Merge remote-tracking branch 'asoc/fix/samsung' into asoc-linus
[deliverable/linux.git] / arch / x86 / mm / pgtable.c
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20 return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25 struct page *pte;
26
27 pte = alloc_pages(__userpte_alloc_gfp, 0);
28 if (!pte)
29 return NULL;
30 if (!pgtable_page_ctor(pte)) {
31 __free_page(pte);
32 return NULL;
33 }
34 return pte;
35 }
36
37 static int __init setup_userpte(char *arg)
38 {
39 if (!arg)
40 return -EINVAL;
41
42 /*
43 * "userpte=nohigh" disables allocation of user pagetables in
44 * high memory.
45 */
46 if (strcmp(arg, "nohigh") == 0)
47 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
48 else
49 return -EINVAL;
50 return 0;
51 }
52 early_param("userpte", setup_userpte);
53
54 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
55 {
56 pgtable_page_dtor(pte);
57 paravirt_release_pte(page_to_pfn(pte));
58 tlb_remove_page(tlb, pte);
59 }
60
61 #if PAGETABLE_LEVELS > 2
62 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
63 {
64 struct page *page = virt_to_page(pmd);
65 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
66 /*
67 * NOTE! For PAE, any changes to the top page-directory-pointer-table
68 * entries need a full cr3 reload to flush.
69 */
70 #ifdef CONFIG_X86_PAE
71 tlb->need_flush_all = 1;
72 #endif
73 pgtable_pmd_page_dtor(page);
74 tlb_remove_page(tlb, page);
75 }
76
77 #if PAGETABLE_LEVELS > 3
78 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
79 {
80 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
81 tlb_remove_page(tlb, virt_to_page(pud));
82 }
83 #endif /* PAGETABLE_LEVELS > 3 */
84 #endif /* PAGETABLE_LEVELS > 2 */
85
86 static inline void pgd_list_add(pgd_t *pgd)
87 {
88 struct page *page = virt_to_page(pgd);
89
90 list_add(&page->lru, &pgd_list);
91 }
92
93 static inline void pgd_list_del(pgd_t *pgd)
94 {
95 struct page *page = virt_to_page(pgd);
96
97 list_del(&page->lru);
98 }
99
100 #define UNSHARED_PTRS_PER_PGD \
101 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102
103
104 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
105 {
106 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
107 virt_to_page(pgd)->index = (pgoff_t)mm;
108 }
109
110 struct mm_struct *pgd_page_get_mm(struct page *page)
111 {
112 return (struct mm_struct *)page->index;
113 }
114
115 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
116 {
117 /* If the pgd points to a shared pagetable level (either the
118 ptes in non-PAE, or shared PMD in PAE), then just copy the
119 references from swapper_pg_dir. */
120 if (PAGETABLE_LEVELS == 2 ||
121 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
122 PAGETABLE_LEVELS == 4) {
123 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
124 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
125 KERNEL_PGD_PTRS);
126 }
127
128 /* list required to sync kernel mapping updates */
129 if (!SHARED_KERNEL_PMD) {
130 pgd_set_mm(pgd, mm);
131 pgd_list_add(pgd);
132 }
133 }
134
135 static void pgd_dtor(pgd_t *pgd)
136 {
137 if (SHARED_KERNEL_PMD)
138 return;
139
140 spin_lock(&pgd_lock);
141 pgd_list_del(pgd);
142 spin_unlock(&pgd_lock);
143 }
144
145 /*
146 * List of all pgd's needed for non-PAE so it can invalidate entries
147 * in both cached and uncached pgd's; not needed for PAE since the
148 * kernel pmd is shared. If PAE were not to share the pmd a similar
149 * tactic would be needed. This is essentially codepath-based locking
150 * against pageattr.c; it is the unique case in which a valid change
151 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
152 * vmalloc faults work because attached pagetables are never freed.
153 * -- nyc
154 */
155
156 #ifdef CONFIG_X86_PAE
157 /*
158 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
159 * updating the top-level pagetable entries to guarantee the
160 * processor notices the update. Since this is expensive, and
161 * all 4 top-level entries are used almost immediately in a
162 * new process's life, we just pre-populate them here.
163 *
164 * Also, if we're in a paravirt environment where the kernel pmd is
165 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
166 * and initialize the kernel pmds here.
167 */
168 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
169
170 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
171 {
172 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
173
174 /* Note: almost everything apart from _PAGE_PRESENT is
175 reserved at the pmd (PDPT) level. */
176 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
177
178 /*
179 * According to Intel App note "TLBs, Paging-Structure Caches,
180 * and Their Invalidation", April 2007, document 317080-001,
181 * section 8.1: in PAE mode we explicitly have to flush the
182 * TLB via cr3 if the top-level pgd is changed...
183 */
184 flush_tlb_mm(mm);
185 }
186 #else /* !CONFIG_X86_PAE */
187
188 /* No need to prepopulate any pagetable entries in non-PAE modes. */
189 #define PREALLOCATED_PMDS 0
190
191 #endif /* CONFIG_X86_PAE */
192
193 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
194 {
195 int i;
196
197 for(i = 0; i < PREALLOCATED_PMDS; i++)
198 if (pmds[i]) {
199 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
200 free_page((unsigned long)pmds[i]);
201 mm_dec_nr_pmds(mm);
202 }
203 }
204
205 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
206 {
207 int i;
208 bool failed = false;
209
210 for(i = 0; i < PREALLOCATED_PMDS; i++) {
211 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
212 if (!pmd)
213 failed = true;
214 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
215 free_page((unsigned long)pmd);
216 pmd = NULL;
217 failed = true;
218 }
219 if (pmd)
220 mm_inc_nr_pmds(mm);
221 pmds[i] = pmd;
222 }
223
224 if (failed) {
225 free_pmds(mm, pmds);
226 return -ENOMEM;
227 }
228
229 return 0;
230 }
231
232 /*
233 * Mop up any pmd pages which may still be attached to the pgd.
234 * Normally they will be freed by munmap/exit_mmap, but any pmd we
235 * preallocate which never got a corresponding vma will need to be
236 * freed manually.
237 */
238 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
239 {
240 int i;
241
242 for(i = 0; i < PREALLOCATED_PMDS; i++) {
243 pgd_t pgd = pgdp[i];
244
245 if (pgd_val(pgd) != 0) {
246 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
247
248 pgdp[i] = native_make_pgd(0);
249
250 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
251 pmd_free(mm, pmd);
252 mm_dec_nr_pmds(mm);
253 }
254 }
255 }
256
257 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
258 {
259 pud_t *pud;
260 int i;
261
262 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
263 return;
264
265 pud = pud_offset(pgd, 0);
266
267 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
268 pmd_t *pmd = pmds[i];
269
270 if (i >= KERNEL_PGD_BOUNDARY)
271 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
272 sizeof(pmd_t) * PTRS_PER_PMD);
273
274 pud_populate(mm, pud, pmd);
275 }
276 }
277
278 pgd_t *pgd_alloc(struct mm_struct *mm)
279 {
280 pgd_t *pgd;
281 pmd_t *pmds[PREALLOCATED_PMDS];
282
283 pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
284
285 if (pgd == NULL)
286 goto out;
287
288 mm->pgd = pgd;
289
290 if (preallocate_pmds(mm, pmds) != 0)
291 goto out_free_pgd;
292
293 if (paravirt_pgd_alloc(mm) != 0)
294 goto out_free_pmds;
295
296 /*
297 * Make sure that pre-populating the pmds is atomic with
298 * respect to anything walking the pgd_list, so that they
299 * never see a partially populated pgd.
300 */
301 spin_lock(&pgd_lock);
302
303 pgd_ctor(mm, pgd);
304 pgd_prepopulate_pmd(mm, pgd, pmds);
305
306 spin_unlock(&pgd_lock);
307
308 return pgd;
309
310 out_free_pmds:
311 free_pmds(mm, pmds);
312 out_free_pgd:
313 free_page((unsigned long)pgd);
314 out:
315 return NULL;
316 }
317
318 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
319 {
320 pgd_mop_up_pmds(mm, pgd);
321 pgd_dtor(pgd);
322 paravirt_pgd_free(mm, pgd);
323 free_page((unsigned long)pgd);
324 }
325
326 /*
327 * Used to set accessed or dirty bits in the page table entries
328 * on other architectures. On x86, the accessed and dirty bits
329 * are tracked by hardware. However, do_wp_page calls this function
330 * to also make the pte writeable at the same time the dirty bit is
331 * set. In that case we do actually need to write the PTE.
332 */
333 int ptep_set_access_flags(struct vm_area_struct *vma,
334 unsigned long address, pte_t *ptep,
335 pte_t entry, int dirty)
336 {
337 int changed = !pte_same(*ptep, entry);
338
339 if (changed && dirty) {
340 *ptep = entry;
341 pte_update_defer(vma->vm_mm, address, ptep);
342 }
343
344 return changed;
345 }
346
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 int pmdp_set_access_flags(struct vm_area_struct *vma,
349 unsigned long address, pmd_t *pmdp,
350 pmd_t entry, int dirty)
351 {
352 int changed = !pmd_same(*pmdp, entry);
353
354 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
355
356 if (changed && dirty) {
357 *pmdp = entry;
358 pmd_update_defer(vma->vm_mm, address, pmdp);
359 /*
360 * We had a write-protection fault here and changed the pmd
361 * to to more permissive. No need to flush the TLB for that,
362 * #PF is architecturally guaranteed to do that and in the
363 * worst-case we'll generate a spurious fault.
364 */
365 }
366
367 return changed;
368 }
369 #endif
370
371 int ptep_test_and_clear_young(struct vm_area_struct *vma,
372 unsigned long addr, pte_t *ptep)
373 {
374 int ret = 0;
375
376 if (pte_young(*ptep))
377 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
378 (unsigned long *) &ptep->pte);
379
380 if (ret)
381 pte_update(vma->vm_mm, addr, ptep);
382
383 return ret;
384 }
385
386 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
387 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
388 unsigned long addr, pmd_t *pmdp)
389 {
390 int ret = 0;
391
392 if (pmd_young(*pmdp))
393 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
394 (unsigned long *)pmdp);
395
396 if (ret)
397 pmd_update(vma->vm_mm, addr, pmdp);
398
399 return ret;
400 }
401 #endif
402
403 int ptep_clear_flush_young(struct vm_area_struct *vma,
404 unsigned long address, pte_t *ptep)
405 {
406 /*
407 * On x86 CPUs, clearing the accessed bit without a TLB flush
408 * doesn't cause data corruption. [ It could cause incorrect
409 * page aging and the (mistaken) reclaim of hot pages, but the
410 * chance of that should be relatively low. ]
411 *
412 * So as a performance optimization don't flush the TLB when
413 * clearing the accessed bit, it will eventually be flushed by
414 * a context switch or a VM operation anyway. [ In the rare
415 * event of it not getting flushed for a long time the delay
416 * shouldn't really matter because there's no real memory
417 * pressure for swapout to react to. ]
418 */
419 return ptep_test_and_clear_young(vma, address, ptep);
420 }
421
422 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
423 int pmdp_clear_flush_young(struct vm_area_struct *vma,
424 unsigned long address, pmd_t *pmdp)
425 {
426 int young;
427
428 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
429
430 young = pmdp_test_and_clear_young(vma, address, pmdp);
431 if (young)
432 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
433
434 return young;
435 }
436
437 void pmdp_splitting_flush(struct vm_area_struct *vma,
438 unsigned long address, pmd_t *pmdp)
439 {
440 int set;
441 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
442 set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
443 (unsigned long *)pmdp);
444 if (set) {
445 pmd_update(vma->vm_mm, address, pmdp);
446 /* need tlb flush only to serialize against gup-fast */
447 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
448 }
449 }
450 #endif
451
452 /**
453 * reserve_top_address - reserves a hole in the top of kernel address space
454 * @reserve - size of hole to reserve
455 *
456 * Can be used to relocate the fixmap area and poke a hole in the top
457 * of kernel address space to make room for a hypervisor.
458 */
459 void __init reserve_top_address(unsigned long reserve)
460 {
461 #ifdef CONFIG_X86_32
462 BUG_ON(fixmaps_set > 0);
463 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
464 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
465 -reserve, __FIXADDR_TOP + PAGE_SIZE);
466 #endif
467 }
468
469 int fixmaps_set;
470
471 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
472 {
473 unsigned long address = __fix_to_virt(idx);
474
475 if (idx >= __end_of_fixed_addresses) {
476 BUG();
477 return;
478 }
479 set_pte_vaddr(address, pte);
480 fixmaps_set++;
481 }
482
483 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
484 pgprot_t flags)
485 {
486 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
487 }
This page took 0.040393 seconds and 5 git commands to generate.