x86: handle pgtable_page_ctor() fail
[deliverable/linux.git] / arch / x86 / mm / pgtable.c
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20 return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25 struct page *pte;
26
27 pte = alloc_pages(__userpte_alloc_gfp, 0);
28 if (!pte)
29 return NULL;
30 if (!pgtable_page_ctor(pte)) {
31 __free_page(pte);
32 return NULL;
33 }
34 return pte;
35 }
36
37 static int __init setup_userpte(char *arg)
38 {
39 if (!arg)
40 return -EINVAL;
41
42 /*
43 * "userpte=nohigh" disables allocation of user pagetables in
44 * high memory.
45 */
46 if (strcmp(arg, "nohigh") == 0)
47 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
48 else
49 return -EINVAL;
50 return 0;
51 }
52 early_param("userpte", setup_userpte);
53
54 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
55 {
56 pgtable_page_dtor(pte);
57 paravirt_release_pte(page_to_pfn(pte));
58 tlb_remove_page(tlb, pte);
59 }
60
61 #if PAGETABLE_LEVELS > 2
62 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
63 {
64 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
65 /*
66 * NOTE! For PAE, any changes to the top page-directory-pointer-table
67 * entries need a full cr3 reload to flush.
68 */
69 #ifdef CONFIG_X86_PAE
70 tlb->need_flush_all = 1;
71 #endif
72 tlb_remove_page(tlb, virt_to_page(pmd));
73 }
74
75 #if PAGETABLE_LEVELS > 3
76 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
77 {
78 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
79 tlb_remove_page(tlb, virt_to_page(pud));
80 }
81 #endif /* PAGETABLE_LEVELS > 3 */
82 #endif /* PAGETABLE_LEVELS > 2 */
83
84 static inline void pgd_list_add(pgd_t *pgd)
85 {
86 struct page *page = virt_to_page(pgd);
87
88 list_add(&page->lru, &pgd_list);
89 }
90
91 static inline void pgd_list_del(pgd_t *pgd)
92 {
93 struct page *page = virt_to_page(pgd);
94
95 list_del(&page->lru);
96 }
97
98 #define UNSHARED_PTRS_PER_PGD \
99 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
100
101
102 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
103 {
104 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
105 virt_to_page(pgd)->index = (pgoff_t)mm;
106 }
107
108 struct mm_struct *pgd_page_get_mm(struct page *page)
109 {
110 return (struct mm_struct *)page->index;
111 }
112
113 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
114 {
115 /* If the pgd points to a shared pagetable level (either the
116 ptes in non-PAE, or shared PMD in PAE), then just copy the
117 references from swapper_pg_dir. */
118 if (PAGETABLE_LEVELS == 2 ||
119 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
120 PAGETABLE_LEVELS == 4) {
121 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
122 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
123 KERNEL_PGD_PTRS);
124 }
125
126 /* list required to sync kernel mapping updates */
127 if (!SHARED_KERNEL_PMD) {
128 pgd_set_mm(pgd, mm);
129 pgd_list_add(pgd);
130 }
131 }
132
133 static void pgd_dtor(pgd_t *pgd)
134 {
135 if (SHARED_KERNEL_PMD)
136 return;
137
138 spin_lock(&pgd_lock);
139 pgd_list_del(pgd);
140 spin_unlock(&pgd_lock);
141 }
142
143 /*
144 * List of all pgd's needed for non-PAE so it can invalidate entries
145 * in both cached and uncached pgd's; not needed for PAE since the
146 * kernel pmd is shared. If PAE were not to share the pmd a similar
147 * tactic would be needed. This is essentially codepath-based locking
148 * against pageattr.c; it is the unique case in which a valid change
149 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
150 * vmalloc faults work because attached pagetables are never freed.
151 * -- nyc
152 */
153
154 #ifdef CONFIG_X86_PAE
155 /*
156 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
157 * updating the top-level pagetable entries to guarantee the
158 * processor notices the update. Since this is expensive, and
159 * all 4 top-level entries are used almost immediately in a
160 * new process's life, we just pre-populate them here.
161 *
162 * Also, if we're in a paravirt environment where the kernel pmd is
163 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
164 * and initialize the kernel pmds here.
165 */
166 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
167
168 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
169 {
170 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
171
172 /* Note: almost everything apart from _PAGE_PRESENT is
173 reserved at the pmd (PDPT) level. */
174 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
175
176 /*
177 * According to Intel App note "TLBs, Paging-Structure Caches,
178 * and Their Invalidation", April 2007, document 317080-001,
179 * section 8.1: in PAE mode we explicitly have to flush the
180 * TLB via cr3 if the top-level pgd is changed...
181 */
182 flush_tlb_mm(mm);
183 }
184 #else /* !CONFIG_X86_PAE */
185
186 /* No need to prepopulate any pagetable entries in non-PAE modes. */
187 #define PREALLOCATED_PMDS 0
188
189 #endif /* CONFIG_X86_PAE */
190
191 static void free_pmds(pmd_t *pmds[])
192 {
193 int i;
194
195 for(i = 0; i < PREALLOCATED_PMDS; i++)
196 if (pmds[i]) {
197 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
198 free_page((unsigned long)pmds[i]);
199 }
200 }
201
202 static int preallocate_pmds(pmd_t *pmds[])
203 {
204 int i;
205 bool failed = false;
206
207 for(i = 0; i < PREALLOCATED_PMDS; i++) {
208 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
209 if (!pmd)
210 failed = true;
211 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
212 free_page((unsigned long)pmds[i]);
213 pmd = NULL;
214 failed = true;
215 }
216 pmds[i] = pmd;
217 }
218
219 if (failed) {
220 free_pmds(pmds);
221 return -ENOMEM;
222 }
223
224 return 0;
225 }
226
227 /*
228 * Mop up any pmd pages which may still be attached to the pgd.
229 * Normally they will be freed by munmap/exit_mmap, but any pmd we
230 * preallocate which never got a corresponding vma will need to be
231 * freed manually.
232 */
233 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
234 {
235 int i;
236
237 for(i = 0; i < PREALLOCATED_PMDS; i++) {
238 pgd_t pgd = pgdp[i];
239
240 if (pgd_val(pgd) != 0) {
241 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
242
243 pgdp[i] = native_make_pgd(0);
244
245 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
246 pmd_free(mm, pmd);
247 }
248 }
249 }
250
251 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
252 {
253 pud_t *pud;
254 int i;
255
256 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
257 return;
258
259 pud = pud_offset(pgd, 0);
260
261 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
262 pmd_t *pmd = pmds[i];
263
264 if (i >= KERNEL_PGD_BOUNDARY)
265 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
266 sizeof(pmd_t) * PTRS_PER_PMD);
267
268 pud_populate(mm, pud, pmd);
269 }
270 }
271
272 pgd_t *pgd_alloc(struct mm_struct *mm)
273 {
274 pgd_t *pgd;
275 pmd_t *pmds[PREALLOCATED_PMDS];
276
277 pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
278
279 if (pgd == NULL)
280 goto out;
281
282 mm->pgd = pgd;
283
284 if (preallocate_pmds(pmds) != 0)
285 goto out_free_pgd;
286
287 if (paravirt_pgd_alloc(mm) != 0)
288 goto out_free_pmds;
289
290 /*
291 * Make sure that pre-populating the pmds is atomic with
292 * respect to anything walking the pgd_list, so that they
293 * never see a partially populated pgd.
294 */
295 spin_lock(&pgd_lock);
296
297 pgd_ctor(mm, pgd);
298 pgd_prepopulate_pmd(mm, pgd, pmds);
299
300 spin_unlock(&pgd_lock);
301
302 return pgd;
303
304 out_free_pmds:
305 free_pmds(pmds);
306 out_free_pgd:
307 free_page((unsigned long)pgd);
308 out:
309 return NULL;
310 }
311
312 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
313 {
314 pgd_mop_up_pmds(mm, pgd);
315 pgd_dtor(pgd);
316 paravirt_pgd_free(mm, pgd);
317 free_page((unsigned long)pgd);
318 }
319
320 /*
321 * Used to set accessed or dirty bits in the page table entries
322 * on other architectures. On x86, the accessed and dirty bits
323 * are tracked by hardware. However, do_wp_page calls this function
324 * to also make the pte writeable at the same time the dirty bit is
325 * set. In that case we do actually need to write the PTE.
326 */
327 int ptep_set_access_flags(struct vm_area_struct *vma,
328 unsigned long address, pte_t *ptep,
329 pte_t entry, int dirty)
330 {
331 int changed = !pte_same(*ptep, entry);
332
333 if (changed && dirty) {
334 *ptep = entry;
335 pte_update_defer(vma->vm_mm, address, ptep);
336 }
337
338 return changed;
339 }
340
341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 int pmdp_set_access_flags(struct vm_area_struct *vma,
343 unsigned long address, pmd_t *pmdp,
344 pmd_t entry, int dirty)
345 {
346 int changed = !pmd_same(*pmdp, entry);
347
348 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
349
350 if (changed && dirty) {
351 *pmdp = entry;
352 pmd_update_defer(vma->vm_mm, address, pmdp);
353 /*
354 * We had a write-protection fault here and changed the pmd
355 * to to more permissive. No need to flush the TLB for that,
356 * #PF is architecturally guaranteed to do that and in the
357 * worst-case we'll generate a spurious fault.
358 */
359 }
360
361 return changed;
362 }
363 #endif
364
365 int ptep_test_and_clear_young(struct vm_area_struct *vma,
366 unsigned long addr, pte_t *ptep)
367 {
368 int ret = 0;
369
370 if (pte_young(*ptep))
371 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
372 (unsigned long *) &ptep->pte);
373
374 if (ret)
375 pte_update(vma->vm_mm, addr, ptep);
376
377 return ret;
378 }
379
380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
381 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
382 unsigned long addr, pmd_t *pmdp)
383 {
384 int ret = 0;
385
386 if (pmd_young(*pmdp))
387 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
388 (unsigned long *)pmdp);
389
390 if (ret)
391 pmd_update(vma->vm_mm, addr, pmdp);
392
393 return ret;
394 }
395 #endif
396
397 int ptep_clear_flush_young(struct vm_area_struct *vma,
398 unsigned long address, pte_t *ptep)
399 {
400 int young;
401
402 young = ptep_test_and_clear_young(vma, address, ptep);
403 if (young)
404 flush_tlb_page(vma, address);
405
406 return young;
407 }
408
409 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
410 int pmdp_clear_flush_young(struct vm_area_struct *vma,
411 unsigned long address, pmd_t *pmdp)
412 {
413 int young;
414
415 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
416
417 young = pmdp_test_and_clear_young(vma, address, pmdp);
418 if (young)
419 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
420
421 return young;
422 }
423
424 void pmdp_splitting_flush(struct vm_area_struct *vma,
425 unsigned long address, pmd_t *pmdp)
426 {
427 int set;
428 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
429 set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
430 (unsigned long *)pmdp);
431 if (set) {
432 pmd_update(vma->vm_mm, address, pmdp);
433 /* need tlb flush only to serialize against gup-fast */
434 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
435 }
436 }
437 #endif
438
439 /**
440 * reserve_top_address - reserves a hole in the top of kernel address space
441 * @reserve - size of hole to reserve
442 *
443 * Can be used to relocate the fixmap area and poke a hole in the top
444 * of kernel address space to make room for a hypervisor.
445 */
446 void __init reserve_top_address(unsigned long reserve)
447 {
448 #ifdef CONFIG_X86_32
449 BUG_ON(fixmaps_set > 0);
450 printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
451 (int)-reserve);
452 __FIXADDR_TOP = -reserve - PAGE_SIZE;
453 #endif
454 }
455
456 int fixmaps_set;
457
458 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
459 {
460 unsigned long address = __fix_to_virt(idx);
461
462 if (idx >= __end_of_fixed_addresses) {
463 BUG();
464 return;
465 }
466 set_pte_vaddr(address, pte);
467 fixmaps_set++;
468 }
469
470 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
471 pgprot_t flags)
472 {
473 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
474 }
This page took 0.055915 seconds and 5 git commands to generate.