Merge branch 'core/percpu' into stackprotector
[deliverable/linux.git] / arch / x86 / mm / pat.c
1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/fs.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/pgtable.h>
22 #include <asm/fcntl.h>
23 #include <asm/e820.h>
24 #include <asm/mtrr.h>
25 #include <asm/page.h>
26 #include <asm/msr.h>
27 #include <asm/pat.h>
28 #include <asm/io.h>
29
30 #ifdef CONFIG_X86_PAT
31 int __read_mostly pat_enabled = 1;
32
33 void __cpuinit pat_disable(char *reason)
34 {
35 pat_enabled = 0;
36 printk(KERN_INFO "%s\n", reason);
37 }
38
39 static int __init nopat(char *str)
40 {
41 pat_disable("PAT support disabled.");
42 return 0;
43 }
44 early_param("nopat", nopat);
45 #endif
46
47
48 static int debug_enable;
49
50 static int __init pat_debug_setup(char *str)
51 {
52 debug_enable = 1;
53 return 0;
54 }
55 __setup("debugpat", pat_debug_setup);
56
57 #define dprintk(fmt, arg...) \
58 do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
59
60
61 static u64 __read_mostly boot_pat_state;
62
63 enum {
64 PAT_UC = 0, /* uncached */
65 PAT_WC = 1, /* Write combining */
66 PAT_WT = 4, /* Write Through */
67 PAT_WP = 5, /* Write Protected */
68 PAT_WB = 6, /* Write Back (default) */
69 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
70 };
71
72 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
73
74 void pat_init(void)
75 {
76 u64 pat;
77
78 if (!pat_enabled)
79 return;
80
81 /* Paranoia check. */
82 if (!cpu_has_pat && boot_pat_state) {
83 /*
84 * If this happens we are on a secondary CPU, but
85 * switched to PAT on the boot CPU. We have no way to
86 * undo PAT.
87 */
88 printk(KERN_ERR "PAT enabled, "
89 "but not supported by secondary CPU\n");
90 BUG();
91 }
92
93 /* Set PWT to Write-Combining. All other bits stay the same */
94 /*
95 * PTE encoding used in Linux:
96 * PAT
97 * |PCD
98 * ||PWT
99 * |||
100 * 000 WB _PAGE_CACHE_WB
101 * 001 WC _PAGE_CACHE_WC
102 * 010 UC- _PAGE_CACHE_UC_MINUS
103 * 011 UC _PAGE_CACHE_UC
104 * PAT bit unused
105 */
106 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
107 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
108
109 /* Boot CPU check */
110 if (!boot_pat_state)
111 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
112
113 wrmsrl(MSR_IA32_CR_PAT, pat);
114 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
115 smp_processor_id(), boot_pat_state, pat);
116 }
117
118 #undef PAT
119
120 static char *cattr_name(unsigned long flags)
121 {
122 switch (flags & _PAGE_CACHE_MASK) {
123 case _PAGE_CACHE_UC: return "uncached";
124 case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
125 case _PAGE_CACHE_WB: return "write-back";
126 case _PAGE_CACHE_WC: return "write-combining";
127 default: return "broken";
128 }
129 }
130
131 /*
132 * The global memtype list keeps track of memory type for specific
133 * physical memory areas. Conflicting memory types in different
134 * mappings can cause CPU cache corruption. To avoid this we keep track.
135 *
136 * The list is sorted based on starting address and can contain multiple
137 * entries for each address (this allows reference counting for overlapping
138 * areas). All the aliases have the same cache attributes of course.
139 * Zero attributes are represented as holes.
140 *
141 * Currently the data structure is a list because the number of mappings
142 * are expected to be relatively small. If this should be a problem
143 * it could be changed to a rbtree or similar.
144 *
145 * memtype_lock protects the whole list.
146 */
147
148 struct memtype {
149 u64 start;
150 u64 end;
151 unsigned long type;
152 struct list_head nd;
153 };
154
155 static LIST_HEAD(memtype_list);
156 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
157
158 /*
159 * Does intersection of PAT memory type and MTRR memory type and returns
160 * the resulting memory type as PAT understands it.
161 * (Type in pat and mtrr will not have same value)
162 * The intersection is based on "Effective Memory Type" tables in IA-32
163 * SDM vol 3a
164 */
165 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
166 {
167 /*
168 * Look for MTRR hint to get the effective type in case where PAT
169 * request is for WB.
170 */
171 if (req_type == _PAGE_CACHE_WB) {
172 u8 mtrr_type;
173
174 mtrr_type = mtrr_type_lookup(start, end);
175 if (mtrr_type == MTRR_TYPE_UNCACHABLE)
176 return _PAGE_CACHE_UC;
177 if (mtrr_type == MTRR_TYPE_WRCOMB)
178 return _PAGE_CACHE_WC;
179 }
180
181 return req_type;
182 }
183
184 static int
185 chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
186 {
187 if (new->type != entry->type) {
188 if (type) {
189 new->type = entry->type;
190 *type = entry->type;
191 } else
192 goto conflict;
193 }
194
195 /* check overlaps with more than one entry in the list */
196 list_for_each_entry_continue(entry, &memtype_list, nd) {
197 if (new->end <= entry->start)
198 break;
199 else if (new->type != entry->type)
200 goto conflict;
201 }
202 return 0;
203
204 conflict:
205 printk(KERN_INFO "%s:%d conflicting memory types "
206 "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
207 new->end, cattr_name(new->type), cattr_name(entry->type));
208 return -EBUSY;
209 }
210
211 static struct memtype *cached_entry;
212 static u64 cached_start;
213
214 /*
215 * For RAM pages, mark the pages as non WB memory type using
216 * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
217 * set_memory_wc() on a RAM page at a time before marking it as WB again.
218 * This is ok, because only one driver will be owning the page and
219 * doing set_memory_*() calls.
220 *
221 * For now, we use PageNonWB to track that the RAM page is being mapped
222 * as non WB. In future, we will have to use one more flag
223 * (or some other mechanism in page_struct) to distinguish between
224 * UC and WC mapping.
225 */
226 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
227 unsigned long *new_type)
228 {
229 struct page *page;
230 u64 pfn, end_pfn;
231
232 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
233 page = pfn_to_page(pfn);
234 if (page_mapped(page) || PageNonWB(page))
235 goto out;
236
237 SetPageNonWB(page);
238 }
239 return 0;
240
241 out:
242 end_pfn = pfn;
243 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
244 page = pfn_to_page(pfn);
245 ClearPageNonWB(page);
246 }
247
248 return -EINVAL;
249 }
250
251 static int free_ram_pages_type(u64 start, u64 end)
252 {
253 struct page *page;
254 u64 pfn, end_pfn;
255
256 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
257 page = pfn_to_page(pfn);
258 if (page_mapped(page) || !PageNonWB(page))
259 goto out;
260
261 ClearPageNonWB(page);
262 }
263 return 0;
264
265 out:
266 end_pfn = pfn;
267 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
268 page = pfn_to_page(pfn);
269 SetPageNonWB(page);
270 }
271 return -EINVAL;
272 }
273
274 /*
275 * req_type typically has one of the:
276 * - _PAGE_CACHE_WB
277 * - _PAGE_CACHE_WC
278 * - _PAGE_CACHE_UC_MINUS
279 * - _PAGE_CACHE_UC
280 *
281 * req_type will have a special case value '-1', when requester want to inherit
282 * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
283 *
284 * If new_type is NULL, function will return an error if it cannot reserve the
285 * region with req_type. If new_type is non-NULL, function will return
286 * available type in new_type in case of no error. In case of any error
287 * it will return a negative return value.
288 */
289 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
290 unsigned long *new_type)
291 {
292 struct memtype *new, *entry;
293 unsigned long actual_type;
294 struct list_head *where;
295 int is_range_ram;
296 int err = 0;
297
298 BUG_ON(start >= end); /* end is exclusive */
299
300 if (!pat_enabled) {
301 /* This is identical to page table setting without PAT */
302 if (new_type) {
303 if (req_type == -1)
304 *new_type = _PAGE_CACHE_WB;
305 else
306 *new_type = req_type & _PAGE_CACHE_MASK;
307 }
308 return 0;
309 }
310
311 /* Low ISA region is always mapped WB in page table. No need to track */
312 if (is_ISA_range(start, end - 1)) {
313 if (new_type)
314 *new_type = _PAGE_CACHE_WB;
315 return 0;
316 }
317
318 if (req_type == -1) {
319 /*
320 * Call mtrr_lookup to get the type hint. This is an
321 * optimization for /dev/mem mmap'ers into WB memory (BIOS
322 * tools and ACPI tools). Use WB request for WB memory and use
323 * UC_MINUS otherwise.
324 */
325 u8 mtrr_type = mtrr_type_lookup(start, end);
326
327 if (mtrr_type == MTRR_TYPE_WRBACK)
328 actual_type = _PAGE_CACHE_WB;
329 else
330 actual_type = _PAGE_CACHE_UC_MINUS;
331 } else {
332 actual_type = pat_x_mtrr_type(start, end,
333 req_type & _PAGE_CACHE_MASK);
334 }
335
336 /*
337 * For legacy reasons, some parts of the physical address range in the
338 * legacy 1MB region is treated as non-RAM (even when listed as RAM in
339 * the e820 tables). So we will track the memory attributes of this
340 * legacy 1MB region using the linear memtype_list always.
341 */
342 if (end >= ISA_END_ADDRESS) {
343 is_range_ram = pagerange_is_ram(start, end);
344 if (is_range_ram == 1)
345 return reserve_ram_pages_type(start, end, req_type,
346 new_type);
347 else if (is_range_ram < 0)
348 return -EINVAL;
349 }
350
351 new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
352 if (!new)
353 return -ENOMEM;
354
355 new->start = start;
356 new->end = end;
357 new->type = actual_type;
358
359 if (new_type)
360 *new_type = actual_type;
361
362 spin_lock(&memtype_lock);
363
364 if (cached_entry && start >= cached_start)
365 entry = cached_entry;
366 else
367 entry = list_entry(&memtype_list, struct memtype, nd);
368
369 /* Search for existing mapping that overlaps the current range */
370 where = NULL;
371 list_for_each_entry_continue(entry, &memtype_list, nd) {
372 if (end <= entry->start) {
373 where = entry->nd.prev;
374 cached_entry = list_entry(where, struct memtype, nd);
375 break;
376 } else if (start <= entry->start) { /* end > entry->start */
377 err = chk_conflict(new, entry, new_type);
378 if (!err) {
379 dprintk("Overlap at 0x%Lx-0x%Lx\n",
380 entry->start, entry->end);
381 where = entry->nd.prev;
382 cached_entry = list_entry(where,
383 struct memtype, nd);
384 }
385 break;
386 } else if (start < entry->end) { /* start > entry->start */
387 err = chk_conflict(new, entry, new_type);
388 if (!err) {
389 dprintk("Overlap at 0x%Lx-0x%Lx\n",
390 entry->start, entry->end);
391 cached_entry = list_entry(entry->nd.prev,
392 struct memtype, nd);
393
394 /*
395 * Move to right position in the linked
396 * list to add this new entry
397 */
398 list_for_each_entry_continue(entry,
399 &memtype_list, nd) {
400 if (start <= entry->start) {
401 where = entry->nd.prev;
402 break;
403 }
404 }
405 }
406 break;
407 }
408 }
409
410 if (err) {
411 printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
412 "track %s, req %s\n",
413 start, end, cattr_name(new->type), cattr_name(req_type));
414 kfree(new);
415 spin_unlock(&memtype_lock);
416
417 return err;
418 }
419
420 cached_start = start;
421
422 if (where)
423 list_add(&new->nd, where);
424 else
425 list_add_tail(&new->nd, &memtype_list);
426
427 spin_unlock(&memtype_lock);
428
429 dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
430 start, end, cattr_name(new->type), cattr_name(req_type),
431 new_type ? cattr_name(*new_type) : "-");
432
433 return err;
434 }
435
436 int free_memtype(u64 start, u64 end)
437 {
438 struct memtype *entry;
439 int err = -EINVAL;
440 int is_range_ram;
441
442 if (!pat_enabled)
443 return 0;
444
445 /* Low ISA region is always mapped WB. No need to track */
446 if (is_ISA_range(start, end - 1))
447 return 0;
448
449 /*
450 * For legacy reasons, some parts of the physical address range in the
451 * legacy 1MB region is treated as non-RAM (even when listed as RAM in
452 * the e820 tables). So we will track the memory attributes of this
453 * legacy 1MB region using the linear memtype_list always.
454 */
455 if (end >= ISA_END_ADDRESS) {
456 is_range_ram = pagerange_is_ram(start, end);
457 if (is_range_ram == 1)
458 return free_ram_pages_type(start, end);
459 else if (is_range_ram < 0)
460 return -EINVAL;
461 }
462
463 spin_lock(&memtype_lock);
464 list_for_each_entry(entry, &memtype_list, nd) {
465 if (entry->start == start && entry->end == end) {
466 if (cached_entry == entry || cached_start == start)
467 cached_entry = NULL;
468
469 list_del(&entry->nd);
470 kfree(entry);
471 err = 0;
472 break;
473 }
474 }
475 spin_unlock(&memtype_lock);
476
477 if (err) {
478 printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
479 current->comm, current->pid, start, end);
480 }
481
482 dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
483
484 return err;
485 }
486
487
488 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
489 unsigned long size, pgprot_t vma_prot)
490 {
491 return vma_prot;
492 }
493
494 #ifdef CONFIG_STRICT_DEVMEM
495 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
496 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
497 {
498 return 1;
499 }
500 #else
501 /* This check is needed to avoid cache aliasing when PAT is enabled */
502 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
503 {
504 u64 from = ((u64)pfn) << PAGE_SHIFT;
505 u64 to = from + size;
506 u64 cursor = from;
507
508 if (!pat_enabled)
509 return 1;
510
511 while (cursor < to) {
512 if (!devmem_is_allowed(pfn)) {
513 printk(KERN_INFO
514 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
515 current->comm, from, to);
516 return 0;
517 }
518 cursor += PAGE_SIZE;
519 pfn++;
520 }
521 return 1;
522 }
523 #endif /* CONFIG_STRICT_DEVMEM */
524
525 /*
526 * Change the memory type for the physial address range in kernel identity
527 * mapping space if that range is a part of identity map.
528 */
529 static int kernel_map_sync_memtype(u64 base, unsigned long size,
530 unsigned long flags)
531 {
532 unsigned long id_sz;
533 int ret;
534
535 if (!pat_enabled || base >= __pa(high_memory))
536 return 0;
537
538 id_sz = (__pa(high_memory) < base + size) ?
539 __pa(high_memory) - base :
540 size;
541
542 ret = ioremap_change_attr((unsigned long)__va(base), id_sz, flags);
543 /*
544 * -EFAULT return means that the addr was not valid and did not have
545 * any identity mapping. That case is a success for
546 * kernel_map_sync_memtype.
547 */
548 if (ret == -EFAULT)
549 ret = 0;
550
551 return ret;
552 }
553
554 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
555 unsigned long size, pgprot_t *vma_prot)
556 {
557 u64 offset = ((u64) pfn) << PAGE_SHIFT;
558 unsigned long flags = -1;
559 int retval;
560
561 if (!range_is_allowed(pfn, size))
562 return 0;
563
564 if (file->f_flags & O_SYNC) {
565 flags = _PAGE_CACHE_UC_MINUS;
566 }
567
568 #ifdef CONFIG_X86_32
569 /*
570 * On the PPro and successors, the MTRRs are used to set
571 * memory types for physical addresses outside main memory,
572 * so blindly setting UC or PWT on those pages is wrong.
573 * For Pentiums and earlier, the surround logic should disable
574 * caching for the high addresses through the KEN pin, but
575 * we maintain the tradition of paranoia in this code.
576 */
577 if (!pat_enabled &&
578 !(boot_cpu_has(X86_FEATURE_MTRR) ||
579 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
580 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
581 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
582 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
583 flags = _PAGE_CACHE_UC;
584 }
585 #endif
586
587 /*
588 * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
589 *
590 * Without O_SYNC, we want to get
591 * - WB for WB-able memory and no other conflicting mappings
592 * - UC_MINUS for non-WB-able memory with no other conflicting mappings
593 * - Inherit from confliting mappings otherwise
594 */
595 if (flags != -1) {
596 retval = reserve_memtype(offset, offset + size, flags, NULL);
597 } else {
598 retval = reserve_memtype(offset, offset + size, -1, &flags);
599 }
600
601 if (retval < 0)
602 return 0;
603
604 if (kernel_map_sync_memtype(offset, size, flags)) {
605 free_memtype(offset, offset + size);
606 printk(KERN_INFO
607 "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
608 current->comm, current->pid,
609 cattr_name(flags),
610 offset, (unsigned long long)(offset + size));
611 return 0;
612 }
613
614 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
615 flags);
616 return 1;
617 }
618
619 void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
620 {
621 unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
622 u64 addr = (u64)pfn << PAGE_SHIFT;
623 unsigned long flags;
624
625 reserve_memtype(addr, addr + size, want_flags, &flags);
626 if (flags != want_flags) {
627 printk(KERN_INFO
628 "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
629 current->comm, current->pid,
630 cattr_name(want_flags),
631 addr, (unsigned long long)(addr + size),
632 cattr_name(flags));
633 }
634 }
635
636 void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
637 {
638 u64 addr = (u64)pfn << PAGE_SHIFT;
639
640 free_memtype(addr, addr + size);
641 }
642
643 /*
644 * Internal interface to reserve a range of physical memory with prot.
645 * Reserved non RAM regions only and after successful reserve_memtype,
646 * this func also keeps identity mapping (if any) in sync with this new prot.
647 */
648 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
649 int strict_prot)
650 {
651 int is_ram = 0;
652 int ret;
653 unsigned long flags;
654 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
655
656 is_ram = pagerange_is_ram(paddr, paddr + size);
657
658 if (is_ram != 0) {
659 /*
660 * For mapping RAM pages, drivers need to call
661 * set_memory_[uc|wc|wb] directly, for reserve and free, before
662 * setting up the PTE.
663 */
664 WARN_ON_ONCE(1);
665 return 0;
666 }
667
668 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
669 if (ret)
670 return ret;
671
672 if (flags != want_flags) {
673 if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
674 free_memtype(paddr, paddr + size);
675 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
676 " for %Lx-%Lx, got %s\n",
677 current->comm, current->pid,
678 cattr_name(want_flags),
679 (unsigned long long)paddr,
680 (unsigned long long)(paddr + size),
681 cattr_name(flags));
682 return -EINVAL;
683 }
684 /*
685 * We allow returning different type than the one requested in
686 * non strict case.
687 */
688 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
689 (~_PAGE_CACHE_MASK)) |
690 flags);
691 }
692
693 if (kernel_map_sync_memtype(paddr, size, flags)) {
694 free_memtype(paddr, paddr + size);
695 printk(KERN_ERR
696 "%s:%d reserve_pfn_range ioremap_change_attr failed %s "
697 "for %Lx-%Lx\n",
698 current->comm, current->pid,
699 cattr_name(flags),
700 (unsigned long long)paddr,
701 (unsigned long long)(paddr + size));
702 return -EINVAL;
703 }
704 return 0;
705 }
706
707 /*
708 * Internal interface to free a range of physical memory.
709 * Frees non RAM regions only.
710 */
711 static void free_pfn_range(u64 paddr, unsigned long size)
712 {
713 int is_ram;
714
715 is_ram = pagerange_is_ram(paddr, paddr + size);
716 if (is_ram == 0)
717 free_memtype(paddr, paddr + size);
718 }
719
720 /*
721 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
722 * copied through copy_page_range().
723 *
724 * If the vma has a linear pfn mapping for the entire range, we get the prot
725 * from pte and reserve the entire vma range with single reserve_pfn_range call.
726 * Otherwise, we reserve the entire vma range, my ging through the PTEs page
727 * by page to get physical address and protection.
728 */
729 int track_pfn_vma_copy(struct vm_area_struct *vma)
730 {
731 int retval = 0;
732 unsigned long i, j;
733 resource_size_t paddr;
734 unsigned long prot;
735 unsigned long vma_start = vma->vm_start;
736 unsigned long vma_end = vma->vm_end;
737 unsigned long vma_size = vma_end - vma_start;
738 pgprot_t pgprot;
739
740 if (!pat_enabled)
741 return 0;
742
743 if (is_linear_pfn_mapping(vma)) {
744 /*
745 * reserve the whole chunk covered by vma. We need the
746 * starting address and protection from pte.
747 */
748 if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
749 WARN_ON_ONCE(1);
750 return -EINVAL;
751 }
752 pgprot = __pgprot(prot);
753 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
754 }
755
756 /* reserve entire vma page by page, using pfn and prot from pte */
757 for (i = 0; i < vma_size; i += PAGE_SIZE) {
758 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
759 continue;
760
761 pgprot = __pgprot(prot);
762 retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
763 if (retval)
764 goto cleanup_ret;
765 }
766 return 0;
767
768 cleanup_ret:
769 /* Reserve error: Cleanup partial reservation and return error */
770 for (j = 0; j < i; j += PAGE_SIZE) {
771 if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
772 continue;
773
774 free_pfn_range(paddr, PAGE_SIZE);
775 }
776
777 return retval;
778 }
779
780 /*
781 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
782 * for physical range indicated by pfn and size.
783 *
784 * prot is passed in as a parameter for the new mapping. If the vma has a
785 * linear pfn mapping for the entire range reserve the entire vma range with
786 * single reserve_pfn_range call.
787 * Otherwise, we look t the pfn and size and reserve only the specified range
788 * page by page.
789 *
790 * Note that this function can be called with caller trying to map only a
791 * subrange/page inside the vma.
792 */
793 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
794 unsigned long pfn, unsigned long size)
795 {
796 int retval = 0;
797 unsigned long i, j;
798 resource_size_t base_paddr;
799 resource_size_t paddr;
800 unsigned long vma_start = vma->vm_start;
801 unsigned long vma_end = vma->vm_end;
802 unsigned long vma_size = vma_end - vma_start;
803
804 if (!pat_enabled)
805 return 0;
806
807 if (is_linear_pfn_mapping(vma)) {
808 /* reserve the whole chunk starting from vm_pgoff */
809 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
810 return reserve_pfn_range(paddr, vma_size, prot, 0);
811 }
812
813 /* reserve page by page using pfn and size */
814 base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
815 for (i = 0; i < size; i += PAGE_SIZE) {
816 paddr = base_paddr + i;
817 retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
818 if (retval)
819 goto cleanup_ret;
820 }
821 return 0;
822
823 cleanup_ret:
824 /* Reserve error: Cleanup partial reservation and return error */
825 for (j = 0; j < i; j += PAGE_SIZE) {
826 paddr = base_paddr + j;
827 free_pfn_range(paddr, PAGE_SIZE);
828 }
829
830 return retval;
831 }
832
833 /*
834 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
835 * untrack can be called for a specific region indicated by pfn and size or
836 * can be for the entire vma (in which case size can be zero).
837 */
838 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
839 unsigned long size)
840 {
841 unsigned long i;
842 resource_size_t paddr;
843 unsigned long prot;
844 unsigned long vma_start = vma->vm_start;
845 unsigned long vma_end = vma->vm_end;
846 unsigned long vma_size = vma_end - vma_start;
847
848 if (!pat_enabled)
849 return;
850
851 if (is_linear_pfn_mapping(vma)) {
852 /* free the whole chunk starting from vm_pgoff */
853 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
854 free_pfn_range(paddr, vma_size);
855 return;
856 }
857
858 if (size != 0 && size != vma_size) {
859 /* free page by page, using pfn and size */
860 paddr = (resource_size_t)pfn << PAGE_SHIFT;
861 for (i = 0; i < size; i += PAGE_SIZE) {
862 paddr = paddr + i;
863 free_pfn_range(paddr, PAGE_SIZE);
864 }
865 } else {
866 /* free entire vma, page by page, using the pfn from pte */
867 for (i = 0; i < vma_size; i += PAGE_SIZE) {
868 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
869 continue;
870
871 free_pfn_range(paddr, PAGE_SIZE);
872 }
873 }
874 }
875
876 pgprot_t pgprot_writecombine(pgprot_t prot)
877 {
878 if (pat_enabled)
879 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
880 else
881 return pgprot_noncached(prot);
882 }
883
884 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
885
886 /* get Nth element of the linked list */
887 static struct memtype *memtype_get_idx(loff_t pos)
888 {
889 struct memtype *list_node, *print_entry;
890 int i = 1;
891
892 print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
893 if (!print_entry)
894 return NULL;
895
896 spin_lock(&memtype_lock);
897 list_for_each_entry(list_node, &memtype_list, nd) {
898 if (pos == i) {
899 *print_entry = *list_node;
900 spin_unlock(&memtype_lock);
901 return print_entry;
902 }
903 ++i;
904 }
905 spin_unlock(&memtype_lock);
906 kfree(print_entry);
907
908 return NULL;
909 }
910
911 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
912 {
913 if (*pos == 0) {
914 ++*pos;
915 seq_printf(seq, "PAT memtype list:\n");
916 }
917
918 return memtype_get_idx(*pos);
919 }
920
921 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
922 {
923 ++*pos;
924 return memtype_get_idx(*pos);
925 }
926
927 static void memtype_seq_stop(struct seq_file *seq, void *v)
928 {
929 }
930
931 static int memtype_seq_show(struct seq_file *seq, void *v)
932 {
933 struct memtype *print_entry = (struct memtype *)v;
934
935 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
936 print_entry->start, print_entry->end);
937 kfree(print_entry);
938
939 return 0;
940 }
941
942 static struct seq_operations memtype_seq_ops = {
943 .start = memtype_seq_start,
944 .next = memtype_seq_next,
945 .stop = memtype_seq_stop,
946 .show = memtype_seq_show,
947 };
948
949 static int memtype_seq_open(struct inode *inode, struct file *file)
950 {
951 return seq_open(file, &memtype_seq_ops);
952 }
953
954 static const struct file_operations memtype_fops = {
955 .open = memtype_seq_open,
956 .read = seq_read,
957 .llseek = seq_lseek,
958 .release = seq_release,
959 };
960
961 static int __init pat_memtype_list_init(void)
962 {
963 debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
964 NULL, &memtype_fops);
965 return 0;
966 }
967
968 late_initcall(pat_memtype_list_init);
969
970 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
This page took 0.051031 seconds and 6 git commands to generate.