x86: Export srat physical topology
[deliverable/linux.git] / arch / x86 / mm / srat_64.c
1 /*
2 * ACPI 3.0 based NUMA setup
3 * Copyright 2004 Andi Kleen, SuSE Labs.
4 *
5 * Reads the ACPI SRAT table to figure out what memory belongs to which CPUs.
6 *
7 * Called from acpi_numa_init while reading the SRAT and SLIT tables.
8 * Assumes all memory regions belonging to a single proximity domain
9 * are in one chunk. Holes between them will be included in the node.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/acpi.h>
14 #include <linux/mmzone.h>
15 #include <linux/bitmap.h>
16 #include <linux/module.h>
17 #include <linux/topology.h>
18 #include <linux/bootmem.h>
19 #include <linux/mm.h>
20 #include <asm/proto.h>
21 #include <asm/numa.h>
22 #include <asm/e820.h>
23 #include <asm/apic.h>
24 #include <asm/uv/uv.h>
25
26 int acpi_numa __initdata;
27
28 static struct acpi_table_slit *acpi_slit;
29
30 static nodemask_t nodes_parsed __initdata;
31 static nodemask_t cpu_nodes_parsed __initdata;
32 static struct bootnode nodes[MAX_NUMNODES] __initdata;
33 static struct bootnode nodes_add[MAX_NUMNODES];
34
35 static int num_node_memblks __initdata;
36 static struct bootnode node_memblk_range[NR_NODE_MEMBLKS] __initdata;
37 static int memblk_nodeid[NR_NODE_MEMBLKS] __initdata;
38
39 static __init int setup_node(int pxm)
40 {
41 return acpi_map_pxm_to_node(pxm);
42 }
43
44 static __init int conflicting_memblks(unsigned long start, unsigned long end)
45 {
46 int i;
47 for (i = 0; i < num_node_memblks; i++) {
48 struct bootnode *nd = &node_memblk_range[i];
49 if (nd->start == nd->end)
50 continue;
51 if (nd->end > start && nd->start < end)
52 return memblk_nodeid[i];
53 if (nd->end == end && nd->start == start)
54 return memblk_nodeid[i];
55 }
56 return -1;
57 }
58
59 static __init void cutoff_node(int i, unsigned long start, unsigned long end)
60 {
61 struct bootnode *nd = &nodes[i];
62
63 if (nd->start < start) {
64 nd->start = start;
65 if (nd->end < nd->start)
66 nd->start = nd->end;
67 }
68 if (nd->end > end) {
69 nd->end = end;
70 if (nd->start > nd->end)
71 nd->start = nd->end;
72 }
73 }
74
75 static __init void bad_srat(void)
76 {
77 int i;
78 printk(KERN_ERR "SRAT: SRAT not used.\n");
79 acpi_numa = -1;
80 for (i = 0; i < MAX_LOCAL_APIC; i++)
81 apicid_to_node[i] = NUMA_NO_NODE;
82 for (i = 0; i < MAX_NUMNODES; i++) {
83 nodes[i].start = nodes[i].end = 0;
84 nodes_add[i].start = nodes_add[i].end = 0;
85 }
86 remove_all_active_ranges();
87 }
88
89 static __init inline int srat_disabled(void)
90 {
91 return numa_off || acpi_numa < 0;
92 }
93
94 /* Callback for SLIT parsing */
95 void __init acpi_numa_slit_init(struct acpi_table_slit *slit)
96 {
97 unsigned length;
98 unsigned long phys;
99
100 length = slit->header.length;
101 phys = find_e820_area(0, max_pfn_mapped<<PAGE_SHIFT, length,
102 PAGE_SIZE);
103
104 if (phys == -1L)
105 panic(" Can not save slit!\n");
106
107 acpi_slit = __va(phys);
108 memcpy(acpi_slit, slit, length);
109 reserve_early(phys, phys + length, "ACPI SLIT");
110 }
111
112 /* Callback for Proximity Domain -> x2APIC mapping */
113 void __init
114 acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa)
115 {
116 int pxm, node;
117 int apic_id;
118
119 if (srat_disabled())
120 return;
121 if (pa->header.length < sizeof(struct acpi_srat_x2apic_cpu_affinity)) {
122 bad_srat();
123 return;
124 }
125 if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0)
126 return;
127 pxm = pa->proximity_domain;
128 node = setup_node(pxm);
129 if (node < 0) {
130 printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm);
131 bad_srat();
132 return;
133 }
134
135 apic_id = pa->apic_id;
136 apicid_to_node[apic_id] = node;
137 node_set(node, cpu_nodes_parsed);
138 acpi_numa = 1;
139 printk(KERN_INFO "SRAT: PXM %u -> APIC %u -> Node %u\n",
140 pxm, apic_id, node);
141 }
142
143 /* Callback for Proximity Domain -> LAPIC mapping */
144 void __init
145 acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa)
146 {
147 int pxm, node;
148 int apic_id;
149
150 if (srat_disabled())
151 return;
152 if (pa->header.length != sizeof(struct acpi_srat_cpu_affinity)) {
153 bad_srat();
154 return;
155 }
156 if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0)
157 return;
158 pxm = pa->proximity_domain_lo;
159 node = setup_node(pxm);
160 if (node < 0) {
161 printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm);
162 bad_srat();
163 return;
164 }
165
166 if (get_uv_system_type() >= UV_X2APIC)
167 apic_id = (pa->apic_id << 8) | pa->local_sapic_eid;
168 else
169 apic_id = pa->apic_id;
170 apicid_to_node[apic_id] = node;
171 node_set(node, cpu_nodes_parsed);
172 acpi_numa = 1;
173 printk(KERN_INFO "SRAT: PXM %u -> APIC %u -> Node %u\n",
174 pxm, apic_id, node);
175 }
176
177 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
178 static inline int save_add_info(void) {return 1;}
179 #else
180 static inline int save_add_info(void) {return 0;}
181 #endif
182 /*
183 * Update nodes_add[]
184 * This code supports one contiguous hot add area per node
185 */
186 static void __init
187 update_nodes_add(int node, unsigned long start, unsigned long end)
188 {
189 unsigned long s_pfn = start >> PAGE_SHIFT;
190 unsigned long e_pfn = end >> PAGE_SHIFT;
191 int changed = 0;
192 struct bootnode *nd = &nodes_add[node];
193
194 /* I had some trouble with strange memory hotadd regions breaking
195 the boot. Be very strict here and reject anything unexpected.
196 If you want working memory hotadd write correct SRATs.
197
198 The node size check is a basic sanity check to guard against
199 mistakes */
200 if ((signed long)(end - start) < NODE_MIN_SIZE) {
201 printk(KERN_ERR "SRAT: Hotplug area too small\n");
202 return;
203 }
204
205 /* This check might be a bit too strict, but I'm keeping it for now. */
206 if (absent_pages_in_range(s_pfn, e_pfn) != e_pfn - s_pfn) {
207 printk(KERN_ERR
208 "SRAT: Hotplug area %lu -> %lu has existing memory\n",
209 s_pfn, e_pfn);
210 return;
211 }
212
213 /* Looks good */
214
215 if (nd->start == nd->end) {
216 nd->start = start;
217 nd->end = end;
218 changed = 1;
219 } else {
220 if (nd->start == end) {
221 nd->start = start;
222 changed = 1;
223 }
224 if (nd->end == start) {
225 nd->end = end;
226 changed = 1;
227 }
228 if (!changed)
229 printk(KERN_ERR "SRAT: Hotplug zone not continuous. Partly ignored\n");
230 }
231
232 if (changed)
233 printk(KERN_INFO "SRAT: hot plug zone found %Lx - %Lx\n",
234 nd->start, nd->end);
235 }
236
237 /* Callback for parsing of the Proximity Domain <-> Memory Area mappings */
238 void __init
239 acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma)
240 {
241 struct bootnode *nd, oldnode;
242 unsigned long start, end;
243 int node, pxm;
244 int i;
245
246 if (srat_disabled())
247 return;
248 if (ma->header.length != sizeof(struct acpi_srat_mem_affinity)) {
249 bad_srat();
250 return;
251 }
252 if ((ma->flags & ACPI_SRAT_MEM_ENABLED) == 0)
253 return;
254
255 if ((ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && !save_add_info())
256 return;
257 start = ma->base_address;
258 end = start + ma->length;
259 pxm = ma->proximity_domain;
260 node = setup_node(pxm);
261 if (node < 0) {
262 printk(KERN_ERR "SRAT: Too many proximity domains.\n");
263 bad_srat();
264 return;
265 }
266 i = conflicting_memblks(start, end);
267 if (i == node) {
268 printk(KERN_WARNING
269 "SRAT: Warning: PXM %d (%lx-%lx) overlaps with itself (%Lx-%Lx)\n",
270 pxm, start, end, nodes[i].start, nodes[i].end);
271 } else if (i >= 0) {
272 printk(KERN_ERR
273 "SRAT: PXM %d (%lx-%lx) overlaps with PXM %d (%Lx-%Lx)\n",
274 pxm, start, end, node_to_pxm(i),
275 nodes[i].start, nodes[i].end);
276 bad_srat();
277 return;
278 }
279 nd = &nodes[node];
280 oldnode = *nd;
281 if (!node_test_and_set(node, nodes_parsed)) {
282 nd->start = start;
283 nd->end = end;
284 } else {
285 if (start < nd->start)
286 nd->start = start;
287 if (nd->end < end)
288 nd->end = end;
289 }
290
291 printk(KERN_INFO "SRAT: Node %u PXM %u %lx-%lx\n", node, pxm,
292 start, end);
293
294 if (ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) {
295 update_nodes_add(node, start, end);
296 /* restore nodes[node] */
297 *nd = oldnode;
298 if ((nd->start | nd->end) == 0)
299 node_clear(node, nodes_parsed);
300 }
301
302 node_memblk_range[num_node_memblks].start = start;
303 node_memblk_range[num_node_memblks].end = end;
304 memblk_nodeid[num_node_memblks] = node;
305 num_node_memblks++;
306 }
307
308 /* Sanity check to catch more bad SRATs (they are amazingly common).
309 Make sure the PXMs cover all memory. */
310 static int __init nodes_cover_memory(const struct bootnode *nodes)
311 {
312 int i;
313 unsigned long pxmram, e820ram;
314
315 pxmram = 0;
316 for_each_node_mask(i, nodes_parsed) {
317 unsigned long s = nodes[i].start >> PAGE_SHIFT;
318 unsigned long e = nodes[i].end >> PAGE_SHIFT;
319 pxmram += e - s;
320 pxmram -= absent_pages_in_range(s, e);
321 if ((long)pxmram < 0)
322 pxmram = 0;
323 }
324
325 e820ram = max_pfn - (e820_hole_size(0, max_pfn<<PAGE_SHIFT)>>PAGE_SHIFT);
326 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
327 if ((long)(e820ram - pxmram) >= (1<<(20 - PAGE_SHIFT))) {
328 printk(KERN_ERR
329 "SRAT: PXMs only cover %luMB of your %luMB e820 RAM. Not used.\n",
330 (pxmram << PAGE_SHIFT) >> 20,
331 (e820ram << PAGE_SHIFT) >> 20);
332 return 0;
333 }
334 return 1;
335 }
336
337 void __init acpi_numa_arch_fixup(void) {}
338
339 int __init acpi_get_nodes(struct bootnode *physnodes)
340 {
341 int i;
342 int ret = 0;
343
344 for_each_node_mask(i, nodes_parsed) {
345 physnodes[ret].start = nodes[i].start;
346 physnodes[ret].end = nodes[i].end;
347 ret++;
348 }
349 return ret;
350 }
351
352 /* Use the information discovered above to actually set up the nodes. */
353 int __init acpi_scan_nodes(unsigned long start, unsigned long end)
354 {
355 int i;
356
357 if (acpi_numa <= 0)
358 return -1;
359
360 /* First clean up the node list */
361 for (i = 0; i < MAX_NUMNODES; i++)
362 cutoff_node(i, start, end);
363
364 memnode_shift = compute_hash_shift(node_memblk_range, num_node_memblks,
365 memblk_nodeid);
366 if (memnode_shift < 0) {
367 printk(KERN_ERR
368 "SRAT: No NUMA node hash function found. Contact maintainer\n");
369 bad_srat();
370 return -1;
371 }
372
373 for_each_node_mask(i, nodes_parsed)
374 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
375 nodes[i].end >> PAGE_SHIFT);
376 if (!nodes_cover_memory(nodes)) {
377 bad_srat();
378 return -1;
379 }
380
381 /* Account for nodes with cpus and no memory */
382 nodes_or(node_possible_map, nodes_parsed, cpu_nodes_parsed);
383
384 /* Finally register nodes */
385 for_each_node_mask(i, node_possible_map)
386 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
387 /* Try again in case setup_node_bootmem missed one due
388 to missing bootmem */
389 for_each_node_mask(i, node_possible_map)
390 if (!node_online(i))
391 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
392
393 for (i = 0; i < nr_cpu_ids; i++) {
394 int node = early_cpu_to_node(i);
395
396 if (node == NUMA_NO_NODE)
397 continue;
398 if (!node_online(node))
399 numa_clear_node(i);
400 }
401 numa_init_array();
402 return 0;
403 }
404
405 #ifdef CONFIG_NUMA_EMU
406 static int fake_node_to_pxm_map[MAX_NUMNODES] __initdata = {
407 [0 ... MAX_NUMNODES-1] = PXM_INVAL
408 };
409 static s16 fake_apicid_to_node[MAX_LOCAL_APIC] __initdata = {
410 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
411 };
412 static int __init find_node_by_addr(unsigned long addr)
413 {
414 int ret = NUMA_NO_NODE;
415 int i;
416
417 for_each_node_mask(i, nodes_parsed) {
418 /*
419 * Find the real node that this emulated node appears on. For
420 * the sake of simplicity, we only use a real node's starting
421 * address to determine which emulated node it appears on.
422 */
423 if (addr >= nodes[i].start && addr < nodes[i].end) {
424 ret = i;
425 break;
426 }
427 }
428 return ret;
429 }
430
431 /*
432 * In NUMA emulation, we need to setup proximity domain (_PXM) to node ID
433 * mappings that respect the real ACPI topology but reflect our emulated
434 * environment. For each emulated node, we find which real node it appears on
435 * and create PXM to NID mappings for those fake nodes which mirror that
436 * locality. SLIT will now represent the correct distances between emulated
437 * nodes as a result of the real topology.
438 */
439 void __init acpi_fake_nodes(const struct bootnode *fake_nodes, int num_nodes)
440 {
441 int i, j;
442
443 printk(KERN_INFO "Faking PXM affinity for fake nodes on real "
444 "topology.\n");
445 for (i = 0; i < num_nodes; i++) {
446 int nid, pxm;
447
448 nid = find_node_by_addr(fake_nodes[i].start);
449 if (nid == NUMA_NO_NODE)
450 continue;
451 pxm = node_to_pxm(nid);
452 if (pxm == PXM_INVAL)
453 continue;
454 fake_node_to_pxm_map[i] = pxm;
455 /*
456 * For each apicid_to_node mapping that exists for this real
457 * node, it must now point to the fake node ID.
458 */
459 for (j = 0; j < MAX_LOCAL_APIC; j++)
460 if (apicid_to_node[j] == nid)
461 fake_apicid_to_node[j] = i;
462 }
463 for (i = 0; i < num_nodes; i++)
464 __acpi_map_pxm_to_node(fake_node_to_pxm_map[i], i);
465 memcpy(apicid_to_node, fake_apicid_to_node, sizeof(apicid_to_node));
466
467 nodes_clear(nodes_parsed);
468 for (i = 0; i < num_nodes; i++)
469 if (fake_nodes[i].start != fake_nodes[i].end)
470 node_set(i, nodes_parsed);
471 WARN_ON(!nodes_cover_memory(fake_nodes));
472 }
473
474 static int null_slit_node_compare(int a, int b)
475 {
476 return node_to_pxm(a) == node_to_pxm(b);
477 }
478 #else
479 static int null_slit_node_compare(int a, int b)
480 {
481 return a == b;
482 }
483 #endif /* CONFIG_NUMA_EMU */
484
485 int __node_distance(int a, int b)
486 {
487 int index;
488
489 if (!acpi_slit)
490 return null_slit_node_compare(a, b) ? LOCAL_DISTANCE :
491 REMOTE_DISTANCE;
492 index = acpi_slit->locality_count * node_to_pxm(a);
493 return acpi_slit->entry[index + node_to_pxm(b)];
494 }
495
496 EXPORT_SYMBOL(__node_distance);
497
498 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || defined(CONFIG_ACPI_HOTPLUG_MEMORY)
499 int memory_add_physaddr_to_nid(u64 start)
500 {
501 int i, ret = 0;
502
503 for_each_node(i)
504 if (nodes_add[i].start <= start && nodes_add[i].end > start)
505 ret = i;
506
507 return ret;
508 }
509 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
510 #endif
This page took 0.041084 seconds and 5 git commands to generate.