x86: handle PAT more like other CPU features
[deliverable/linux.git] / arch / x86 / mm / pat.c
1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/fs.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/pgtable.h>
22 #include <asm/fcntl.h>
23 #include <asm/e820.h>
24 #include <asm/mtrr.h>
25 #include <asm/page.h>
26 #include <asm/msr.h>
27 #include <asm/pat.h>
28 #include <asm/io.h>
29
30 #ifdef CONFIG_X86_PAT
31 int __read_mostly pat_enabled = 1;
32
33 void __cpuinit pat_disable(const char *reason)
34 {
35 pat_enabled = 0;
36 printk(KERN_INFO "%s\n", reason);
37 }
38
39 static int __init nopat(char *str)
40 {
41 pat_disable("PAT support disabled.");
42 return 0;
43 }
44 early_param("nopat", nopat);
45 #else
46 static inline void pat_disable(const char *reason)
47 {
48 (void)reason;
49 }
50 #endif
51
52
53 static int debug_enable;
54
55 static int __init pat_debug_setup(char *str)
56 {
57 debug_enable = 1;
58 return 0;
59 }
60 __setup("debugpat", pat_debug_setup);
61
62 #define dprintk(fmt, arg...) \
63 do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
64
65
66 static u64 __read_mostly boot_pat_state;
67
68 enum {
69 PAT_UC = 0, /* uncached */
70 PAT_WC = 1, /* Write combining */
71 PAT_WT = 4, /* Write Through */
72 PAT_WP = 5, /* Write Protected */
73 PAT_WB = 6, /* Write Back (default) */
74 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
75 };
76
77 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
78
79 void pat_init(void)
80 {
81 u64 pat;
82
83 if (!pat_enabled)
84 return;
85
86 if (!cpu_has_pat) {
87 if (!boot_pat_state) {
88 pat_disable("PAT not supported by CPU.");
89 return;
90 } else {
91 /*
92 * If this happens we are on a secondary CPU, but
93 * switched to PAT on the boot CPU. We have no way to
94 * undo PAT.
95 */
96 printk(KERN_ERR "PAT enabled, "
97 "but not supported by secondary CPU\n");
98 BUG();
99 }
100 }
101
102 /* Set PWT to Write-Combining. All other bits stay the same */
103 /*
104 * PTE encoding used in Linux:
105 * PAT
106 * |PCD
107 * ||PWT
108 * |||
109 * 000 WB _PAGE_CACHE_WB
110 * 001 WC _PAGE_CACHE_WC
111 * 010 UC- _PAGE_CACHE_UC_MINUS
112 * 011 UC _PAGE_CACHE_UC
113 * PAT bit unused
114 */
115 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
116 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
117
118 /* Boot CPU check */
119 if (!boot_pat_state)
120 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
121
122 wrmsrl(MSR_IA32_CR_PAT, pat);
123 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
124 smp_processor_id(), boot_pat_state, pat);
125 }
126
127 #undef PAT
128
129 static char *cattr_name(unsigned long flags)
130 {
131 switch (flags & _PAGE_CACHE_MASK) {
132 case _PAGE_CACHE_UC: return "uncached";
133 case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
134 case _PAGE_CACHE_WB: return "write-back";
135 case _PAGE_CACHE_WC: return "write-combining";
136 default: return "broken";
137 }
138 }
139
140 /*
141 * The global memtype list keeps track of memory type for specific
142 * physical memory areas. Conflicting memory types in different
143 * mappings can cause CPU cache corruption. To avoid this we keep track.
144 *
145 * The list is sorted based on starting address and can contain multiple
146 * entries for each address (this allows reference counting for overlapping
147 * areas). All the aliases have the same cache attributes of course.
148 * Zero attributes are represented as holes.
149 *
150 * Currently the data structure is a list because the number of mappings
151 * are expected to be relatively small. If this should be a problem
152 * it could be changed to a rbtree or similar.
153 *
154 * memtype_lock protects the whole list.
155 */
156
157 struct memtype {
158 u64 start;
159 u64 end;
160 unsigned long type;
161 struct list_head nd;
162 };
163
164 static LIST_HEAD(memtype_list);
165 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
166
167 /*
168 * Does intersection of PAT memory type and MTRR memory type and returns
169 * the resulting memory type as PAT understands it.
170 * (Type in pat and mtrr will not have same value)
171 * The intersection is based on "Effective Memory Type" tables in IA-32
172 * SDM vol 3a
173 */
174 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
175 {
176 /*
177 * Look for MTRR hint to get the effective type in case where PAT
178 * request is for WB.
179 */
180 if (req_type == _PAGE_CACHE_WB) {
181 u8 mtrr_type;
182
183 mtrr_type = mtrr_type_lookup(start, end);
184 if (mtrr_type == MTRR_TYPE_UNCACHABLE)
185 return _PAGE_CACHE_UC;
186 if (mtrr_type == MTRR_TYPE_WRCOMB)
187 return _PAGE_CACHE_WC;
188 }
189
190 return req_type;
191 }
192
193 static int
194 chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
195 {
196 if (new->type != entry->type) {
197 if (type) {
198 new->type = entry->type;
199 *type = entry->type;
200 } else
201 goto conflict;
202 }
203
204 /* check overlaps with more than one entry in the list */
205 list_for_each_entry_continue(entry, &memtype_list, nd) {
206 if (new->end <= entry->start)
207 break;
208 else if (new->type != entry->type)
209 goto conflict;
210 }
211 return 0;
212
213 conflict:
214 printk(KERN_INFO "%s:%d conflicting memory types "
215 "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
216 new->end, cattr_name(new->type), cattr_name(entry->type));
217 return -EBUSY;
218 }
219
220 static struct memtype *cached_entry;
221 static u64 cached_start;
222
223 /*
224 * For RAM pages, mark the pages as non WB memory type using
225 * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
226 * set_memory_wc() on a RAM page at a time before marking it as WB again.
227 * This is ok, because only one driver will be owning the page and
228 * doing set_memory_*() calls.
229 *
230 * For now, we use PageNonWB to track that the RAM page is being mapped
231 * as non WB. In future, we will have to use one more flag
232 * (or some other mechanism in page_struct) to distinguish between
233 * UC and WC mapping.
234 */
235 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
236 unsigned long *new_type)
237 {
238 struct page *page;
239 u64 pfn, end_pfn;
240
241 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
242 page = pfn_to_page(pfn);
243 if (page_mapped(page) || PageNonWB(page))
244 goto out;
245
246 SetPageNonWB(page);
247 }
248 return 0;
249
250 out:
251 end_pfn = pfn;
252 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
253 page = pfn_to_page(pfn);
254 ClearPageNonWB(page);
255 }
256
257 return -EINVAL;
258 }
259
260 static int free_ram_pages_type(u64 start, u64 end)
261 {
262 struct page *page;
263 u64 pfn, end_pfn;
264
265 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
266 page = pfn_to_page(pfn);
267 if (page_mapped(page) || !PageNonWB(page))
268 goto out;
269
270 ClearPageNonWB(page);
271 }
272 return 0;
273
274 out:
275 end_pfn = pfn;
276 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
277 page = pfn_to_page(pfn);
278 SetPageNonWB(page);
279 }
280 return -EINVAL;
281 }
282
283 /*
284 * req_type typically has one of the:
285 * - _PAGE_CACHE_WB
286 * - _PAGE_CACHE_WC
287 * - _PAGE_CACHE_UC_MINUS
288 * - _PAGE_CACHE_UC
289 *
290 * req_type will have a special case value '-1', when requester want to inherit
291 * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
292 *
293 * If new_type is NULL, function will return an error if it cannot reserve the
294 * region with req_type. If new_type is non-NULL, function will return
295 * available type in new_type in case of no error. In case of any error
296 * it will return a negative return value.
297 */
298 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
299 unsigned long *new_type)
300 {
301 struct memtype *new, *entry;
302 unsigned long actual_type;
303 struct list_head *where;
304 int is_range_ram;
305 int err = 0;
306
307 BUG_ON(start >= end); /* end is exclusive */
308
309 if (!pat_enabled) {
310 /* This is identical to page table setting without PAT */
311 if (new_type) {
312 if (req_type == -1)
313 *new_type = _PAGE_CACHE_WB;
314 else
315 *new_type = req_type & _PAGE_CACHE_MASK;
316 }
317 return 0;
318 }
319
320 /* Low ISA region is always mapped WB in page table. No need to track */
321 if (is_ISA_range(start, end - 1)) {
322 if (new_type)
323 *new_type = _PAGE_CACHE_WB;
324 return 0;
325 }
326
327 if (req_type == -1) {
328 /*
329 * Call mtrr_lookup to get the type hint. This is an
330 * optimization for /dev/mem mmap'ers into WB memory (BIOS
331 * tools and ACPI tools). Use WB request for WB memory and use
332 * UC_MINUS otherwise.
333 */
334 u8 mtrr_type = mtrr_type_lookup(start, end);
335
336 if (mtrr_type == MTRR_TYPE_WRBACK)
337 actual_type = _PAGE_CACHE_WB;
338 else
339 actual_type = _PAGE_CACHE_UC_MINUS;
340 } else {
341 actual_type = pat_x_mtrr_type(start, end,
342 req_type & _PAGE_CACHE_MASK);
343 }
344
345 is_range_ram = pagerange_is_ram(start, end);
346 if (is_range_ram == 1)
347 return reserve_ram_pages_type(start, end, req_type, new_type);
348 else if (is_range_ram < 0)
349 return -EINVAL;
350
351 new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
352 if (!new)
353 return -ENOMEM;
354
355 new->start = start;
356 new->end = end;
357 new->type = actual_type;
358
359 if (new_type)
360 *new_type = actual_type;
361
362 spin_lock(&memtype_lock);
363
364 if (cached_entry && start >= cached_start)
365 entry = cached_entry;
366 else
367 entry = list_entry(&memtype_list, struct memtype, nd);
368
369 /* Search for existing mapping that overlaps the current range */
370 where = NULL;
371 list_for_each_entry_continue(entry, &memtype_list, nd) {
372 if (end <= entry->start) {
373 where = entry->nd.prev;
374 cached_entry = list_entry(where, struct memtype, nd);
375 break;
376 } else if (start <= entry->start) { /* end > entry->start */
377 err = chk_conflict(new, entry, new_type);
378 if (!err) {
379 dprintk("Overlap at 0x%Lx-0x%Lx\n",
380 entry->start, entry->end);
381 where = entry->nd.prev;
382 cached_entry = list_entry(where,
383 struct memtype, nd);
384 }
385 break;
386 } else if (start < entry->end) { /* start > entry->start */
387 err = chk_conflict(new, entry, new_type);
388 if (!err) {
389 dprintk("Overlap at 0x%Lx-0x%Lx\n",
390 entry->start, entry->end);
391 cached_entry = list_entry(entry->nd.prev,
392 struct memtype, nd);
393
394 /*
395 * Move to right position in the linked
396 * list to add this new entry
397 */
398 list_for_each_entry_continue(entry,
399 &memtype_list, nd) {
400 if (start <= entry->start) {
401 where = entry->nd.prev;
402 break;
403 }
404 }
405 }
406 break;
407 }
408 }
409
410 if (err) {
411 printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
412 "track %s, req %s\n",
413 start, end, cattr_name(new->type), cattr_name(req_type));
414 kfree(new);
415 spin_unlock(&memtype_lock);
416
417 return err;
418 }
419
420 cached_start = start;
421
422 if (where)
423 list_add(&new->nd, where);
424 else
425 list_add_tail(&new->nd, &memtype_list);
426
427 spin_unlock(&memtype_lock);
428
429 dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
430 start, end, cattr_name(new->type), cattr_name(req_type),
431 new_type ? cattr_name(*new_type) : "-");
432
433 return err;
434 }
435
436 int free_memtype(u64 start, u64 end)
437 {
438 struct memtype *entry;
439 int err = -EINVAL;
440 int is_range_ram;
441
442 if (!pat_enabled)
443 return 0;
444
445 /* Low ISA region is always mapped WB. No need to track */
446 if (is_ISA_range(start, end - 1))
447 return 0;
448
449 is_range_ram = pagerange_is_ram(start, end);
450 if (is_range_ram == 1)
451 return free_ram_pages_type(start, end);
452 else if (is_range_ram < 0)
453 return -EINVAL;
454
455 spin_lock(&memtype_lock);
456 list_for_each_entry(entry, &memtype_list, nd) {
457 if (entry->start == start && entry->end == end) {
458 if (cached_entry == entry || cached_start == start)
459 cached_entry = NULL;
460
461 list_del(&entry->nd);
462 kfree(entry);
463 err = 0;
464 break;
465 }
466 }
467 spin_unlock(&memtype_lock);
468
469 if (err) {
470 printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
471 current->comm, current->pid, start, end);
472 }
473
474 dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
475
476 return err;
477 }
478
479
480 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
481 unsigned long size, pgprot_t vma_prot)
482 {
483 return vma_prot;
484 }
485
486 #ifdef CONFIG_STRICT_DEVMEM
487 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
488 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
489 {
490 return 1;
491 }
492 #else
493 /* This check is needed to avoid cache aliasing when PAT is enabled */
494 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
495 {
496 u64 from = ((u64)pfn) << PAGE_SHIFT;
497 u64 to = from + size;
498 u64 cursor = from;
499
500 if (!pat_enabled)
501 return 1;
502
503 while (cursor < to) {
504 if (!devmem_is_allowed(pfn)) {
505 printk(KERN_INFO
506 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
507 current->comm, from, to);
508 return 0;
509 }
510 cursor += PAGE_SIZE;
511 pfn++;
512 }
513 return 1;
514 }
515 #endif /* CONFIG_STRICT_DEVMEM */
516
517 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
518 unsigned long size, pgprot_t *vma_prot)
519 {
520 u64 offset = ((u64) pfn) << PAGE_SHIFT;
521 unsigned long flags = -1;
522 int retval;
523
524 if (!range_is_allowed(pfn, size))
525 return 0;
526
527 if (file->f_flags & O_SYNC) {
528 flags = _PAGE_CACHE_UC_MINUS;
529 }
530
531 #ifdef CONFIG_X86_32
532 /*
533 * On the PPro and successors, the MTRRs are used to set
534 * memory types for physical addresses outside main memory,
535 * so blindly setting UC or PWT on those pages is wrong.
536 * For Pentiums and earlier, the surround logic should disable
537 * caching for the high addresses through the KEN pin, but
538 * we maintain the tradition of paranoia in this code.
539 */
540 if (!pat_enabled &&
541 !(boot_cpu_has(X86_FEATURE_MTRR) ||
542 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
543 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
544 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
545 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
546 flags = _PAGE_CACHE_UC;
547 }
548 #endif
549
550 /*
551 * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
552 *
553 * Without O_SYNC, we want to get
554 * - WB for WB-able memory and no other conflicting mappings
555 * - UC_MINUS for non-WB-able memory with no other conflicting mappings
556 * - Inherit from confliting mappings otherwise
557 */
558 if (flags != -1) {
559 retval = reserve_memtype(offset, offset + size, flags, NULL);
560 } else {
561 retval = reserve_memtype(offset, offset + size, -1, &flags);
562 }
563
564 if (retval < 0)
565 return 0;
566
567 if (((pfn < max_low_pfn_mapped) ||
568 (pfn >= (1UL<<(32 - PAGE_SHIFT)) && pfn < max_pfn_mapped)) &&
569 ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) {
570 free_memtype(offset, offset + size);
571 printk(KERN_INFO
572 "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
573 current->comm, current->pid,
574 cattr_name(flags),
575 offset, (unsigned long long)(offset + size));
576 return 0;
577 }
578
579 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
580 flags);
581 return 1;
582 }
583
584 void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
585 {
586 unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
587 u64 addr = (u64)pfn << PAGE_SHIFT;
588 unsigned long flags;
589
590 reserve_memtype(addr, addr + size, want_flags, &flags);
591 if (flags != want_flags) {
592 printk(KERN_INFO
593 "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
594 current->comm, current->pid,
595 cattr_name(want_flags),
596 addr, (unsigned long long)(addr + size),
597 cattr_name(flags));
598 }
599 }
600
601 void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
602 {
603 u64 addr = (u64)pfn << PAGE_SHIFT;
604
605 free_memtype(addr, addr + size);
606 }
607
608 /*
609 * Internal interface to reserve a range of physical memory with prot.
610 * Reserved non RAM regions only and after successful reserve_memtype,
611 * this func also keeps identity mapping (if any) in sync with this new prot.
612 */
613 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
614 int strict_prot)
615 {
616 int is_ram = 0;
617 int id_sz, ret;
618 unsigned long flags;
619 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
620
621 is_ram = pagerange_is_ram(paddr, paddr + size);
622
623 if (is_ram != 0) {
624 /*
625 * For mapping RAM pages, drivers need to call
626 * set_memory_[uc|wc|wb] directly, for reserve and free, before
627 * setting up the PTE.
628 */
629 WARN_ON_ONCE(1);
630 return 0;
631 }
632
633 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
634 if (ret)
635 return ret;
636
637 if (flags != want_flags) {
638 if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
639 free_memtype(paddr, paddr + size);
640 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
641 " for %Lx-%Lx, got %s\n",
642 current->comm, current->pid,
643 cattr_name(want_flags),
644 (unsigned long long)paddr,
645 (unsigned long long)(paddr + size),
646 cattr_name(flags));
647 return -EINVAL;
648 }
649 /*
650 * We allow returning different type than the one requested in
651 * non strict case.
652 */
653 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
654 (~_PAGE_CACHE_MASK)) |
655 flags);
656 }
657
658 /* Need to keep identity mapping in sync */
659 if (paddr >= __pa(high_memory))
660 return 0;
661
662 id_sz = (__pa(high_memory) < paddr + size) ?
663 __pa(high_memory) - paddr :
664 size;
665
666 if (ioremap_change_attr((unsigned long)__va(paddr), id_sz, flags) < 0) {
667 free_memtype(paddr, paddr + size);
668 printk(KERN_ERR
669 "%s:%d reserve_pfn_range ioremap_change_attr failed %s "
670 "for %Lx-%Lx\n",
671 current->comm, current->pid,
672 cattr_name(flags),
673 (unsigned long long)paddr,
674 (unsigned long long)(paddr + size));
675 return -EINVAL;
676 }
677 return 0;
678 }
679
680 /*
681 * Internal interface to free a range of physical memory.
682 * Frees non RAM regions only.
683 */
684 static void free_pfn_range(u64 paddr, unsigned long size)
685 {
686 int is_ram;
687
688 is_ram = pagerange_is_ram(paddr, paddr + size);
689 if (is_ram == 0)
690 free_memtype(paddr, paddr + size);
691 }
692
693 /*
694 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
695 * copied through copy_page_range().
696 *
697 * If the vma has a linear pfn mapping for the entire range, we get the prot
698 * from pte and reserve the entire vma range with single reserve_pfn_range call.
699 * Otherwise, we reserve the entire vma range, my ging through the PTEs page
700 * by page to get physical address and protection.
701 */
702 int track_pfn_vma_copy(struct vm_area_struct *vma)
703 {
704 int retval = 0;
705 unsigned long i, j;
706 resource_size_t paddr;
707 unsigned long prot;
708 unsigned long vma_start = vma->vm_start;
709 unsigned long vma_end = vma->vm_end;
710 unsigned long vma_size = vma_end - vma_start;
711 pgprot_t pgprot;
712
713 if (!pat_enabled)
714 return 0;
715
716 if (is_linear_pfn_mapping(vma)) {
717 /*
718 * reserve the whole chunk covered by vma. We need the
719 * starting address and protection from pte.
720 */
721 if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
722 WARN_ON_ONCE(1);
723 return -EINVAL;
724 }
725 pgprot = __pgprot(prot);
726 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
727 }
728
729 /* reserve entire vma page by page, using pfn and prot from pte */
730 for (i = 0; i < vma_size; i += PAGE_SIZE) {
731 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
732 continue;
733
734 pgprot = __pgprot(prot);
735 retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
736 if (retval)
737 goto cleanup_ret;
738 }
739 return 0;
740
741 cleanup_ret:
742 /* Reserve error: Cleanup partial reservation and return error */
743 for (j = 0; j < i; j += PAGE_SIZE) {
744 if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
745 continue;
746
747 free_pfn_range(paddr, PAGE_SIZE);
748 }
749
750 return retval;
751 }
752
753 /*
754 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
755 * for physical range indicated by pfn and size.
756 *
757 * prot is passed in as a parameter for the new mapping. If the vma has a
758 * linear pfn mapping for the entire range reserve the entire vma range with
759 * single reserve_pfn_range call.
760 * Otherwise, we look t the pfn and size and reserve only the specified range
761 * page by page.
762 *
763 * Note that this function can be called with caller trying to map only a
764 * subrange/page inside the vma.
765 */
766 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
767 unsigned long pfn, unsigned long size)
768 {
769 int retval = 0;
770 unsigned long i, j;
771 resource_size_t base_paddr;
772 resource_size_t paddr;
773 unsigned long vma_start = vma->vm_start;
774 unsigned long vma_end = vma->vm_end;
775 unsigned long vma_size = vma_end - vma_start;
776
777 if (!pat_enabled)
778 return 0;
779
780 if (is_linear_pfn_mapping(vma)) {
781 /* reserve the whole chunk starting from vm_pgoff */
782 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
783 return reserve_pfn_range(paddr, vma_size, prot, 0);
784 }
785
786 /* reserve page by page using pfn and size */
787 base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
788 for (i = 0; i < size; i += PAGE_SIZE) {
789 paddr = base_paddr + i;
790 retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
791 if (retval)
792 goto cleanup_ret;
793 }
794 return 0;
795
796 cleanup_ret:
797 /* Reserve error: Cleanup partial reservation and return error */
798 for (j = 0; j < i; j += PAGE_SIZE) {
799 paddr = base_paddr + j;
800 free_pfn_range(paddr, PAGE_SIZE);
801 }
802
803 return retval;
804 }
805
806 /*
807 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
808 * untrack can be called for a specific region indicated by pfn and size or
809 * can be for the entire vma (in which case size can be zero).
810 */
811 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
812 unsigned long size)
813 {
814 unsigned long i;
815 resource_size_t paddr;
816 unsigned long prot;
817 unsigned long vma_start = vma->vm_start;
818 unsigned long vma_end = vma->vm_end;
819 unsigned long vma_size = vma_end - vma_start;
820
821 if (!pat_enabled)
822 return;
823
824 if (is_linear_pfn_mapping(vma)) {
825 /* free the whole chunk starting from vm_pgoff */
826 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
827 free_pfn_range(paddr, vma_size);
828 return;
829 }
830
831 if (size != 0 && size != vma_size) {
832 /* free page by page, using pfn and size */
833 paddr = (resource_size_t)pfn << PAGE_SHIFT;
834 for (i = 0; i < size; i += PAGE_SIZE) {
835 paddr = paddr + i;
836 free_pfn_range(paddr, PAGE_SIZE);
837 }
838 } else {
839 /* free entire vma, page by page, using the pfn from pte */
840 for (i = 0; i < vma_size; i += PAGE_SIZE) {
841 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
842 continue;
843
844 free_pfn_range(paddr, PAGE_SIZE);
845 }
846 }
847 }
848
849 pgprot_t pgprot_writecombine(pgprot_t prot)
850 {
851 if (pat_enabled)
852 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
853 else
854 return pgprot_noncached(prot);
855 }
856
857 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
858
859 /* get Nth element of the linked list */
860 static struct memtype *memtype_get_idx(loff_t pos)
861 {
862 struct memtype *list_node, *print_entry;
863 int i = 1;
864
865 print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
866 if (!print_entry)
867 return NULL;
868
869 spin_lock(&memtype_lock);
870 list_for_each_entry(list_node, &memtype_list, nd) {
871 if (pos == i) {
872 *print_entry = *list_node;
873 spin_unlock(&memtype_lock);
874 return print_entry;
875 }
876 ++i;
877 }
878 spin_unlock(&memtype_lock);
879 kfree(print_entry);
880
881 return NULL;
882 }
883
884 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
885 {
886 if (*pos == 0) {
887 ++*pos;
888 seq_printf(seq, "PAT memtype list:\n");
889 }
890
891 return memtype_get_idx(*pos);
892 }
893
894 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
895 {
896 ++*pos;
897 return memtype_get_idx(*pos);
898 }
899
900 static void memtype_seq_stop(struct seq_file *seq, void *v)
901 {
902 }
903
904 static int memtype_seq_show(struct seq_file *seq, void *v)
905 {
906 struct memtype *print_entry = (struct memtype *)v;
907
908 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
909 print_entry->start, print_entry->end);
910 kfree(print_entry);
911
912 return 0;
913 }
914
915 static struct seq_operations memtype_seq_ops = {
916 .start = memtype_seq_start,
917 .next = memtype_seq_next,
918 .stop = memtype_seq_stop,
919 .show = memtype_seq_show,
920 };
921
922 static int memtype_seq_open(struct inode *inode, struct file *file)
923 {
924 return seq_open(file, &memtype_seq_ops);
925 }
926
927 static const struct file_operations memtype_fops = {
928 .open = memtype_seq_open,
929 .read = seq_read,
930 .llseek = seq_lseek,
931 .release = seq_release,
932 };
933
934 static int __init pat_memtype_list_init(void)
935 {
936 debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
937 NULL, &memtype_fops);
938 return 0;
939 }
940
941 late_initcall(pat_memtype_list_init);
942
943 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
This page took 0.050008 seconds and 6 git commands to generate.