookup to get the type hint. This is an
396 * optimization for /dev/mem mmap'ers into WB memory (BIOS
397 * tools and ACPI tools). Use WB request for WB memory and use
398 * UC_MINUS otherwise.
399 */
400 actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK);
401
402 if (new_type)
403 *new_type = actual_type;
404
405 is_range_ram = pat_pagerange_is_ram(start, end);
406 if (is_range_ram == 1) {
407
408 spin_lock(&memtype_lock);
409 err = reserve_ram_pages_type(start, end, req_type, new_type);
410 spin_unlock(&memtype_lock);
411
412 return err;
413 } else if (is_range_ram < 0) {
414 return -EINVAL;
415 }
416
417 new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
418 if (!new)
419 return -ENOMEM;
420
421 new->start = start;
422 new->end = end;
423 new->type = actual_type;
424
425 spin_lock(&memtype_lock);
426
427 entry = memtype_rb_search(&memtype_rbroot, new->start);
428 if (likely(entry != NULL)) {
429 /* To work correctly with list_for_each_entry_continue */
430 entry = list_entry(entry->nd.prev, struct memtype, nd);
431 } else {
432 entry = list_entry(&memtype_list, struct memtype, nd);
433 }
434
435 /* Search for existing mapping that overlaps the current range */
436 where = NULL;
437 list_for_each_entry_continue(entry, &memtype_list, nd) {
438 if (end <= entry->start) {
439 where = entry->nd.prev;
440 break;
441 } else if (start <= entry->start) { /* end > entry->start */
442 err = chk_conflict(new, entry, new_type);
443 if (!err) {
444 dprintk("Overlap at 0x%Lx-0x%Lx\n",
445 entry->start, entry->end);
446 where = entry->nd.prev;
447 }
448 break;
449 } else if (start < entry->end) { /* start > entry->start */
450 err = chk_conflict(new, entry, new_type);
451 if (!err) {
452 dprintk("Overlap at 0x%Lx-0x%Lx\n",
453 entry->start, entry->end);
454
455 /*
456 * Move to right position in the linked
457 * list to add this new entry
458 */
459 list_for_each_entry_continue(entry,
460 &memtype_list, nd) {
461 if (start <= entry->start) {
462 where = entry->nd.prev;
463 break;
464 }
465 }
466 }
467 break;
468 }
469 }
470
471 if (err) {
472 printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
473 "track %s, req %s\n",
474 start, end, cattr_name(new->type), cattr_name(req_type));
475 kfree(new);
476 spin_unlock(&memtype_lock);
477
478 return err;
479 }
480
481 if (where)
482 list_add(&new->nd, where);
483 else
484 list_add_tail(&new->nd, &memtype_list);
485
486 memtype_rb_insert(&memtype_rbroot, new);
487
488 spin_unlock(&memtype_lock);
489
490 dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
491 start, end, cattr_name(new->type), cattr_name(req_type),
492 new_type ? cattr_name(*new_type) : "-");
493
494 return err;
495 }
496
497 int free_memtype(u64 start, u64 end)
498 {
499 struct memtype *entry, *saved_entry;
500 int err = -EINVAL;
501 int is_range_ram;
502
503 if (!pat_enabled)
504 return 0;
505
506 /* Low ISA region is always mapped WB. No need to track */
507 if (is_ISA_range(start, end - 1))
508 return 0;
509
510 is_range_ram = pat_pagerange_is_ram(start, end);
511 if (is_range_ram == 1) {
512
513 spin_lock(&memtype_lock);
514 err = free_ram_pages_type(start, end);
515 spin_unlock(&memtype_lock);
516
517 return err;
518 } else if (is_range_ram < 0) {
519 return -EINVAL;
520 }
521
522 spin_lock(&memtype_lock);
523
524 entry = memtype_rb_search(&memtype_rbroot, start);
525 if (unlikely(entry == NULL))
526 goto unlock_ret;
527
528 /*
529 * Saved entry points to an entry with start same or less than what
530 * we searched for. Now go through the list in both directions to look
531 * for the entry that matches with both start and end, with list stored
532 * in sorted start address
533 */
534 saved_entry = entry;
535 list_for_each_entry(entry, &memtype_list, nd) {
536 if (entry->start == start && entry->end == end) {
537 rb_erase(&entry->rb, &memtype_rbroot);
538 list_del(&entry->nd);
539 kfree(entry);
540 err = 0;
541 break;
542 } else if (entry->start > start) {
543 break;
544 }
545 }
546
547 if (!err)
548 goto unlock_ret;
549
550 entry = saved_entry;
551 list_for_each_entry_reverse(entry, &memtype_list, nd) {
552 if (entry->start == start && entry->end == end) {
553 rb_erase(&entry->rb, &memtype_rbroot);
554 list_del(&entry->nd);
555 kfree(entry);
556 err = 0;
557 break;
558 } else if (entry->start < start) {
559 break;
560 }
561 }
562 unlock_ret:
563 spin_unlock(&memtype_lock);
564
565 if (err) {
566 printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
567 current->comm, current->pid, start, end);
568 }
569
570 dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
571
572 return err;
573 }
574
575
576 /**
577 * lookup_memtype - Looksup the memory type for a physical address
578 * @paddr: physical address of which memory type needs to be looked up
579 *
580 * Only to be called when PAT is enabled
581 *
582 * Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or
583 * _PAGE_CACHE_UC
584 */
585 static unsigned long lookup_memtype(u64 paddr)
586 {
587 int rettype = _PAGE_CACHE_WB;
588 struct memtype *entry;
589
590 if (is_ISA_range(paddr, paddr + PAGE_SIZE - 1))
591 return rettype;
592
593 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
594 struct page *page;
595 spin_lock(&memtype_lock);
596 page = pfn_to_page(paddr >> PAGE_SHIFT);
597 rettype = get_page_memtype(page);
598 spin_unlock(&memtype_lock);
599 /*
600 * -1 from get_page_memtype() implies RAM page is in its
601 * default state and not reserved, and hence of type WB
602 */
603 if (rettype == -1)
604 rettype = _PAGE_CACHE_WB;
605
606 return rettype;
607 }
608
609 spin_lock(&memtype_lock);
610
611 entry = memtype_rb_search(&memtype_rbroot, paddr);
612 if (entry != NULL)
613 rettype = entry->type;
614 else
615 rettype = _PAGE_CACHE_UC_MINUS;
616
617 spin_unlock(&memtype_lock);
618 return rettype;
619 }
620
621 /**
622 * io_reserve_memtype - Request a memory type mapping for a region of memory
623 * @start: start (physical address) of the region
624 * @end: end (physical address) of the region
625 * @type: A pointer to memtype, with requested type. On success, requested
626 * or any other compatible type that was available for the region is returned
627 *
628 * On success, returns 0
629 * On failure, returns non-zero
630 */
631 int io_reserve_memtype(resource_size_t start, resource_size_t end,
632 unsigned long *type)
633 {
634 resource_size_t size = end - start;
635 unsigned long req_type = *type;
636 unsigned long new_type;
637 int ret;
638
639 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
640
641 ret = reserve_memtype(start, end, req_type, &new_type);
642 if (ret)
643 goto out_err;
644
645 if (!is_new_memtype_allowed(start, size, req_type, new_type))
646 goto out_free;
647
648 if (kernel_map_sync_memtype(start, size, new_type) < 0)
649 goto out_free;
650
651 *type = new_type;
652 return 0;
653
654 out_free:
655 free_memtype(start, end);
656 ret = -EBUSY;
657 out_err:
658 return ret;
659 }
660
661 /**
662 * io_free_memtype - Release a memory type mapping for a region of memory
663 * @start: start (physical address) of the region
664 * @end: end (physical address) of the region
665 */
666 void io_free_memtype(resource_size_t start, resource_size_t end)
667 {
668 free_memtype(start, end);
669 }
670
671 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
672 unsigned long size, pgprot_t vma_prot)
673 {
674 return vma_prot;
675 }
676
677 #ifdef CONFIG_STRICT_DEVMEM
678 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
679 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
680 {
681 return 1;
682 }
683 #else
684 /* This check is needed to avoid cache aliasing when PAT is enabled */
685 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
686 {
687 u64 from = ((u64)pfn) << PAGE_SHIFT;
688 u64 to = from + size;
689 u64 cursor = from;
690
691 if (!pat_enabled)
692 return 1;
693
694 while (cursor < to) {
695 if (!devmem_is_allowed(pfn)) {
696 printk(KERN_INFO
697 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
698 current->comm, from, to);
699 return 0;
700 }
701 cursor += PAGE_SIZE;
702 pfn++;
703 }
704 return 1;
705 }
706 #endif /* CONFIG_STRICT_DEVMEM */
707
708 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
709 unsigned long size, pgprot_t *vma_prot)
710 {
711 unsigned long flags = _PAGE_CACHE_WB;
712
713 if (!range_is_allowed(pfn, size))
714 return 0;
715
716 if (file->f_flags & O_SYNC) {
717 flags = _PAGE_CACHE_UC_MINUS;
718 }
719
720 #ifdef CONFIG_X86_32
721 /*
722 * On the PPro and successors, the MTRRs are used to set
723 * memory types for physical addresses outside main memory,
724 * so blindly setting UC or PWT on those pages is wrong.
725 * For Pentiums and earlier, the surround logic should disable
726 * caching for the high addresses through the KEN pin, but
727 * we maintain the tradition of paranoia in this code.
728 */
729 if (!pat_enabled &&
730 !(boot_cpu_has(X86_FEATURE_MTRR) ||
731 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
732 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
733 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
734 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
735 flags = _PAGE_CACHE_UC;
736 }
737 #endif
738
739 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
740 flags);
741 return 1;
742 }
743
744 /*
745 * Change the memory type for the physial address range in kernel identity
746 * mapping space if that range is a part of identity map.
747 */
748 int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
749 {
750 unsigned long id_sz;
751
752 if (base >= __pa(high_memory))
753 return 0;
754
755 id_sz = (__pa(high_memory) < base + size) ?
756 __pa(high_memory) - base :
757 size;
758
759 if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
760 printk(KERN_INFO
761 "%s:%d ioremap_change_attr failed %s "
762 "for %Lx-%Lx\n",
763 current->comm, current->pid,
764 cattr_name(flags),
765 base, (unsigned long long)(base + size));
766 return -EINVAL;
767 }
768 return 0;
769 }
770
771 /*
772 * Internal interface to reserve a range of physical memory with prot.
773 * Reserved non RAM regions only and after successful reserve_memtype,
774 * this func also keeps identity mapping (if any) in sync with this new prot.
775 */
776 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
777 int strict_prot)
778 {
779 int is_ram = 0;
780 int ret;
781 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
782 unsigned long flags = want_flags;
783
784 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
785
786 /*
787 * reserve_pfn_range() for RAM pages. We do not refcount to keep
788 * track of number of mappings of RAM pages. We can assert that
789 * the type requested matches the type of first page in the range.
790 */
791 if (is_ram) {
792 if (!pat_enabled)
793 return 0;
794
795 flags = lookup_memtype(paddr);
796 if (want_flags != flags) {
797 printk(KERN_WARNING
798 "%s:%d map pfn RAM range req %s for %Lx-%Lx, got %s\n",
799 current->comm, current->pid,
800 cattr_name(want_flags),
801 (unsigned long long)paddr,
802 (unsigned long long)(paddr + size),
803 cattr_name(flags));
804 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
805 (~_PAGE_CACHE_MASK)) |
806 flags);
807 }
808 return 0;
809 }
810
811 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
812 if (ret)
813 return ret;
814
815 if (flags != want_flags) {
816 if (strict_prot ||
817 !is_new_memtype_allowed(paddr, size, want_flags, flags)) {
818 free_memtype(paddr, paddr + size);
819 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
820 " for %Lx-%Lx, got %s\n",
821 current->comm, current->pid,
822 cattr_name(want_flags),
823 (unsigned long long)paddr,
824 (unsigned long long)(paddr + size),
825 cattr_name(flags));
826 return -EINVAL;
827 }
828 /*
829 * We allow returning different type than the one requested in
830 * non strict case.
831 */
832 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
833 (~_PAGE_CACHE_MASK)) |
834 flags);
835 }
836
837 if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
838 free_memtype(paddr, paddr + size);
839 return -EINVAL;
840 }
841 return 0;
842 }
843
844 /*
845 * Internal interface to free a range of physical memory.
846 * Frees non RAM regions only.
847 */
848 static void free_pfn_range(u64 paddr, unsigned long size)
849 {
850 int is_ram;
851
852 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
853 if (is_ram == 0)
854 free_memtype(paddr, paddr + size);
855 }
856
857 /*
858 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
859 * copied through copy_page_range().
860 *
861 * If the vma has a linear pfn mapping for the entire range, we get the prot
862 * from pte and reserve the entire vma range with single reserve_pfn_range call.
863 */
864 int track_pfn_vma_copy(struct vm_area_struct *vma)
865 {
866 resource_size_t paddr;
867 unsigned long prot;
868 unsigned long vma_size = vma->vm_end - vma->vm_start;
869 pgprot_t pgprot;
870
871 if (is_linear_pfn_mapping(vma)) {
872 /*
873 * reserve the whole chunk covered by vma. We need the
874 * starting address and protection from pte.
875 */
876 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
877 WARN_ON_ONCE(1);
878 return -EINVAL;
879 }
880 pgprot = __pgprot(prot);
881 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
882 }
883
884 return 0;
885 }
886
887 /*
888 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
889 * for physical range indicated by pfn and size.
890 *
891 * prot is passed in as a parameter for the new mapping. If the vma has a
892 * linear pfn mapping for the entire range reserve the entire vma range with
893 * single reserve_pfn_range call.
894 */
895 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
896 unsigned long pfn, unsigned long size)
897 {
898 unsigned long flags;
899 resource_size_t paddr;
900 unsigned long vma_size = vma->vm_end - vma->vm_start;
901
902 if (is_linear_pfn_mapping(vma)) {
903 /* reserve the whole chunk starting from vm_pgoff */
904 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
905 return reserve_pfn_range(paddr, vma_size, prot, 0);
906 }
907
908 if (!pat_enabled)
909 return 0;
910
911 /* for vm_insert_pfn and friends, we set prot based on lookup */
912 flags = lookup_memtype(pfn << PAGE_SHIFT);
913 *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
914 flags);
915
916 return 0;
917 }
918
919 /*
920 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
921 * untrack can be called for a specific region indicated by pfn and size or
922 * can be for the entire vma (in which case size can be zero).
923 */
924 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
925 unsigned long size)
926 {
927 resource_size_t paddr;
928 unsigned long vma_size = vma->vm_end - vma->vm_start;
929
930 if (is_linear_pfn_mapping(vma)) {
931 /* free the whole chunk starting from vm_pgoff */
932 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
933 free_pfn_range(paddr, vma_size);
934 return;
935 }
936 }
937
938 pgprot_t pgprot_writecombine(pgprot_t prot)
939 {
940 if (pat_enabled)
941 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
942 else
943 return pgprot_noncached(prot);
944 }
945 EXPORT_SYMBOL_GPL(pgprot_writecombine);
946
947 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
948
949 /* get Nth element of the linked list */
950 static struct memtype *memtype_get_idx(loff_t pos)
951 {
952 struct memtype *list_node, *print_entry;
953 int i = 1;
954
955 print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
956 if (!print_entry)
957 return NULL;
958
959 spin_lock(&memtype_lock);
960 list_for_each_entry(list_node, &memtype_list, nd) {
961 if (pos == i) {
962 *print_entry = *list_node;
963 spin_unlock(&memtype_lock);
964 return print_entry;
965 }
966 ++i;
967 }
968 spin_unlock(&memtype_lock);
969 kfree(print_entry);
970
971 return NULL;
972 }
973
974 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
975 {
976 if (*pos == 0) {
977 ++*pos;
978 seq_printf(seq, "PAT memtype list:\n");
979 }
980
981 return memtype_get_idx(*pos);
982 }
983
984 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
985 {
986 ++*pos;
987 return memtype_get_idx(*pos);
988 }
989
990 static void memtype_seq_stop(struct seq_file *seq, void *v)
991 {
992 }
993
994 static int memtype_seq_show(struct seq_file *seq, void *v)
995 {
996 struct memtype *print_entry = (struct memtype *)v;
997
998 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
999 print_entry->start, print_entry->end);
1000 kfree(print_entry);
1001
1002 return 0;
1003 }
1004
1005 static const struct seq_operations memtype_seq_ops = {
1006 .start = memtype_seq_start,
1007 .next = memtype_seq_next,
1008 .stop = memtype_seq_stop,
1009 .show = memtype_seq_show,
1010 };
1011
1012 static int memtype_seq_open(struct inode *inode, struct file *file)
1013 {
1014 return seq_open(file, &memtype_seq_ops);
1015 }
1016
1017 static const struct file_operations memtype_fops = {
1018 .open = memtype_seq_open,
1019 .read = seq_read,
1020 .llseek = seq_lseek,
1021 .release = seq_release,
1022 };
1023
1024 static int __init pat_memtype_list_init(void)
1025 {
1026 debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
1027 NULL, &memtype_fops);
1028 return 0;
1029 }
1030
1031 late_initcall(pat_memtype_list_init);
1032
1033 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
This page took 0.054331 seconds and 6 git commands to generate.