MIPS: KVM: Relative branch to common exit handler
[deliverable/linux.git] / arch / x86 / platform / uv / uv_time.c
1 /*
2 * SGI RTC clock/timer routines.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Dimitri Sivanich
20 */
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
23
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
28 #include <asm/apic.h>
29 #include <asm/cpu.h>
30
31 #define RTC_NAME "sgi_rtc"
32
33 static cycle_t uv_read_rtc(struct clocksource *cs);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35 static int uv_rtc_shutdown(struct clock_event_device *evt);
36
37 static struct clocksource clocksource_uv = {
38 .name = RTC_NAME,
39 .rating = 299,
40 .read = uv_read_rtc,
41 .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
42 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
43 };
44
45 static struct clock_event_device clock_event_device_uv = {
46 .name = RTC_NAME,
47 .features = CLOCK_EVT_FEAT_ONESHOT,
48 .shift = 20,
49 .rating = 400,
50 .irq = -1,
51 .set_next_event = uv_rtc_next_event,
52 .set_state_shutdown = uv_rtc_shutdown,
53 .event_handler = NULL,
54 };
55
56 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
57
58 /* There is one of these allocated per node */
59 struct uv_rtc_timer_head {
60 spinlock_t lock;
61 /* next cpu waiting for timer, local node relative: */
62 int next_cpu;
63 /* number of cpus on this node: */
64 int ncpus;
65 struct {
66 int lcpu; /* systemwide logical cpu number */
67 u64 expires; /* next timer expiration for this cpu */
68 } cpu[1];
69 };
70
71 /*
72 * Access to uv_rtc_timer_head via blade id.
73 */
74 static struct uv_rtc_timer_head **blade_info __read_mostly;
75
76 static int uv_rtc_evt_enable;
77
78 /*
79 * Hardware interface routines
80 */
81
82 /* Send IPIs to another node */
83 static void uv_rtc_send_IPI(int cpu)
84 {
85 unsigned long apicid, val;
86 int pnode;
87
88 apicid = cpu_physical_id(cpu);
89 pnode = uv_apicid_to_pnode(apicid);
90 apicid |= uv_apicid_hibits;
91 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
92 (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
93 (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
94
95 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
96 }
97
98 /* Check for an RTC interrupt pending */
99 static int uv_intr_pending(int pnode)
100 {
101 if (is_uv1_hub())
102 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
103 UV1H_EVENT_OCCURRED0_RTC1_MASK;
104 else if (is_uvx_hub())
105 return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
106 UVXH_EVENT_OCCURRED2_RTC_1_MASK;
107 return 0;
108 }
109
110 /* Setup interrupt and return non-zero if early expiration occurred. */
111 static int uv_setup_intr(int cpu, u64 expires)
112 {
113 u64 val;
114 unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
115 int pnode = uv_cpu_to_pnode(cpu);
116
117 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
118 UVH_RTC1_INT_CONFIG_M_MASK);
119 uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
120
121 if (is_uv1_hub())
122 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
123 UV1H_EVENT_OCCURRED0_RTC1_MASK);
124 else
125 uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
126 UVXH_EVENT_OCCURRED2_RTC_1_MASK);
127
128 val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
129 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
130
131 /* Set configuration */
132 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
133 /* Initialize comparator value */
134 uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
135
136 if (uv_read_rtc(NULL) <= expires)
137 return 0;
138
139 return !uv_intr_pending(pnode);
140 }
141
142 /*
143 * Per-cpu timer tracking routines
144 */
145
146 static __init void uv_rtc_deallocate_timers(void)
147 {
148 int bid;
149
150 for_each_possible_blade(bid) {
151 kfree(blade_info[bid]);
152 }
153 kfree(blade_info);
154 }
155
156 /* Allocate per-node list of cpu timer expiration times. */
157 static __init int uv_rtc_allocate_timers(void)
158 {
159 int cpu;
160
161 blade_info = kzalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
162 if (!blade_info)
163 return -ENOMEM;
164
165 for_each_present_cpu(cpu) {
166 int nid = cpu_to_node(cpu);
167 int bid = uv_cpu_to_blade_id(cpu);
168 int bcpu = uv_cpu_blade_processor_id(cpu);
169 struct uv_rtc_timer_head *head = blade_info[bid];
170
171 if (!head) {
172 head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
173 (uv_blade_nr_possible_cpus(bid) *
174 2 * sizeof(u64)),
175 GFP_KERNEL, nid);
176 if (!head) {
177 uv_rtc_deallocate_timers();
178 return -ENOMEM;
179 }
180 spin_lock_init(&head->lock);
181 head->ncpus = uv_blade_nr_possible_cpus(bid);
182 head->next_cpu = -1;
183 blade_info[bid] = head;
184 }
185
186 head->cpu[bcpu].lcpu = cpu;
187 head->cpu[bcpu].expires = ULLONG_MAX;
188 }
189
190 return 0;
191 }
192
193 /* Find and set the next expiring timer. */
194 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
195 {
196 u64 lowest = ULLONG_MAX;
197 int c, bcpu = -1;
198
199 head->next_cpu = -1;
200 for (c = 0; c < head->ncpus; c++) {
201 u64 exp = head->cpu[c].expires;
202 if (exp < lowest) {
203 bcpu = c;
204 lowest = exp;
205 }
206 }
207 if (bcpu >= 0) {
208 head->next_cpu = bcpu;
209 c = head->cpu[bcpu].lcpu;
210 if (uv_setup_intr(c, lowest))
211 /* If we didn't set it up in time, trigger */
212 uv_rtc_send_IPI(c);
213 } else {
214 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
215 UVH_RTC1_INT_CONFIG_M_MASK);
216 }
217 }
218
219 /*
220 * Set expiration time for current cpu.
221 *
222 * Returns 1 if we missed the expiration time.
223 */
224 static int uv_rtc_set_timer(int cpu, u64 expires)
225 {
226 int pnode = uv_cpu_to_pnode(cpu);
227 int bid = uv_cpu_to_blade_id(cpu);
228 struct uv_rtc_timer_head *head = blade_info[bid];
229 int bcpu = uv_cpu_blade_processor_id(cpu);
230 u64 *t = &head->cpu[bcpu].expires;
231 unsigned long flags;
232 int next_cpu;
233
234 spin_lock_irqsave(&head->lock, flags);
235
236 next_cpu = head->next_cpu;
237 *t = expires;
238
239 /* Will this one be next to go off? */
240 if (next_cpu < 0 || bcpu == next_cpu ||
241 expires < head->cpu[next_cpu].expires) {
242 head->next_cpu = bcpu;
243 if (uv_setup_intr(cpu, expires)) {
244 *t = ULLONG_MAX;
245 uv_rtc_find_next_timer(head, pnode);
246 spin_unlock_irqrestore(&head->lock, flags);
247 return -ETIME;
248 }
249 }
250
251 spin_unlock_irqrestore(&head->lock, flags);
252 return 0;
253 }
254
255 /*
256 * Unset expiration time for current cpu.
257 *
258 * Returns 1 if this timer was pending.
259 */
260 static int uv_rtc_unset_timer(int cpu, int force)
261 {
262 int pnode = uv_cpu_to_pnode(cpu);
263 int bid = uv_cpu_to_blade_id(cpu);
264 struct uv_rtc_timer_head *head = blade_info[bid];
265 int bcpu = uv_cpu_blade_processor_id(cpu);
266 u64 *t = &head->cpu[bcpu].expires;
267 unsigned long flags;
268 int rc = 0;
269
270 spin_lock_irqsave(&head->lock, flags);
271
272 if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
273 rc = 1;
274
275 if (rc) {
276 *t = ULLONG_MAX;
277 /* Was the hardware setup for this timer? */
278 if (head->next_cpu == bcpu)
279 uv_rtc_find_next_timer(head, pnode);
280 }
281
282 spin_unlock_irqrestore(&head->lock, flags);
283
284 return rc;
285 }
286
287
288 /*
289 * Kernel interface routines.
290 */
291
292 /*
293 * Read the RTC.
294 *
295 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
296 * cachelines of it's own page. This allows faster simultaneous reads
297 * from a given socket.
298 */
299 static cycle_t uv_read_rtc(struct clocksource *cs)
300 {
301 unsigned long offset;
302
303 if (uv_get_min_hub_revision_id() == 1)
304 offset = 0;
305 else
306 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
307
308 return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
309 }
310
311 /*
312 * Program the next event, relative to now
313 */
314 static int uv_rtc_next_event(unsigned long delta,
315 struct clock_event_device *ced)
316 {
317 int ced_cpu = cpumask_first(ced->cpumask);
318
319 return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
320 }
321
322 /*
323 * Shutdown the RTC timer
324 */
325 static int uv_rtc_shutdown(struct clock_event_device *evt)
326 {
327 int ced_cpu = cpumask_first(evt->cpumask);
328
329 uv_rtc_unset_timer(ced_cpu, 1);
330 return 0;
331 }
332
333 static void uv_rtc_interrupt(void)
334 {
335 int cpu = smp_processor_id();
336 struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
337
338 if (!ced || !ced->event_handler)
339 return;
340
341 if (uv_rtc_unset_timer(cpu, 0) != 1)
342 return;
343
344 ced->event_handler(ced);
345 }
346
347 static int __init uv_enable_evt_rtc(char *str)
348 {
349 uv_rtc_evt_enable = 1;
350
351 return 1;
352 }
353 __setup("uvrtcevt", uv_enable_evt_rtc);
354
355 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
356 {
357 struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
358
359 *ced = clock_event_device_uv;
360 ced->cpumask = cpumask_of(smp_processor_id());
361 clockevents_register_device(ced);
362 }
363
364 static __init int uv_rtc_setup_clock(void)
365 {
366 int rc;
367
368 if (!is_uv_system())
369 return -ENODEV;
370
371 rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
372 if (rc)
373 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
374 else
375 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
376 sn_rtc_cycles_per_second/(unsigned long)1E6);
377
378 if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
379 return rc;
380
381 /* Setup and register clockevents */
382 rc = uv_rtc_allocate_timers();
383 if (rc)
384 goto error;
385
386 x86_platform_ipi_callback = uv_rtc_interrupt;
387
388 clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
389 NSEC_PER_SEC, clock_event_device_uv.shift);
390
391 clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
392 sn_rtc_cycles_per_second;
393
394 clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
395 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
396
397 rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
398 if (rc) {
399 x86_platform_ipi_callback = NULL;
400 uv_rtc_deallocate_timers();
401 goto error;
402 }
403
404 printk(KERN_INFO "UV RTC clockevents registered\n");
405
406 return 0;
407
408 error:
409 clocksource_unregister(&clocksource_uv);
410 printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
411
412 return rc;
413 }
414 arch_initcall(uv_rtc_setup_clock);
This page took 0.072183 seconds and 5 git commands to generate.