x86/UV2: Fix BAU destination timeout initialization
[deliverable/linux.git] / arch / x86 / platform / uv / tlb_uv.c
1 /*
2 * SGI UltraViolet TLB flush routines.
3 *
4 * (c) 2008-2011 Cliff Wickman <cpw@sgi.com>, SGI.
5 *
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/idle.h>
23 #include <asm/tsc.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/timer.h>
26
27 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
28 static int timeout_base_ns[] = {
29 20,
30 160,
31 1280,
32 10240,
33 81920,
34 655360,
35 5242880,
36 167772160
37 };
38
39 static int timeout_us;
40 static int nobau;
41 static int baudisabled;
42 static spinlock_t disable_lock;
43 static cycles_t congested_cycles;
44
45 /* tunables: */
46 static int max_concurr = MAX_BAU_CONCURRENT;
47 static int max_concurr_const = MAX_BAU_CONCURRENT;
48 static int plugged_delay = PLUGGED_DELAY;
49 static int plugsb4reset = PLUGSB4RESET;
50 static int timeoutsb4reset = TIMEOUTSB4RESET;
51 static int ipi_reset_limit = IPI_RESET_LIMIT;
52 static int complete_threshold = COMPLETE_THRESHOLD;
53 static int congested_respns_us = CONGESTED_RESPONSE_US;
54 static int congested_reps = CONGESTED_REPS;
55 static int congested_period = CONGESTED_PERIOD;
56
57 static struct tunables tunables[] = {
58 {&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
59 {&plugged_delay, PLUGGED_DELAY},
60 {&plugsb4reset, PLUGSB4RESET},
61 {&timeoutsb4reset, TIMEOUTSB4RESET},
62 {&ipi_reset_limit, IPI_RESET_LIMIT},
63 {&complete_threshold, COMPLETE_THRESHOLD},
64 {&congested_respns_us, CONGESTED_RESPONSE_US},
65 {&congested_reps, CONGESTED_REPS},
66 {&congested_period, CONGESTED_PERIOD}
67 };
68
69 static struct dentry *tunables_dir;
70 static struct dentry *tunables_file;
71
72 /* these correspond to the statistics printed by ptc_seq_show() */
73 static char *stat_description[] = {
74 "sent: number of shootdown messages sent",
75 "stime: time spent sending messages",
76 "numuvhubs: number of hubs targeted with shootdown",
77 "numuvhubs16: number times 16 or more hubs targeted",
78 "numuvhubs8: number times 8 or more hubs targeted",
79 "numuvhubs4: number times 4 or more hubs targeted",
80 "numuvhubs2: number times 2 or more hubs targeted",
81 "numuvhubs1: number times 1 hub targeted",
82 "numcpus: number of cpus targeted with shootdown",
83 "dto: number of destination timeouts",
84 "retries: destination timeout retries sent",
85 "rok: : destination timeouts successfully retried",
86 "resetp: ipi-style resource resets for plugs",
87 "resett: ipi-style resource resets for timeouts",
88 "giveup: fall-backs to ipi-style shootdowns",
89 "sto: number of source timeouts",
90 "bz: number of stay-busy's",
91 "throt: number times spun in throttle",
92 "swack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
93 "recv: shootdown messages received",
94 "rtime: time spent processing messages",
95 "all: shootdown all-tlb messages",
96 "one: shootdown one-tlb messages",
97 "mult: interrupts that found multiple messages",
98 "none: interrupts that found no messages",
99 "retry: number of retry messages processed",
100 "canc: number messages canceled by retries",
101 "nocan: number retries that found nothing to cancel",
102 "reset: number of ipi-style reset requests processed",
103 "rcan: number messages canceled by reset requests",
104 "disable: number times use of the BAU was disabled",
105 "enable: number times use of the BAU was re-enabled"
106 };
107
108 static int __init
109 setup_nobau(char *arg)
110 {
111 nobau = 1;
112 return 0;
113 }
114 early_param("nobau", setup_nobau);
115
116 /* base pnode in this partition */
117 static int uv_base_pnode __read_mostly;
118
119 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
120 static DEFINE_PER_CPU(struct bau_control, bau_control);
121 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
122
123 /*
124 * Determine the first node on a uvhub. 'Nodes' are used for kernel
125 * memory allocation.
126 */
127 static int __init uvhub_to_first_node(int uvhub)
128 {
129 int node, b;
130
131 for_each_online_node(node) {
132 b = uv_node_to_blade_id(node);
133 if (uvhub == b)
134 return node;
135 }
136 return -1;
137 }
138
139 /*
140 * Determine the apicid of the first cpu on a uvhub.
141 */
142 static int __init uvhub_to_first_apicid(int uvhub)
143 {
144 int cpu;
145
146 for_each_present_cpu(cpu)
147 if (uvhub == uv_cpu_to_blade_id(cpu))
148 return per_cpu(x86_cpu_to_apicid, cpu);
149 return -1;
150 }
151
152 /*
153 * Free a software acknowledge hardware resource by clearing its Pending
154 * bit. This will return a reply to the sender.
155 * If the message has timed out, a reply has already been sent by the
156 * hardware but the resource has not been released. In that case our
157 * clear of the Timeout bit (as well) will free the resource. No reply will
158 * be sent (the hardware will only do one reply per message).
159 */
160 static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp)
161 {
162 unsigned long dw;
163 struct bau_pq_entry *msg;
164
165 msg = mdp->msg;
166 if (!msg->canceled) {
167 dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
168 write_mmr_sw_ack(dw);
169 }
170 msg->replied_to = 1;
171 msg->swack_vec = 0;
172 }
173
174 /*
175 * Process the receipt of a RETRY message
176 */
177 static void bau_process_retry_msg(struct msg_desc *mdp,
178 struct bau_control *bcp)
179 {
180 int i;
181 int cancel_count = 0;
182 unsigned long msg_res;
183 unsigned long mmr = 0;
184 struct bau_pq_entry *msg = mdp->msg;
185 struct bau_pq_entry *msg2;
186 struct ptc_stats *stat = bcp->statp;
187
188 stat->d_retries++;
189 /*
190 * cancel any message from msg+1 to the retry itself
191 */
192 for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
193 if (msg2 > mdp->queue_last)
194 msg2 = mdp->queue_first;
195 if (msg2 == msg)
196 break;
197
198 /* same conditions for cancellation as do_reset */
199 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
200 (msg2->swack_vec) && ((msg2->swack_vec &
201 msg->swack_vec) == 0) &&
202 (msg2->sending_cpu == msg->sending_cpu) &&
203 (msg2->msg_type != MSG_NOOP)) {
204 mmr = read_mmr_sw_ack();
205 msg_res = msg2->swack_vec;
206 /*
207 * This is a message retry; clear the resources held
208 * by the previous message only if they timed out.
209 * If it has not timed out we have an unexpected
210 * situation to report.
211 */
212 if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
213 unsigned long mr;
214 /*
215 * is the resource timed out?
216 * make everyone ignore the cancelled message.
217 */
218 msg2->canceled = 1;
219 stat->d_canceled++;
220 cancel_count++;
221 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
222 write_mmr_sw_ack(mr);
223 }
224 }
225 }
226 if (!cancel_count)
227 stat->d_nocanceled++;
228 }
229
230 /*
231 * Do all the things a cpu should do for a TLB shootdown message.
232 * Other cpu's may come here at the same time for this message.
233 */
234 static void bau_process_message(struct msg_desc *mdp,
235 struct bau_control *bcp)
236 {
237 short socket_ack_count = 0;
238 short *sp;
239 struct atomic_short *asp;
240 struct ptc_stats *stat = bcp->statp;
241 struct bau_pq_entry *msg = mdp->msg;
242 struct bau_control *smaster = bcp->socket_master;
243
244 /*
245 * This must be a normal message, or retry of a normal message
246 */
247 if (msg->address == TLB_FLUSH_ALL) {
248 local_flush_tlb();
249 stat->d_alltlb++;
250 } else {
251 __flush_tlb_one(msg->address);
252 stat->d_onetlb++;
253 }
254 stat->d_requestee++;
255
256 /*
257 * One cpu on each uvhub has the additional job on a RETRY
258 * of releasing the resource held by the message that is
259 * being retried. That message is identified by sending
260 * cpu number.
261 */
262 if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
263 bau_process_retry_msg(mdp, bcp);
264
265 /*
266 * This is a swack message, so we have to reply to it.
267 * Count each responding cpu on the socket. This avoids
268 * pinging the count's cache line back and forth between
269 * the sockets.
270 */
271 sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
272 asp = (struct atomic_short *)sp;
273 socket_ack_count = atom_asr(1, asp);
274 if (socket_ack_count == bcp->cpus_in_socket) {
275 int msg_ack_count;
276 /*
277 * Both sockets dump their completed count total into
278 * the message's count.
279 */
280 smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
281 asp = (struct atomic_short *)&msg->acknowledge_count;
282 msg_ack_count = atom_asr(socket_ack_count, asp);
283
284 if (msg_ack_count == bcp->cpus_in_uvhub) {
285 /*
286 * All cpus in uvhub saw it; reply
287 */
288 reply_to_message(mdp, bcp);
289 }
290 }
291
292 return;
293 }
294
295 /*
296 * Determine the first cpu on a pnode.
297 */
298 static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
299 {
300 int cpu;
301 struct hub_and_pnode *hpp;
302
303 for_each_present_cpu(cpu) {
304 hpp = &smaster->thp[cpu];
305 if (pnode == hpp->pnode)
306 return cpu;
307 }
308 return -1;
309 }
310
311 /*
312 * Last resort when we get a large number of destination timeouts is
313 * to clear resources held by a given cpu.
314 * Do this with IPI so that all messages in the BAU message queue
315 * can be identified by their nonzero swack_vec field.
316 *
317 * This is entered for a single cpu on the uvhub.
318 * The sender want's this uvhub to free a specific message's
319 * swack resources.
320 */
321 static void do_reset(void *ptr)
322 {
323 int i;
324 struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
325 struct reset_args *rap = (struct reset_args *)ptr;
326 struct bau_pq_entry *msg;
327 struct ptc_stats *stat = bcp->statp;
328
329 stat->d_resets++;
330 /*
331 * We're looking for the given sender, and
332 * will free its swack resource.
333 * If all cpu's finally responded after the timeout, its
334 * message 'replied_to' was set.
335 */
336 for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
337 unsigned long msg_res;
338 /* do_reset: same conditions for cancellation as
339 bau_process_retry_msg() */
340 if ((msg->replied_to == 0) &&
341 (msg->canceled == 0) &&
342 (msg->sending_cpu == rap->sender) &&
343 (msg->swack_vec) &&
344 (msg->msg_type != MSG_NOOP)) {
345 unsigned long mmr;
346 unsigned long mr;
347 /*
348 * make everyone else ignore this message
349 */
350 msg->canceled = 1;
351 /*
352 * only reset the resource if it is still pending
353 */
354 mmr = read_mmr_sw_ack();
355 msg_res = msg->swack_vec;
356 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
357 if (mmr & msg_res) {
358 stat->d_rcanceled++;
359 write_mmr_sw_ack(mr);
360 }
361 }
362 }
363 return;
364 }
365
366 /*
367 * Use IPI to get all target uvhubs to release resources held by
368 * a given sending cpu number.
369 */
370 static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
371 {
372 int pnode;
373 int apnode;
374 int maskbits;
375 int sender = bcp->cpu;
376 cpumask_t *mask = bcp->uvhub_master->cpumask;
377 struct bau_control *smaster = bcp->socket_master;
378 struct reset_args reset_args;
379
380 reset_args.sender = sender;
381 cpus_clear(*mask);
382 /* find a single cpu for each uvhub in this distribution mask */
383 maskbits = sizeof(struct pnmask) * BITSPERBYTE;
384 /* each bit is a pnode relative to the partition base pnode */
385 for (pnode = 0; pnode < maskbits; pnode++) {
386 int cpu;
387 if (!bau_uvhub_isset(pnode, distribution))
388 continue;
389 apnode = pnode + bcp->partition_base_pnode;
390 cpu = pnode_to_first_cpu(apnode, smaster);
391 cpu_set(cpu, *mask);
392 }
393
394 /* IPI all cpus; preemption is already disabled */
395 smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
396 return;
397 }
398
399 static inline unsigned long cycles_2_us(unsigned long long cyc)
400 {
401 unsigned long long ns;
402 unsigned long us;
403 int cpu = smp_processor_id();
404
405 ns = (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR;
406 us = ns / 1000;
407 return us;
408 }
409
410 /*
411 * wait for all cpus on this hub to finish their sends and go quiet
412 * leaves uvhub_quiesce set so that no new broadcasts are started by
413 * bau_flush_send_and_wait()
414 */
415 static inline void quiesce_local_uvhub(struct bau_control *hmaster)
416 {
417 atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
418 }
419
420 /*
421 * mark this quiet-requestor as done
422 */
423 static inline void end_uvhub_quiesce(struct bau_control *hmaster)
424 {
425 atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
426 }
427
428 static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
429 {
430 unsigned long descriptor_status;
431
432 descriptor_status = uv_read_local_mmr(mmr_offset);
433 descriptor_status >>= right_shift;
434 descriptor_status &= UV_ACT_STATUS_MASK;
435 return descriptor_status;
436 }
437
438 /*
439 * Wait for completion of a broadcast software ack message
440 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
441 */
442 static int uv1_wait_completion(struct bau_desc *bau_desc,
443 unsigned long mmr_offset, int right_shift,
444 struct bau_control *bcp, long try)
445 {
446 unsigned long descriptor_status;
447 cycles_t ttm;
448 struct ptc_stats *stat = bcp->statp;
449
450 descriptor_status = uv1_read_status(mmr_offset, right_shift);
451 /* spin on the status MMR, waiting for it to go idle */
452 while ((descriptor_status != DS_IDLE)) {
453 /*
454 * Our software ack messages may be blocked because
455 * there are no swack resources available. As long
456 * as none of them has timed out hardware will NACK
457 * our message and its state will stay IDLE.
458 */
459 if (descriptor_status == DS_SOURCE_TIMEOUT) {
460 stat->s_stimeout++;
461 return FLUSH_GIVEUP;
462 } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
463 stat->s_dtimeout++;
464 ttm = get_cycles();
465
466 /*
467 * Our retries may be blocked by all destination
468 * swack resources being consumed, and a timeout
469 * pending. In that case hardware returns the
470 * ERROR that looks like a destination timeout.
471 */
472 if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
473 bcp->conseccompletes = 0;
474 return FLUSH_RETRY_PLUGGED;
475 }
476
477 bcp->conseccompletes = 0;
478 return FLUSH_RETRY_TIMEOUT;
479 } else {
480 /*
481 * descriptor_status is still BUSY
482 */
483 cpu_relax();
484 }
485 descriptor_status = uv1_read_status(mmr_offset, right_shift);
486 }
487 bcp->conseccompletes++;
488 return FLUSH_COMPLETE;
489 }
490
491 /*
492 * UV2 has an extra bit of status in the ACTIVATION_STATUS_2 register.
493 */
494 static unsigned long uv2_read_status(unsigned long offset, int rshft, int cpu)
495 {
496 unsigned long descriptor_status;
497 unsigned long descriptor_status2;
498
499 descriptor_status = ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK);
500 descriptor_status2 = (read_mmr_uv2_status() >> cpu) & 0x1UL;
501 descriptor_status = (descriptor_status << 1) | descriptor_status2;
502 return descriptor_status;
503 }
504
505 static int uv2_wait_completion(struct bau_desc *bau_desc,
506 unsigned long mmr_offset, int right_shift,
507 struct bau_control *bcp, long try)
508 {
509 unsigned long descriptor_stat;
510 cycles_t ttm;
511 int cpu = bcp->uvhub_cpu;
512 struct ptc_stats *stat = bcp->statp;
513
514 descriptor_stat = uv2_read_status(mmr_offset, right_shift, cpu);
515
516 /* spin on the status MMR, waiting for it to go idle */
517 while (descriptor_stat != UV2H_DESC_IDLE) {
518 /*
519 * Our software ack messages may be blocked because
520 * there are no swack resources available. As long
521 * as none of them has timed out hardware will NACK
522 * our message and its state will stay IDLE.
523 */
524 if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) ||
525 (descriptor_stat == UV2H_DESC_DEST_STRONG_NACK) ||
526 (descriptor_stat == UV2H_DESC_DEST_PUT_ERR)) {
527 stat->s_stimeout++;
528 return FLUSH_GIVEUP;
529 } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
530 stat->s_dtimeout++;
531 ttm = get_cycles();
532 /*
533 * Our retries may be blocked by all destination
534 * swack resources being consumed, and a timeout
535 * pending. In that case hardware returns the
536 * ERROR that looks like a destination timeout.
537 */
538 if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
539 bcp->conseccompletes = 0;
540 return FLUSH_RETRY_PLUGGED;
541 }
542 bcp->conseccompletes = 0;
543 return FLUSH_RETRY_TIMEOUT;
544 } else {
545 /*
546 * descriptor_stat is still BUSY
547 */
548 cpu_relax();
549 }
550 descriptor_stat = uv2_read_status(mmr_offset, right_shift, cpu);
551 }
552 bcp->conseccompletes++;
553 return FLUSH_COMPLETE;
554 }
555
556 /*
557 * There are 2 status registers; each and array[32] of 2 bits. Set up for
558 * which register to read and position in that register based on cpu in
559 * current hub.
560 */
561 static int wait_completion(struct bau_desc *bau_desc,
562 struct bau_control *bcp, long try)
563 {
564 int right_shift;
565 unsigned long mmr_offset;
566 int cpu = bcp->uvhub_cpu;
567
568 if (cpu < UV_CPUS_PER_AS) {
569 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
570 right_shift = cpu * UV_ACT_STATUS_SIZE;
571 } else {
572 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
573 right_shift = ((cpu - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
574 }
575
576 if (bcp->uvhub_version == 1)
577 return uv1_wait_completion(bau_desc, mmr_offset, right_shift,
578 bcp, try);
579 else
580 return uv2_wait_completion(bau_desc, mmr_offset, right_shift,
581 bcp, try);
582 }
583
584 static inline cycles_t sec_2_cycles(unsigned long sec)
585 {
586 unsigned long ns;
587 cycles_t cyc;
588
589 ns = sec * 1000000000;
590 cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
591 return cyc;
592 }
593
594 /*
595 * Our retries are blocked by all destination sw ack resources being
596 * in use, and a timeout is pending. In that case hardware immediately
597 * returns the ERROR that looks like a destination timeout.
598 */
599 static void destination_plugged(struct bau_desc *bau_desc,
600 struct bau_control *bcp,
601 struct bau_control *hmaster, struct ptc_stats *stat)
602 {
603 udelay(bcp->plugged_delay);
604 bcp->plugged_tries++;
605
606 if (bcp->plugged_tries >= bcp->plugsb4reset) {
607 bcp->plugged_tries = 0;
608
609 quiesce_local_uvhub(hmaster);
610
611 spin_lock(&hmaster->queue_lock);
612 reset_with_ipi(&bau_desc->distribution, bcp);
613 spin_unlock(&hmaster->queue_lock);
614
615 end_uvhub_quiesce(hmaster);
616
617 bcp->ipi_attempts++;
618 stat->s_resets_plug++;
619 }
620 }
621
622 static void destination_timeout(struct bau_desc *bau_desc,
623 struct bau_control *bcp, struct bau_control *hmaster,
624 struct ptc_stats *stat)
625 {
626 hmaster->max_concurr = 1;
627 bcp->timeout_tries++;
628 if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
629 bcp->timeout_tries = 0;
630
631 quiesce_local_uvhub(hmaster);
632
633 spin_lock(&hmaster->queue_lock);
634 reset_with_ipi(&bau_desc->distribution, bcp);
635 spin_unlock(&hmaster->queue_lock);
636
637 end_uvhub_quiesce(hmaster);
638
639 bcp->ipi_attempts++;
640 stat->s_resets_timeout++;
641 }
642 }
643
644 /*
645 * Completions are taking a very long time due to a congested numalink
646 * network.
647 */
648 static void disable_for_congestion(struct bau_control *bcp,
649 struct ptc_stats *stat)
650 {
651 /* let only one cpu do this disabling */
652 spin_lock(&disable_lock);
653
654 if (!baudisabled && bcp->period_requests &&
655 ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
656 int tcpu;
657 struct bau_control *tbcp;
658 /* it becomes this cpu's job to turn on the use of the
659 BAU again */
660 baudisabled = 1;
661 bcp->set_bau_off = 1;
662 bcp->set_bau_on_time = get_cycles();
663 bcp->set_bau_on_time += sec_2_cycles(bcp->cong_period);
664 stat->s_bau_disabled++;
665 for_each_present_cpu(tcpu) {
666 tbcp = &per_cpu(bau_control, tcpu);
667 tbcp->baudisabled = 1;
668 }
669 }
670
671 spin_unlock(&disable_lock);
672 }
673
674 static void count_max_concurr(int stat, struct bau_control *bcp,
675 struct bau_control *hmaster)
676 {
677 bcp->plugged_tries = 0;
678 bcp->timeout_tries = 0;
679 if (stat != FLUSH_COMPLETE)
680 return;
681 if (bcp->conseccompletes <= bcp->complete_threshold)
682 return;
683 if (hmaster->max_concurr >= hmaster->max_concurr_const)
684 return;
685 hmaster->max_concurr++;
686 }
687
688 static void record_send_stats(cycles_t time1, cycles_t time2,
689 struct bau_control *bcp, struct ptc_stats *stat,
690 int completion_status, int try)
691 {
692 cycles_t elapsed;
693
694 if (time2 > time1) {
695 elapsed = time2 - time1;
696 stat->s_time += elapsed;
697
698 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
699 bcp->period_requests++;
700 bcp->period_time += elapsed;
701 if ((elapsed > congested_cycles) &&
702 (bcp->period_requests > bcp->cong_reps))
703 disable_for_congestion(bcp, stat);
704 }
705 } else
706 stat->s_requestor--;
707
708 if (completion_status == FLUSH_COMPLETE && try > 1)
709 stat->s_retriesok++;
710 else if (completion_status == FLUSH_GIVEUP)
711 stat->s_giveup++;
712 }
713
714 /*
715 * Because of a uv1 hardware bug only a limited number of concurrent
716 * requests can be made.
717 */
718 static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
719 {
720 spinlock_t *lock = &hmaster->uvhub_lock;
721 atomic_t *v;
722
723 v = &hmaster->active_descriptor_count;
724 if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
725 stat->s_throttles++;
726 do {
727 cpu_relax();
728 } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
729 }
730 }
731
732 /*
733 * Handle the completion status of a message send.
734 */
735 static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
736 struct bau_control *bcp, struct bau_control *hmaster,
737 struct ptc_stats *stat)
738 {
739 if (completion_status == FLUSH_RETRY_PLUGGED)
740 destination_plugged(bau_desc, bcp, hmaster, stat);
741 else if (completion_status == FLUSH_RETRY_TIMEOUT)
742 destination_timeout(bau_desc, bcp, hmaster, stat);
743 }
744
745 /*
746 * Send a broadcast and wait for it to complete.
747 *
748 * The flush_mask contains the cpus the broadcast is to be sent to including
749 * cpus that are on the local uvhub.
750 *
751 * Returns 0 if all flushing represented in the mask was done.
752 * Returns 1 if it gives up entirely and the original cpu mask is to be
753 * returned to the kernel.
754 */
755 int uv_flush_send_and_wait(struct bau_desc *bau_desc,
756 struct cpumask *flush_mask, struct bau_control *bcp)
757 {
758 int seq_number = 0;
759 int completion_stat = 0;
760 int uv1 = 0;
761 long try = 0;
762 unsigned long index;
763 cycles_t time1;
764 cycles_t time2;
765 struct ptc_stats *stat = bcp->statp;
766 struct bau_control *hmaster = bcp->uvhub_master;
767 struct uv1_bau_msg_header *uv1_hdr = NULL;
768 struct uv2_bau_msg_header *uv2_hdr = NULL;
769
770 if (bcp->uvhub_version == 1) {
771 uv1 = 1;
772 uv1_throttle(hmaster, stat);
773 uv1_hdr = &bau_desc->header.uv1_hdr;
774 } else
775 uv2_hdr = &bau_desc->header.uv2_hdr;
776
777 while (hmaster->uvhub_quiesce)
778 cpu_relax();
779
780 time1 = get_cycles();
781 do {
782 if (try == 0) {
783 if (uv1)
784 uv1_hdr->msg_type = MSG_REGULAR;
785 else
786 uv2_hdr->msg_type = MSG_REGULAR;
787 seq_number = bcp->message_number++;
788 } else {
789 if (uv1)
790 uv1_hdr->msg_type = MSG_RETRY;
791 else
792 uv2_hdr->msg_type = MSG_RETRY;
793 stat->s_retry_messages++;
794 }
795
796 if (uv1)
797 uv1_hdr->sequence = seq_number;
798 else
799 uv2_hdr->sequence = seq_number;
800 index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
801 bcp->send_message = get_cycles();
802
803 write_mmr_activation(index);
804
805 try++;
806 completion_stat = wait_completion(bau_desc, bcp, try);
807
808 handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
809
810 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
811 bcp->ipi_attempts = 0;
812 completion_stat = FLUSH_GIVEUP;
813 break;
814 }
815 cpu_relax();
816 } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
817 (completion_stat == FLUSH_RETRY_TIMEOUT));
818
819 time2 = get_cycles();
820
821 count_max_concurr(completion_stat, bcp, hmaster);
822
823 while (hmaster->uvhub_quiesce)
824 cpu_relax();
825
826 atomic_dec(&hmaster->active_descriptor_count);
827
828 record_send_stats(time1, time2, bcp, stat, completion_stat, try);
829
830 if (completion_stat == FLUSH_GIVEUP)
831 return 1;
832 return 0;
833 }
834
835 /*
836 * The BAU is disabled. When the disabled time period has expired, the cpu
837 * that disabled it must re-enable it.
838 * Return 0 if it is re-enabled for all cpus.
839 */
840 static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
841 {
842 int tcpu;
843 struct bau_control *tbcp;
844
845 if (bcp->set_bau_off) {
846 if (get_cycles() >= bcp->set_bau_on_time) {
847 stat->s_bau_reenabled++;
848 baudisabled = 0;
849 for_each_present_cpu(tcpu) {
850 tbcp = &per_cpu(bau_control, tcpu);
851 tbcp->baudisabled = 0;
852 tbcp->period_requests = 0;
853 tbcp->period_time = 0;
854 }
855 return 0;
856 }
857 }
858 return -1;
859 }
860
861 static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
862 int remotes, struct bau_desc *bau_desc)
863 {
864 stat->s_requestor++;
865 stat->s_ntargcpu += remotes + locals;
866 stat->s_ntargremotes += remotes;
867 stat->s_ntarglocals += locals;
868
869 /* uvhub statistics */
870 hubs = bau_uvhub_weight(&bau_desc->distribution);
871 if (locals) {
872 stat->s_ntarglocaluvhub++;
873 stat->s_ntargremoteuvhub += (hubs - 1);
874 } else
875 stat->s_ntargremoteuvhub += hubs;
876
877 stat->s_ntarguvhub += hubs;
878
879 if (hubs >= 16)
880 stat->s_ntarguvhub16++;
881 else if (hubs >= 8)
882 stat->s_ntarguvhub8++;
883 else if (hubs >= 4)
884 stat->s_ntarguvhub4++;
885 else if (hubs >= 2)
886 stat->s_ntarguvhub2++;
887 else
888 stat->s_ntarguvhub1++;
889 }
890
891 /*
892 * Translate a cpu mask to the uvhub distribution mask in the BAU
893 * activation descriptor.
894 */
895 static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
896 struct bau_desc *bau_desc, int *localsp, int *remotesp)
897 {
898 int cpu;
899 int pnode;
900 int cnt = 0;
901 struct hub_and_pnode *hpp;
902
903 for_each_cpu(cpu, flush_mask) {
904 /*
905 * The distribution vector is a bit map of pnodes, relative
906 * to the partition base pnode (and the partition base nasid
907 * in the header).
908 * Translate cpu to pnode and hub using a local memory array.
909 */
910 hpp = &bcp->socket_master->thp[cpu];
911 pnode = hpp->pnode - bcp->partition_base_pnode;
912 bau_uvhub_set(pnode, &bau_desc->distribution);
913 cnt++;
914 if (hpp->uvhub == bcp->uvhub)
915 (*localsp)++;
916 else
917 (*remotesp)++;
918 }
919 if (!cnt)
920 return 1;
921 return 0;
922 }
923
924 /*
925 * globally purge translation cache of a virtual address or all TLB's
926 * @cpumask: mask of all cpu's in which the address is to be removed
927 * @mm: mm_struct containing virtual address range
928 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
929 * @cpu: the current cpu
930 *
931 * This is the entry point for initiating any UV global TLB shootdown.
932 *
933 * Purges the translation caches of all specified processors of the given
934 * virtual address, or purges all TLB's on specified processors.
935 *
936 * The caller has derived the cpumask from the mm_struct. This function
937 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
938 *
939 * The cpumask is converted into a uvhubmask of the uvhubs containing
940 * those cpus.
941 *
942 * Note that this function should be called with preemption disabled.
943 *
944 * Returns NULL if all remote flushing was done.
945 * Returns pointer to cpumask if some remote flushing remains to be
946 * done. The returned pointer is valid till preemption is re-enabled.
947 */
948 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
949 struct mm_struct *mm, unsigned long va,
950 unsigned int cpu)
951 {
952 int locals = 0;
953 int remotes = 0;
954 int hubs = 0;
955 struct bau_desc *bau_desc;
956 struct cpumask *flush_mask;
957 struct ptc_stats *stat;
958 struct bau_control *bcp;
959
960 /* kernel was booted 'nobau' */
961 if (nobau)
962 return cpumask;
963
964 bcp = &per_cpu(bau_control, cpu);
965 stat = bcp->statp;
966
967 /* bau was disabled due to slow response */
968 if (bcp->baudisabled) {
969 if (check_enable(bcp, stat))
970 return cpumask;
971 }
972
973 /*
974 * Each sending cpu has a per-cpu mask which it fills from the caller's
975 * cpu mask. All cpus are converted to uvhubs and copied to the
976 * activation descriptor.
977 */
978 flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
979 /* don't actually do a shootdown of the local cpu */
980 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
981
982 if (cpu_isset(cpu, *cpumask))
983 stat->s_ntargself++;
984
985 bau_desc = bcp->descriptor_base;
986 bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
987 bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
988 if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
989 return NULL;
990
991 record_send_statistics(stat, locals, hubs, remotes, bau_desc);
992
993 bau_desc->payload.address = va;
994 bau_desc->payload.sending_cpu = cpu;
995 /*
996 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
997 * or 1 if it gave up and the original cpumask should be returned.
998 */
999 if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp))
1000 return NULL;
1001 else
1002 return cpumask;
1003 }
1004
1005 /*
1006 * The BAU message interrupt comes here. (registered by set_intr_gate)
1007 * See entry_64.S
1008 *
1009 * We received a broadcast assist message.
1010 *
1011 * Interrupts are disabled; this interrupt could represent
1012 * the receipt of several messages.
1013 *
1014 * All cores/threads on this hub get this interrupt.
1015 * The last one to see it does the software ack.
1016 * (the resource will not be freed until noninterruptable cpus see this
1017 * interrupt; hardware may timeout the s/w ack and reply ERROR)
1018 */
1019 void uv_bau_message_interrupt(struct pt_regs *regs)
1020 {
1021 int count = 0;
1022 cycles_t time_start;
1023 struct bau_pq_entry *msg;
1024 struct bau_control *bcp;
1025 struct ptc_stats *stat;
1026 struct msg_desc msgdesc;
1027
1028 time_start = get_cycles();
1029
1030 bcp = &per_cpu(bau_control, smp_processor_id());
1031 stat = bcp->statp;
1032
1033 msgdesc.queue_first = bcp->queue_first;
1034 msgdesc.queue_last = bcp->queue_last;
1035
1036 msg = bcp->bau_msg_head;
1037 while (msg->swack_vec) {
1038 count++;
1039
1040 msgdesc.msg_slot = msg - msgdesc.queue_first;
1041 msgdesc.swack_slot = ffs(msg->swack_vec) - 1;
1042 msgdesc.msg = msg;
1043 bau_process_message(&msgdesc, bcp);
1044
1045 msg++;
1046 if (msg > msgdesc.queue_last)
1047 msg = msgdesc.queue_first;
1048 bcp->bau_msg_head = msg;
1049 }
1050 stat->d_time += (get_cycles() - time_start);
1051 if (!count)
1052 stat->d_nomsg++;
1053 else if (count > 1)
1054 stat->d_multmsg++;
1055
1056 ack_APIC_irq();
1057 }
1058
1059 /*
1060 * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1061 * shootdown message timeouts enabled. The timeout does not cause
1062 * an interrupt, but causes an error message to be returned to
1063 * the sender.
1064 */
1065 static void __init enable_timeouts(void)
1066 {
1067 int uvhub;
1068 int nuvhubs;
1069 int pnode;
1070 unsigned long mmr_image;
1071
1072 nuvhubs = uv_num_possible_blades();
1073
1074 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1075 if (!uv_blade_nr_possible_cpus(uvhub))
1076 continue;
1077
1078 pnode = uv_blade_to_pnode(uvhub);
1079 mmr_image = read_mmr_misc_control(pnode);
1080 /*
1081 * Set the timeout period and then lock it in, in three
1082 * steps; captures and locks in the period.
1083 *
1084 * To program the period, the SOFT_ACK_MODE must be off.
1085 */
1086 mmr_image &= ~(1L << SOFTACK_MSHIFT);
1087 write_mmr_misc_control(pnode, mmr_image);
1088 /*
1089 * Set the 4-bit period.
1090 */
1091 mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1092 mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1093 write_mmr_misc_control(pnode, mmr_image);
1094 /*
1095 * UV1:
1096 * Subsequent reversals of the timebase bit (3) cause an
1097 * immediate timeout of one or all INTD resources as
1098 * indicated in bits 2:0 (7 causes all of them to timeout).
1099 */
1100 mmr_image |= (1L << SOFTACK_MSHIFT);
1101 if (is_uv2_hub()) {
1102 mmr_image &= ~(1L << UV2_LEG_SHFT);
1103 mmr_image |= (1L << UV2_EXT_SHFT);
1104 }
1105 write_mmr_misc_control(pnode, mmr_image);
1106 }
1107 }
1108
1109 static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1110 {
1111 if (*offset < num_possible_cpus())
1112 return offset;
1113 return NULL;
1114 }
1115
1116 static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1117 {
1118 (*offset)++;
1119 if (*offset < num_possible_cpus())
1120 return offset;
1121 return NULL;
1122 }
1123
1124 static void ptc_seq_stop(struct seq_file *file, void *data)
1125 {
1126 }
1127
1128 static inline unsigned long long usec_2_cycles(unsigned long microsec)
1129 {
1130 unsigned long ns;
1131 unsigned long long cyc;
1132
1133 ns = microsec * 1000;
1134 cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
1135 return cyc;
1136 }
1137
1138 /*
1139 * Display the statistics thru /proc/sgi_uv/ptc_statistics
1140 * 'data' points to the cpu number
1141 * Note: see the descriptions in stat_description[].
1142 */
1143 static int ptc_seq_show(struct seq_file *file, void *data)
1144 {
1145 struct ptc_stats *stat;
1146 int cpu;
1147
1148 cpu = *(loff_t *)data;
1149 if (!cpu) {
1150 seq_printf(file,
1151 "# cpu sent stime self locals remotes ncpus localhub ");
1152 seq_printf(file,
1153 "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1154 seq_printf(file,
1155 "numuvhubs4 numuvhubs2 numuvhubs1 dto retries rok ");
1156 seq_printf(file,
1157 "resetp resett giveup sto bz throt swack recv rtime ");
1158 seq_printf(file,
1159 "all one mult none retry canc nocan reset rcan ");
1160 seq_printf(file,
1161 "disable enable\n");
1162 }
1163 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1164 stat = &per_cpu(ptcstats, cpu);
1165 /* source side statistics */
1166 seq_printf(file,
1167 "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1168 cpu, stat->s_requestor, cycles_2_us(stat->s_time),
1169 stat->s_ntargself, stat->s_ntarglocals,
1170 stat->s_ntargremotes, stat->s_ntargcpu,
1171 stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1172 stat->s_ntarguvhub, stat->s_ntarguvhub16);
1173 seq_printf(file, "%ld %ld %ld %ld %ld ",
1174 stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1175 stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1176 stat->s_dtimeout);
1177 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1178 stat->s_retry_messages, stat->s_retriesok,
1179 stat->s_resets_plug, stat->s_resets_timeout,
1180 stat->s_giveup, stat->s_stimeout,
1181 stat->s_busy, stat->s_throttles);
1182
1183 /* destination side statistics */
1184 seq_printf(file,
1185 "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1186 read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)),
1187 stat->d_requestee, cycles_2_us(stat->d_time),
1188 stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1189 stat->d_nomsg, stat->d_retries, stat->d_canceled,
1190 stat->d_nocanceled, stat->d_resets,
1191 stat->d_rcanceled);
1192 seq_printf(file, "%ld %ld\n",
1193 stat->s_bau_disabled, stat->s_bau_reenabled);
1194 }
1195 return 0;
1196 }
1197
1198 /*
1199 * Display the tunables thru debugfs
1200 */
1201 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1202 size_t count, loff_t *ppos)
1203 {
1204 char *buf;
1205 int ret;
1206
1207 buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1208 "max_concur plugged_delay plugsb4reset",
1209 "timeoutsb4reset ipi_reset_limit complete_threshold",
1210 "congested_response_us congested_reps congested_period",
1211 max_concurr, plugged_delay, plugsb4reset,
1212 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1213 congested_respns_us, congested_reps, congested_period);
1214
1215 if (!buf)
1216 return -ENOMEM;
1217
1218 ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1219 kfree(buf);
1220 return ret;
1221 }
1222
1223 /*
1224 * handle a write to /proc/sgi_uv/ptc_statistics
1225 * -1: reset the statistics
1226 * 0: display meaning of the statistics
1227 */
1228 static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1229 size_t count, loff_t *data)
1230 {
1231 int cpu;
1232 int i;
1233 int elements;
1234 long input_arg;
1235 char optstr[64];
1236 struct ptc_stats *stat;
1237
1238 if (count == 0 || count > sizeof(optstr))
1239 return -EINVAL;
1240 if (copy_from_user(optstr, user, count))
1241 return -EFAULT;
1242 optstr[count - 1] = '\0';
1243
1244 if (strict_strtol(optstr, 10, &input_arg) < 0) {
1245 printk(KERN_DEBUG "%s is invalid\n", optstr);
1246 return -EINVAL;
1247 }
1248
1249 if (input_arg == 0) {
1250 elements = sizeof(stat_description)/sizeof(*stat_description);
1251 printk(KERN_DEBUG "# cpu: cpu number\n");
1252 printk(KERN_DEBUG "Sender statistics:\n");
1253 for (i = 0; i < elements; i++)
1254 printk(KERN_DEBUG "%s\n", stat_description[i]);
1255 } else if (input_arg == -1) {
1256 for_each_present_cpu(cpu) {
1257 stat = &per_cpu(ptcstats, cpu);
1258 memset(stat, 0, sizeof(struct ptc_stats));
1259 }
1260 }
1261
1262 return count;
1263 }
1264
1265 static int local_atoi(const char *name)
1266 {
1267 int val = 0;
1268
1269 for (;; name++) {
1270 switch (*name) {
1271 case '0' ... '9':
1272 val = 10*val+(*name-'0');
1273 break;
1274 default:
1275 return val;
1276 }
1277 }
1278 }
1279
1280 /*
1281 * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1282 * Zero values reset them to defaults.
1283 */
1284 static int parse_tunables_write(struct bau_control *bcp, char *instr,
1285 int count)
1286 {
1287 char *p;
1288 char *q;
1289 int cnt = 0;
1290 int val;
1291 int e = sizeof(tunables) / sizeof(*tunables);
1292
1293 p = instr + strspn(instr, WHITESPACE);
1294 q = p;
1295 for (; *p; p = q + strspn(q, WHITESPACE)) {
1296 q = p + strcspn(p, WHITESPACE);
1297 cnt++;
1298 if (q == p)
1299 break;
1300 }
1301 if (cnt != e) {
1302 printk(KERN_INFO "bau tunable error: should be %d values\n", e);
1303 return -EINVAL;
1304 }
1305
1306 p = instr + strspn(instr, WHITESPACE);
1307 q = p;
1308 for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1309 q = p + strcspn(p, WHITESPACE);
1310 val = local_atoi(p);
1311 switch (cnt) {
1312 case 0:
1313 if (val == 0) {
1314 max_concurr = MAX_BAU_CONCURRENT;
1315 max_concurr_const = MAX_BAU_CONCURRENT;
1316 continue;
1317 }
1318 if (val < 1 || val > bcp->cpus_in_uvhub) {
1319 printk(KERN_DEBUG
1320 "Error: BAU max concurrent %d is invalid\n",
1321 val);
1322 return -EINVAL;
1323 }
1324 max_concurr = val;
1325 max_concurr_const = val;
1326 continue;
1327 default:
1328 if (val == 0)
1329 *tunables[cnt].tunp = tunables[cnt].deflt;
1330 else
1331 *tunables[cnt].tunp = val;
1332 continue;
1333 }
1334 if (q == p)
1335 break;
1336 }
1337 return 0;
1338 }
1339
1340 /*
1341 * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1342 */
1343 static ssize_t tunables_write(struct file *file, const char __user *user,
1344 size_t count, loff_t *data)
1345 {
1346 int cpu;
1347 int ret;
1348 char instr[100];
1349 struct bau_control *bcp;
1350
1351 if (count == 0 || count > sizeof(instr)-1)
1352 return -EINVAL;
1353 if (copy_from_user(instr, user, count))
1354 return -EFAULT;
1355
1356 instr[count] = '\0';
1357
1358 cpu = get_cpu();
1359 bcp = &per_cpu(bau_control, cpu);
1360 ret = parse_tunables_write(bcp, instr, count);
1361 put_cpu();
1362 if (ret)
1363 return ret;
1364
1365 for_each_present_cpu(cpu) {
1366 bcp = &per_cpu(bau_control, cpu);
1367 bcp->max_concurr = max_concurr;
1368 bcp->max_concurr_const = max_concurr;
1369 bcp->plugged_delay = plugged_delay;
1370 bcp->plugsb4reset = plugsb4reset;
1371 bcp->timeoutsb4reset = timeoutsb4reset;
1372 bcp->ipi_reset_limit = ipi_reset_limit;
1373 bcp->complete_threshold = complete_threshold;
1374 bcp->cong_response_us = congested_respns_us;
1375 bcp->cong_reps = congested_reps;
1376 bcp->cong_period = congested_period;
1377 }
1378 return count;
1379 }
1380
1381 static const struct seq_operations uv_ptc_seq_ops = {
1382 .start = ptc_seq_start,
1383 .next = ptc_seq_next,
1384 .stop = ptc_seq_stop,
1385 .show = ptc_seq_show
1386 };
1387
1388 static int ptc_proc_open(struct inode *inode, struct file *file)
1389 {
1390 return seq_open(file, &uv_ptc_seq_ops);
1391 }
1392
1393 static int tunables_open(struct inode *inode, struct file *file)
1394 {
1395 return 0;
1396 }
1397
1398 static const struct file_operations proc_uv_ptc_operations = {
1399 .open = ptc_proc_open,
1400 .read = seq_read,
1401 .write = ptc_proc_write,
1402 .llseek = seq_lseek,
1403 .release = seq_release,
1404 };
1405
1406 static const struct file_operations tunables_fops = {
1407 .open = tunables_open,
1408 .read = tunables_read,
1409 .write = tunables_write,
1410 .llseek = default_llseek,
1411 };
1412
1413 static int __init uv_ptc_init(void)
1414 {
1415 struct proc_dir_entry *proc_uv_ptc;
1416
1417 if (!is_uv_system())
1418 return 0;
1419
1420 proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1421 &proc_uv_ptc_operations);
1422 if (!proc_uv_ptc) {
1423 printk(KERN_ERR "unable to create %s proc entry\n",
1424 UV_PTC_BASENAME);
1425 return -EINVAL;
1426 }
1427
1428 tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1429 if (!tunables_dir) {
1430 printk(KERN_ERR "unable to create debugfs directory %s\n",
1431 UV_BAU_TUNABLES_DIR);
1432 return -EINVAL;
1433 }
1434 tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1435 tunables_dir, NULL, &tunables_fops);
1436 if (!tunables_file) {
1437 printk(KERN_ERR "unable to create debugfs file %s\n",
1438 UV_BAU_TUNABLES_FILE);
1439 return -EINVAL;
1440 }
1441 return 0;
1442 }
1443
1444 /*
1445 * Initialize the sending side's sending buffers.
1446 */
1447 static void activation_descriptor_init(int node, int pnode, int base_pnode)
1448 {
1449 int i;
1450 int cpu;
1451 int uv1 = 0;
1452 unsigned long gpa;
1453 unsigned long m;
1454 unsigned long n;
1455 size_t dsize;
1456 struct bau_desc *bau_desc;
1457 struct bau_desc *bd2;
1458 struct uv1_bau_msg_header *uv1_hdr;
1459 struct uv2_bau_msg_header *uv2_hdr;
1460 struct bau_control *bcp;
1461
1462 /*
1463 * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1464 * per cpu; and one per cpu on the uvhub (ADP_SZ)
1465 */
1466 dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1467 bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1468 BUG_ON(!bau_desc);
1469
1470 gpa = uv_gpa(bau_desc);
1471 n = uv_gpa_to_gnode(gpa);
1472 m = uv_gpa_to_offset(gpa);
1473 if (is_uv1_hub())
1474 uv1 = 1;
1475
1476 /* the 14-bit pnode */
1477 write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
1478 /*
1479 * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1480 * cpu even though we only use the first one; one descriptor can
1481 * describe a broadcast to 256 uv hubs.
1482 */
1483 for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1484 memset(bd2, 0, sizeof(struct bau_desc));
1485 if (uv1) {
1486 uv1_hdr = &bd2->header.uv1_hdr;
1487 uv1_hdr->swack_flag = 1;
1488 /*
1489 * The base_dest_nasid set in the message header
1490 * is the nasid of the first uvhub in the partition.
1491 * The bit map will indicate destination pnode numbers
1492 * relative to that base. They may not be consecutive
1493 * if nasid striding is being used.
1494 */
1495 uv1_hdr->base_dest_nasid =
1496 UV_PNODE_TO_NASID(base_pnode);
1497 uv1_hdr->dest_subnodeid = UV_LB_SUBNODEID;
1498 uv1_hdr->command = UV_NET_ENDPOINT_INTD;
1499 uv1_hdr->int_both = 1;
1500 /*
1501 * all others need to be set to zero:
1502 * fairness chaining multilevel count replied_to
1503 */
1504 } else {
1505 uv2_hdr = &bd2->header.uv2_hdr;
1506 uv2_hdr->swack_flag = 1;
1507 uv2_hdr->base_dest_nasid =
1508 UV_PNODE_TO_NASID(base_pnode);
1509 uv2_hdr->dest_subnodeid = UV_LB_SUBNODEID;
1510 uv2_hdr->command = UV_NET_ENDPOINT_INTD;
1511 }
1512 }
1513 for_each_present_cpu(cpu) {
1514 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1515 continue;
1516 bcp = &per_cpu(bau_control, cpu);
1517 bcp->descriptor_base = bau_desc;
1518 }
1519 }
1520
1521 /*
1522 * initialize the destination side's receiving buffers
1523 * entered for each uvhub in the partition
1524 * - node is first node (kernel memory notion) on the uvhub
1525 * - pnode is the uvhub's physical identifier
1526 */
1527 static void pq_init(int node, int pnode)
1528 {
1529 int cpu;
1530 size_t plsize;
1531 char *cp;
1532 void *vp;
1533 unsigned long pn;
1534 unsigned long first;
1535 unsigned long pn_first;
1536 unsigned long last;
1537 struct bau_pq_entry *pqp;
1538 struct bau_control *bcp;
1539
1540 plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1541 vp = kmalloc_node(plsize, GFP_KERNEL, node);
1542 pqp = (struct bau_pq_entry *)vp;
1543 BUG_ON(!pqp);
1544
1545 cp = (char *)pqp + 31;
1546 pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1547
1548 for_each_present_cpu(cpu) {
1549 if (pnode != uv_cpu_to_pnode(cpu))
1550 continue;
1551 /* for every cpu on this pnode: */
1552 bcp = &per_cpu(bau_control, cpu);
1553 bcp->queue_first = pqp;
1554 bcp->bau_msg_head = pqp;
1555 bcp->queue_last = pqp + (DEST_Q_SIZE - 1);
1556 }
1557 /*
1558 * need the gnode of where the memory was really allocated
1559 */
1560 pn = uv_gpa_to_gnode(uv_gpa(pqp));
1561 first = uv_physnodeaddr(pqp);
1562 pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first;
1563 last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1));
1564 write_mmr_payload_first(pnode, pn_first);
1565 write_mmr_payload_tail(pnode, first);
1566 write_mmr_payload_last(pnode, last);
1567
1568 /* in effect, all msg_type's are set to MSG_NOOP */
1569 memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1570 }
1571
1572 /*
1573 * Initialization of each UV hub's structures
1574 */
1575 static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1576 {
1577 int node;
1578 int pnode;
1579 unsigned long apicid;
1580
1581 node = uvhub_to_first_node(uvhub);
1582 pnode = uv_blade_to_pnode(uvhub);
1583
1584 activation_descriptor_init(node, pnode, base_pnode);
1585
1586 pq_init(node, pnode);
1587 /*
1588 * The below initialization can't be in firmware because the
1589 * messaging IRQ will be determined by the OS.
1590 */
1591 apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1592 write_mmr_data_config(pnode, ((apicid << 32) | vector));
1593 }
1594
1595 /*
1596 * We will set BAU_MISC_CONTROL with a timeout period.
1597 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1598 * So the destination timeout period has to be calculated from them.
1599 */
1600 static int calculate_destination_timeout(void)
1601 {
1602 unsigned long mmr_image;
1603 int mult1;
1604 int mult2;
1605 int index;
1606 int base;
1607 int ret;
1608 unsigned long ts_ns;
1609
1610 if (is_uv1_hub()) {
1611 mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1612 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1613 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1614 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1615 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1616 base = timeout_base_ns[index];
1617 ts_ns = base * mult1 * mult2;
1618 ret = ts_ns / 1000;
1619 } else {
1620 /* 4 bits 0/1 for 10/80us base, 3 bits of multiplier */
1621 mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1622 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1623 if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1624 base = 80;
1625 else
1626 base = 10;
1627 mult1 = mmr_image & UV2_ACK_MASK;
1628 ret = mult1 * base;
1629 }
1630 return ret;
1631 }
1632
1633 static void __init init_per_cpu_tunables(void)
1634 {
1635 int cpu;
1636 struct bau_control *bcp;
1637
1638 for_each_present_cpu(cpu) {
1639 bcp = &per_cpu(bau_control, cpu);
1640 bcp->baudisabled = 0;
1641 bcp->statp = &per_cpu(ptcstats, cpu);
1642 /* time interval to catch a hardware stay-busy bug */
1643 bcp->timeout_interval = usec_2_cycles(2*timeout_us);
1644 bcp->max_concurr = max_concurr;
1645 bcp->max_concurr_const = max_concurr;
1646 bcp->plugged_delay = plugged_delay;
1647 bcp->plugsb4reset = plugsb4reset;
1648 bcp->timeoutsb4reset = timeoutsb4reset;
1649 bcp->ipi_reset_limit = ipi_reset_limit;
1650 bcp->complete_threshold = complete_threshold;
1651 bcp->cong_response_us = congested_respns_us;
1652 bcp->cong_reps = congested_reps;
1653 bcp->cong_period = congested_period;
1654 }
1655 }
1656
1657 /*
1658 * Scan all cpus to collect blade and socket summaries.
1659 */
1660 static int __init get_cpu_topology(int base_pnode,
1661 struct uvhub_desc *uvhub_descs,
1662 unsigned char *uvhub_mask)
1663 {
1664 int cpu;
1665 int pnode;
1666 int uvhub;
1667 int socket;
1668 struct bau_control *bcp;
1669 struct uvhub_desc *bdp;
1670 struct socket_desc *sdp;
1671
1672 for_each_present_cpu(cpu) {
1673 bcp = &per_cpu(bau_control, cpu);
1674
1675 memset(bcp, 0, sizeof(struct bau_control));
1676
1677 pnode = uv_cpu_hub_info(cpu)->pnode;
1678 if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1679 printk(KERN_EMERG
1680 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1681 cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1682 return 1;
1683 }
1684
1685 bcp->osnode = cpu_to_node(cpu);
1686 bcp->partition_base_pnode = base_pnode;
1687
1688 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1689 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1690 bdp = &uvhub_descs[uvhub];
1691
1692 bdp->num_cpus++;
1693 bdp->uvhub = uvhub;
1694 bdp->pnode = pnode;
1695
1696 /* kludge: 'assuming' one node per socket, and assuming that
1697 disabling a socket just leaves a gap in node numbers */
1698 socket = bcp->osnode & 1;
1699 bdp->socket_mask |= (1 << socket);
1700 sdp = &bdp->socket[socket];
1701 sdp->cpu_number[sdp->num_cpus] = cpu;
1702 sdp->num_cpus++;
1703 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1704 printk(KERN_EMERG "%d cpus per socket invalid\n",
1705 sdp->num_cpus);
1706 return 1;
1707 }
1708 }
1709 return 0;
1710 }
1711
1712 /*
1713 * Each socket is to get a local array of pnodes/hubs.
1714 */
1715 static void make_per_cpu_thp(struct bau_control *smaster)
1716 {
1717 int cpu;
1718 size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
1719
1720 smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
1721 memset(smaster->thp, 0, hpsz);
1722 for_each_present_cpu(cpu) {
1723 smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
1724 smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1725 }
1726 }
1727
1728 /*
1729 * Each uvhub is to get a local cpumask.
1730 */
1731 static void make_per_hub_cpumask(struct bau_control *hmaster)
1732 {
1733 int sz = sizeof(cpumask_t);
1734
1735 hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
1736 }
1737
1738 /*
1739 * Initialize all the per_cpu information for the cpu's on a given socket,
1740 * given what has been gathered into the socket_desc struct.
1741 * And reports the chosen hub and socket masters back to the caller.
1742 */
1743 static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
1744 struct bau_control **smasterp,
1745 struct bau_control **hmasterp)
1746 {
1747 int i;
1748 int cpu;
1749 struct bau_control *bcp;
1750
1751 for (i = 0; i < sdp->num_cpus; i++) {
1752 cpu = sdp->cpu_number[i];
1753 bcp = &per_cpu(bau_control, cpu);
1754 bcp->cpu = cpu;
1755 if (i == 0) {
1756 *smasterp = bcp;
1757 if (!(*hmasterp))
1758 *hmasterp = bcp;
1759 }
1760 bcp->cpus_in_uvhub = bdp->num_cpus;
1761 bcp->cpus_in_socket = sdp->num_cpus;
1762 bcp->socket_master = *smasterp;
1763 bcp->uvhub = bdp->uvhub;
1764 if (is_uv1_hub())
1765 bcp->uvhub_version = 1;
1766 else if (is_uv2_hub())
1767 bcp->uvhub_version = 2;
1768 else {
1769 printk(KERN_EMERG "uvhub version not 1 or 2\n");
1770 return 1;
1771 }
1772 bcp->uvhub_master = *hmasterp;
1773 bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id;
1774 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
1775 printk(KERN_EMERG "%d cpus per uvhub invalid\n",
1776 bcp->uvhub_cpu);
1777 return 1;
1778 }
1779 }
1780 return 0;
1781 }
1782
1783 /*
1784 * Summarize the blade and socket topology into the per_cpu structures.
1785 */
1786 static int __init summarize_uvhub_sockets(int nuvhubs,
1787 struct uvhub_desc *uvhub_descs,
1788 unsigned char *uvhub_mask)
1789 {
1790 int socket;
1791 int uvhub;
1792 unsigned short socket_mask;
1793
1794 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1795 struct uvhub_desc *bdp;
1796 struct bau_control *smaster = NULL;
1797 struct bau_control *hmaster = NULL;
1798
1799 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
1800 continue;
1801
1802 bdp = &uvhub_descs[uvhub];
1803 socket_mask = bdp->socket_mask;
1804 socket = 0;
1805 while (socket_mask) {
1806 struct socket_desc *sdp;
1807 if ((socket_mask & 1)) {
1808 sdp = &bdp->socket[socket];
1809 if (scan_sock(sdp, bdp, &smaster, &hmaster))
1810 return 1;
1811 make_per_cpu_thp(smaster);
1812 }
1813 socket++;
1814 socket_mask = (socket_mask >> 1);
1815 }
1816 make_per_hub_cpumask(hmaster);
1817 }
1818 return 0;
1819 }
1820
1821 /*
1822 * initialize the bau_control structure for each cpu
1823 */
1824 static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
1825 {
1826 unsigned char *uvhub_mask;
1827 void *vp;
1828 struct uvhub_desc *uvhub_descs;
1829
1830 timeout_us = calculate_destination_timeout();
1831
1832 vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
1833 uvhub_descs = (struct uvhub_desc *)vp;
1834 memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
1835 uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
1836
1837 if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
1838 goto fail;
1839
1840 if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
1841 goto fail;
1842
1843 kfree(uvhub_descs);
1844 kfree(uvhub_mask);
1845 init_per_cpu_tunables();
1846 return 0;
1847
1848 fail:
1849 kfree(uvhub_descs);
1850 kfree(uvhub_mask);
1851 return 1;
1852 }
1853
1854 /*
1855 * Initialization of BAU-related structures
1856 */
1857 static int __init uv_bau_init(void)
1858 {
1859 int uvhub;
1860 int pnode;
1861 int nuvhubs;
1862 int cur_cpu;
1863 int cpus;
1864 int vector;
1865 cpumask_var_t *mask;
1866
1867 if (!is_uv_system())
1868 return 0;
1869
1870 if (nobau)
1871 return 0;
1872
1873 for_each_possible_cpu(cur_cpu) {
1874 mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
1875 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
1876 }
1877
1878 nuvhubs = uv_num_possible_blades();
1879 spin_lock_init(&disable_lock);
1880 congested_cycles = usec_2_cycles(congested_respns_us);
1881
1882 uv_base_pnode = 0x7fffffff;
1883 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1884 cpus = uv_blade_nr_possible_cpus(uvhub);
1885 if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
1886 uv_base_pnode = uv_blade_to_pnode(uvhub);
1887 }
1888
1889 enable_timeouts();
1890
1891 if (init_per_cpu(nuvhubs, uv_base_pnode)) {
1892 nobau = 1;
1893 return 0;
1894 }
1895
1896 vector = UV_BAU_MESSAGE;
1897 for_each_possible_blade(uvhub)
1898 if (uv_blade_nr_possible_cpus(uvhub))
1899 init_uvhub(uvhub, vector, uv_base_pnode);
1900
1901 alloc_intr_gate(vector, uv_bau_message_intr1);
1902
1903 for_each_possible_blade(uvhub) {
1904 if (uv_blade_nr_possible_cpus(uvhub)) {
1905 unsigned long val;
1906 unsigned long mmr;
1907 pnode = uv_blade_to_pnode(uvhub);
1908 /* INIT the bau */
1909 val = 1L << 63;
1910 write_gmmr_activation(pnode, val);
1911 mmr = 1; /* should be 1 to broadcast to both sockets */
1912 if (!is_uv1_hub())
1913 write_mmr_data_broadcast(pnode, mmr);
1914 }
1915 }
1916
1917 return 0;
1918 }
1919 core_initcall(uv_bau_init);
1920 fs_initcall(uv_ptc_init);
This page took 0.074342 seconds and 5 git commands to generate.