Merge tag 'hsi-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[deliverable/linux.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18 * Smarter SMP flushing macros.
19 * c/o Linus Torvalds.
20 *
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
23 *
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
25 *
26 * More scalable flush, from Andi Kleen
27 *
28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29 */
30
31 #ifdef CONFIG_SMP
32
33 struct flush_tlb_info {
34 struct mm_struct *flush_mm;
35 unsigned long flush_start;
36 unsigned long flush_end;
37 };
38
39 /*
40 * We cannot call mmdrop() because we are in interrupt context,
41 * instead update mm->cpu_vm_mask.
42 */
43 void leave_mm(int cpu)
44 {
45 struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
46 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47 BUG();
48 if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
49 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
50 load_cr3(swapper_pg_dir);
51 /*
52 * This gets called in the idle path where RCU
53 * functions differently. Tracing normally
54 * uses RCU, so we have to call the tracepoint
55 * specially here.
56 */
57 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
58 }
59 }
60 EXPORT_SYMBOL_GPL(leave_mm);
61
62 #endif /* CONFIG_SMP */
63
64 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
65 struct task_struct *tsk)
66 {
67 unsigned long flags;
68
69 local_irq_save(flags);
70 switch_mm_irqs_off(prev, next, tsk);
71 local_irq_restore(flags);
72 }
73
74 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
75 struct task_struct *tsk)
76 {
77 unsigned cpu = smp_processor_id();
78
79 if (likely(prev != next)) {
80 #ifdef CONFIG_SMP
81 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
82 this_cpu_write(cpu_tlbstate.active_mm, next);
83 #endif
84 cpumask_set_cpu(cpu, mm_cpumask(next));
85
86 /*
87 * Re-load page tables.
88 *
89 * This logic has an ordering constraint:
90 *
91 * CPU 0: Write to a PTE for 'next'
92 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
93 * CPU 1: set bit 1 in next's mm_cpumask
94 * CPU 1: load from the PTE that CPU 0 writes (implicit)
95 *
96 * We need to prevent an outcome in which CPU 1 observes
97 * the new PTE value and CPU 0 observes bit 1 clear in
98 * mm_cpumask. (If that occurs, then the IPI will never
99 * be sent, and CPU 0's TLB will contain a stale entry.)
100 *
101 * The bad outcome can occur if either CPU's load is
102 * reordered before that CPU's store, so both CPUs must
103 * execute full barriers to prevent this from happening.
104 *
105 * Thus, switch_mm needs a full barrier between the
106 * store to mm_cpumask and any operation that could load
107 * from next->pgd. TLB fills are special and can happen
108 * due to instruction fetches or for no reason at all,
109 * and neither LOCK nor MFENCE orders them.
110 * Fortunately, load_cr3() is serializing and gives the
111 * ordering guarantee we need.
112 *
113 */
114 load_cr3(next->pgd);
115
116 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
117
118 /* Stop flush ipis for the previous mm */
119 cpumask_clear_cpu(cpu, mm_cpumask(prev));
120
121 /* Load per-mm CR4 state */
122 load_mm_cr4(next);
123
124 #ifdef CONFIG_MODIFY_LDT_SYSCALL
125 /*
126 * Load the LDT, if the LDT is different.
127 *
128 * It's possible that prev->context.ldt doesn't match
129 * the LDT register. This can happen if leave_mm(prev)
130 * was called and then modify_ldt changed
131 * prev->context.ldt but suppressed an IPI to this CPU.
132 * In this case, prev->context.ldt != NULL, because we
133 * never set context.ldt to NULL while the mm still
134 * exists. That means that next->context.ldt !=
135 * prev->context.ldt, because mms never share an LDT.
136 */
137 if (unlikely(prev->context.ldt != next->context.ldt))
138 load_mm_ldt(next);
139 #endif
140 }
141 #ifdef CONFIG_SMP
142 else {
143 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
144 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
145
146 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
147 /*
148 * On established mms, the mm_cpumask is only changed
149 * from irq context, from ptep_clear_flush() while in
150 * lazy tlb mode, and here. Irqs are blocked during
151 * schedule, protecting us from simultaneous changes.
152 */
153 cpumask_set_cpu(cpu, mm_cpumask(next));
154
155 /*
156 * We were in lazy tlb mode and leave_mm disabled
157 * tlb flush IPI delivery. We must reload CR3
158 * to make sure to use no freed page tables.
159 *
160 * As above, load_cr3() is serializing and orders TLB
161 * fills with respect to the mm_cpumask write.
162 */
163 load_cr3(next->pgd);
164 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
165 load_mm_cr4(next);
166 load_mm_ldt(next);
167 }
168 }
169 #endif
170 }
171
172 #ifdef CONFIG_SMP
173
174 /*
175 * The flush IPI assumes that a thread switch happens in this order:
176 * [cpu0: the cpu that switches]
177 * 1) switch_mm() either 1a) or 1b)
178 * 1a) thread switch to a different mm
179 * 1a1) set cpu_tlbstate to TLBSTATE_OK
180 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
181 * if cpu0 was in lazy tlb mode.
182 * 1a2) update cpu active_mm
183 * Now cpu0 accepts tlb flushes for the new mm.
184 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
185 * Now the other cpus will send tlb flush ipis.
186 * 1a4) change cr3.
187 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
188 * Stop ipi delivery for the old mm. This is not synchronized with
189 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
190 * mm, and in the worst case we perform a superfluous tlb flush.
191 * 1b) thread switch without mm change
192 * cpu active_mm is correct, cpu0 already handles flush ipis.
193 * 1b1) set cpu_tlbstate to TLBSTATE_OK
194 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
195 * Atomically set the bit [other cpus will start sending flush ipis],
196 * and test the bit.
197 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
198 * 2) switch %%esp, ie current
199 *
200 * The interrupt must handle 2 special cases:
201 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
202 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
203 * runs in kernel space, the cpu could load tlb entries for user space
204 * pages.
205 *
206 * The good news is that cpu_tlbstate is local to each cpu, no
207 * write/read ordering problems.
208 */
209
210 /*
211 * TLB flush funcation:
212 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
213 * 2) Leave the mm if we are in the lazy tlb mode.
214 */
215 static void flush_tlb_func(void *info)
216 {
217 struct flush_tlb_info *f = info;
218
219 inc_irq_stat(irq_tlb_count);
220
221 if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
222 return;
223
224 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
225 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
226 if (f->flush_end == TLB_FLUSH_ALL) {
227 local_flush_tlb();
228 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
229 } else {
230 unsigned long addr;
231 unsigned long nr_pages =
232 (f->flush_end - f->flush_start) / PAGE_SIZE;
233 addr = f->flush_start;
234 while (addr < f->flush_end) {
235 __flush_tlb_single(addr);
236 addr += PAGE_SIZE;
237 }
238 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
239 }
240 } else
241 leave_mm(smp_processor_id());
242
243 }
244
245 void native_flush_tlb_others(const struct cpumask *cpumask,
246 struct mm_struct *mm, unsigned long start,
247 unsigned long end)
248 {
249 struct flush_tlb_info info;
250
251 if (end == 0)
252 end = start + PAGE_SIZE;
253 info.flush_mm = mm;
254 info.flush_start = start;
255 info.flush_end = end;
256
257 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
258 if (end == TLB_FLUSH_ALL)
259 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
260 else
261 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
262 (end - start) >> PAGE_SHIFT);
263
264 if (is_uv_system()) {
265 unsigned int cpu;
266
267 cpu = smp_processor_id();
268 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
269 if (cpumask)
270 smp_call_function_many(cpumask, flush_tlb_func,
271 &info, 1);
272 return;
273 }
274 smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
275 }
276
277 void flush_tlb_current_task(void)
278 {
279 struct mm_struct *mm = current->mm;
280
281 preempt_disable();
282
283 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
284
285 /* This is an implicit full barrier that synchronizes with switch_mm. */
286 local_flush_tlb();
287
288 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
289 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
290 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
291 preempt_enable();
292 }
293
294 /*
295 * See Documentation/x86/tlb.txt for details. We choose 33
296 * because it is large enough to cover the vast majority (at
297 * least 95%) of allocations, and is small enough that we are
298 * confident it will not cause too much overhead. Each single
299 * flush is about 100 ns, so this caps the maximum overhead at
300 * _about_ 3,000 ns.
301 *
302 * This is in units of pages.
303 */
304 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
305
306 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
307 unsigned long end, unsigned long vmflag)
308 {
309 unsigned long addr;
310 /* do a global flush by default */
311 unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
312
313 preempt_disable();
314 if (current->active_mm != mm) {
315 /* Synchronize with switch_mm. */
316 smp_mb();
317
318 goto out;
319 }
320
321 if (!current->mm) {
322 leave_mm(smp_processor_id());
323
324 /* Synchronize with switch_mm. */
325 smp_mb();
326
327 goto out;
328 }
329
330 if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
331 base_pages_to_flush = (end - start) >> PAGE_SHIFT;
332
333 /*
334 * Both branches below are implicit full barriers (MOV to CR or
335 * INVLPG) that synchronize with switch_mm.
336 */
337 if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
338 base_pages_to_flush = TLB_FLUSH_ALL;
339 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
340 local_flush_tlb();
341 } else {
342 /* flush range by one by one 'invlpg' */
343 for (addr = start; addr < end; addr += PAGE_SIZE) {
344 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
345 __flush_tlb_single(addr);
346 }
347 }
348 trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
349 out:
350 if (base_pages_to_flush == TLB_FLUSH_ALL) {
351 start = 0UL;
352 end = TLB_FLUSH_ALL;
353 }
354 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
355 flush_tlb_others(mm_cpumask(mm), mm, start, end);
356 preempt_enable();
357 }
358
359 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
360 {
361 struct mm_struct *mm = vma->vm_mm;
362
363 preempt_disable();
364
365 if (current->active_mm == mm) {
366 if (current->mm) {
367 /*
368 * Implicit full barrier (INVLPG) that synchronizes
369 * with switch_mm.
370 */
371 __flush_tlb_one(start);
372 } else {
373 leave_mm(smp_processor_id());
374
375 /* Synchronize with switch_mm. */
376 smp_mb();
377 }
378 }
379
380 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
381 flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
382
383 preempt_enable();
384 }
385
386 static void do_flush_tlb_all(void *info)
387 {
388 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
389 __flush_tlb_all();
390 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
391 leave_mm(smp_processor_id());
392 }
393
394 void flush_tlb_all(void)
395 {
396 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
397 on_each_cpu(do_flush_tlb_all, NULL, 1);
398 }
399
400 static void do_kernel_range_flush(void *info)
401 {
402 struct flush_tlb_info *f = info;
403 unsigned long addr;
404
405 /* flush range by one by one 'invlpg' */
406 for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
407 __flush_tlb_single(addr);
408 }
409
410 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
411 {
412
413 /* Balance as user space task's flush, a bit conservative */
414 if (end == TLB_FLUSH_ALL ||
415 (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
416 on_each_cpu(do_flush_tlb_all, NULL, 1);
417 } else {
418 struct flush_tlb_info info;
419 info.flush_start = start;
420 info.flush_end = end;
421 on_each_cpu(do_kernel_range_flush, &info, 1);
422 }
423 }
424
425 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
426 size_t count, loff_t *ppos)
427 {
428 char buf[32];
429 unsigned int len;
430
431 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
432 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
433 }
434
435 static ssize_t tlbflush_write_file(struct file *file,
436 const char __user *user_buf, size_t count, loff_t *ppos)
437 {
438 char buf[32];
439 ssize_t len;
440 int ceiling;
441
442 len = min(count, sizeof(buf) - 1);
443 if (copy_from_user(buf, user_buf, len))
444 return -EFAULT;
445
446 buf[len] = '\0';
447 if (kstrtoint(buf, 0, &ceiling))
448 return -EINVAL;
449
450 if (ceiling < 0)
451 return -EINVAL;
452
453 tlb_single_page_flush_ceiling = ceiling;
454 return count;
455 }
456
457 static const struct file_operations fops_tlbflush = {
458 .read = tlbflush_read_file,
459 .write = tlbflush_write_file,
460 .llseek = default_llseek,
461 };
462
463 static int __init create_tlb_single_page_flush_ceiling(void)
464 {
465 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
466 arch_debugfs_dir, NULL, &fops_tlbflush);
467 return 0;
468 }
469 late_initcall(create_tlb_single_page_flush_ceiling);
470
471 #endif /* CONFIG_SMP */
This page took 0.053102 seconds and 5 git commands to generate.