xen/setup: filter APERFMPERF cpuid feature out
[deliverable/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45 #include <xen/acpi.h>
46
47 #include <asm/paravirt.h>
48 #include <asm/apic.h>
49 #include <asm/page.h>
50 #include <asm/xen/pci.h>
51 #include <asm/xen/hypercall.h>
52 #include <asm/xen/hypervisor.h>
53 #include <asm/fixmap.h>
54 #include <asm/processor.h>
55 #include <asm/proto.h>
56 #include <asm/msr-index.h>
57 #include <asm/traps.h>
58 #include <asm/setup.h>
59 #include <asm/desc.h>
60 #include <asm/pgalloc.h>
61 #include <asm/pgtable.h>
62 #include <asm/tlbflush.h>
63 #include <asm/reboot.h>
64 #include <asm/stackprotector.h>
65 #include <asm/hypervisor.h>
66 #include <asm/mwait.h>
67
68 #ifdef CONFIG_ACPI
69 #include <linux/acpi.h>
70 #include <asm/acpi.h>
71 #include <acpi/pdc_intel.h>
72 #include <acpi/processor.h>
73 #include <xen/interface/platform.h>
74 #endif
75
76 #include "xen-ops.h"
77 #include "mmu.h"
78 #include "smp.h"
79 #include "multicalls.h"
80
81 EXPORT_SYMBOL_GPL(hypercall_page);
82
83 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
84 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
85
86 enum xen_domain_type xen_domain_type = XEN_NATIVE;
87 EXPORT_SYMBOL_GPL(xen_domain_type);
88
89 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
90 EXPORT_SYMBOL(machine_to_phys_mapping);
91 unsigned long machine_to_phys_nr;
92 EXPORT_SYMBOL(machine_to_phys_nr);
93
94 struct start_info *xen_start_info;
95 EXPORT_SYMBOL_GPL(xen_start_info);
96
97 struct shared_info xen_dummy_shared_info;
98
99 void *xen_initial_gdt;
100
101 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
102 __read_mostly int xen_have_vector_callback;
103 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
104
105 /*
106 * Point at some empty memory to start with. We map the real shared_info
107 * page as soon as fixmap is up and running.
108 */
109 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
110
111 /*
112 * Flag to determine whether vcpu info placement is available on all
113 * VCPUs. We assume it is to start with, and then set it to zero on
114 * the first failure. This is because it can succeed on some VCPUs
115 * and not others, since it can involve hypervisor memory allocation,
116 * or because the guest failed to guarantee all the appropriate
117 * constraints on all VCPUs (ie buffer can't cross a page boundary).
118 *
119 * Note that any particular CPU may be using a placed vcpu structure,
120 * but we can only optimise if the all are.
121 *
122 * 0: not available, 1: available
123 */
124 static int have_vcpu_info_placement = 1;
125
126 static void clamp_max_cpus(void)
127 {
128 #ifdef CONFIG_SMP
129 if (setup_max_cpus > MAX_VIRT_CPUS)
130 setup_max_cpus = MAX_VIRT_CPUS;
131 #endif
132 }
133
134 static void xen_vcpu_setup(int cpu)
135 {
136 struct vcpu_register_vcpu_info info;
137 int err;
138 struct vcpu_info *vcpup;
139
140 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
141
142 if (cpu < MAX_VIRT_CPUS)
143 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
144
145 if (!have_vcpu_info_placement) {
146 if (cpu >= MAX_VIRT_CPUS)
147 clamp_max_cpus();
148 return;
149 }
150
151 vcpup = &per_cpu(xen_vcpu_info, cpu);
152 info.mfn = arbitrary_virt_to_mfn(vcpup);
153 info.offset = offset_in_page(vcpup);
154
155 /* Check to see if the hypervisor will put the vcpu_info
156 structure where we want it, which allows direct access via
157 a percpu-variable. */
158 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
159
160 if (err) {
161 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
162 have_vcpu_info_placement = 0;
163 clamp_max_cpus();
164 } else {
165 /* This cpu is using the registered vcpu info, even if
166 later ones fail to. */
167 per_cpu(xen_vcpu, cpu) = vcpup;
168 }
169 }
170
171 /*
172 * On restore, set the vcpu placement up again.
173 * If it fails, then we're in a bad state, since
174 * we can't back out from using it...
175 */
176 void xen_vcpu_restore(void)
177 {
178 int cpu;
179
180 for_each_online_cpu(cpu) {
181 bool other_cpu = (cpu != smp_processor_id());
182
183 if (other_cpu &&
184 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
185 BUG();
186
187 xen_setup_runstate_info(cpu);
188
189 if (have_vcpu_info_placement)
190 xen_vcpu_setup(cpu);
191
192 if (other_cpu &&
193 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
194 BUG();
195 }
196 }
197
198 static void __init xen_banner(void)
199 {
200 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
201 struct xen_extraversion extra;
202 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
203
204 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
205 pv_info.name);
206 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
207 version >> 16, version & 0xffff, extra.extraversion,
208 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
209 }
210
211 #define CPUID_THERM_POWER_LEAF 6
212 #define APERFMPERF_PRESENT 0
213
214 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
215 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
216
217 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
218 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
219 static __read_mostly unsigned int cpuid_leaf5_edx_val;
220
221 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
222 unsigned int *cx, unsigned int *dx)
223 {
224 unsigned maskebx = ~0;
225 unsigned maskecx = ~0;
226 unsigned maskedx = ~0;
227 unsigned setecx = 0;
228 /*
229 * Mask out inconvenient features, to try and disable as many
230 * unsupported kernel subsystems as possible.
231 */
232 switch (*ax) {
233 case 1:
234 maskecx = cpuid_leaf1_ecx_mask;
235 setecx = cpuid_leaf1_ecx_set_mask;
236 maskedx = cpuid_leaf1_edx_mask;
237 break;
238
239 case CPUID_MWAIT_LEAF:
240 /* Synthesize the values.. */
241 *ax = 0;
242 *bx = 0;
243 *cx = cpuid_leaf5_ecx_val;
244 *dx = cpuid_leaf5_edx_val;
245 return;
246
247 case CPUID_THERM_POWER_LEAF:
248 /* Disabling APERFMPERF for kernel usage */
249 maskecx = ~(1 << APERFMPERF_PRESENT);
250 break;
251
252 case 0xb:
253 /* Suppress extended topology stuff */
254 maskebx = 0;
255 break;
256 }
257
258 asm(XEN_EMULATE_PREFIX "cpuid"
259 : "=a" (*ax),
260 "=b" (*bx),
261 "=c" (*cx),
262 "=d" (*dx)
263 : "0" (*ax), "2" (*cx));
264
265 *bx &= maskebx;
266 *cx &= maskecx;
267 *cx |= setecx;
268 *dx &= maskedx;
269
270 }
271
272 static bool __init xen_check_mwait(void)
273 {
274 #ifdef CONFIG_ACPI
275 struct xen_platform_op op = {
276 .cmd = XENPF_set_processor_pminfo,
277 .u.set_pminfo.id = -1,
278 .u.set_pminfo.type = XEN_PM_PDC,
279 };
280 uint32_t buf[3];
281 unsigned int ax, bx, cx, dx;
282 unsigned int mwait_mask;
283
284 /* We need to determine whether it is OK to expose the MWAIT
285 * capability to the kernel to harvest deeper than C3 states from ACPI
286 * _CST using the processor_harvest_xen.c module. For this to work, we
287 * need to gather the MWAIT_LEAF values (which the cstate.c code
288 * checks against). The hypervisor won't expose the MWAIT flag because
289 * it would break backwards compatibility; so we will find out directly
290 * from the hardware and hypercall.
291 */
292 if (!xen_initial_domain())
293 return false;
294
295 ax = 1;
296 cx = 0;
297
298 native_cpuid(&ax, &bx, &cx, &dx);
299
300 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
301 (1 << (X86_FEATURE_MWAIT % 32));
302
303 if ((cx & mwait_mask) != mwait_mask)
304 return false;
305
306 /* We need to emulate the MWAIT_LEAF and for that we need both
307 * ecx and edx. The hypercall provides only partial information.
308 */
309
310 ax = CPUID_MWAIT_LEAF;
311 bx = 0;
312 cx = 0;
313 dx = 0;
314
315 native_cpuid(&ax, &bx, &cx, &dx);
316
317 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
318 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
319 */
320 buf[0] = ACPI_PDC_REVISION_ID;
321 buf[1] = 1;
322 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
323
324 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
325
326 if ((HYPERVISOR_dom0_op(&op) == 0) &&
327 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
328 cpuid_leaf5_ecx_val = cx;
329 cpuid_leaf5_edx_val = dx;
330 }
331 return true;
332 #else
333 return false;
334 #endif
335 }
336 static void __init xen_init_cpuid_mask(void)
337 {
338 unsigned int ax, bx, cx, dx;
339 unsigned int xsave_mask;
340
341 cpuid_leaf1_edx_mask =
342 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
343 (1 << X86_FEATURE_MCA) | /* disable MCA */
344 (1 << X86_FEATURE_MTRR) | /* disable MTRR */
345 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
346
347 if (!xen_initial_domain())
348 cpuid_leaf1_edx_mask &=
349 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
350 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
351 ax = 1;
352 cx = 0;
353 xen_cpuid(&ax, &bx, &cx, &dx);
354
355 xsave_mask =
356 (1 << (X86_FEATURE_XSAVE % 32)) |
357 (1 << (X86_FEATURE_OSXSAVE % 32));
358
359 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
360 if ((cx & xsave_mask) != xsave_mask)
361 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
362
363 if (xen_check_mwait())
364 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
365 }
366
367 static void xen_set_debugreg(int reg, unsigned long val)
368 {
369 HYPERVISOR_set_debugreg(reg, val);
370 }
371
372 static unsigned long xen_get_debugreg(int reg)
373 {
374 return HYPERVISOR_get_debugreg(reg);
375 }
376
377 static void xen_end_context_switch(struct task_struct *next)
378 {
379 xen_mc_flush();
380 paravirt_end_context_switch(next);
381 }
382
383 static unsigned long xen_store_tr(void)
384 {
385 return 0;
386 }
387
388 /*
389 * Set the page permissions for a particular virtual address. If the
390 * address is a vmalloc mapping (or other non-linear mapping), then
391 * find the linear mapping of the page and also set its protections to
392 * match.
393 */
394 static void set_aliased_prot(void *v, pgprot_t prot)
395 {
396 int level;
397 pte_t *ptep;
398 pte_t pte;
399 unsigned long pfn;
400 struct page *page;
401
402 ptep = lookup_address((unsigned long)v, &level);
403 BUG_ON(ptep == NULL);
404
405 pfn = pte_pfn(*ptep);
406 page = pfn_to_page(pfn);
407
408 pte = pfn_pte(pfn, prot);
409
410 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
411 BUG();
412
413 if (!PageHighMem(page)) {
414 void *av = __va(PFN_PHYS(pfn));
415
416 if (av != v)
417 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
418 BUG();
419 } else
420 kmap_flush_unused();
421 }
422
423 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
424 {
425 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
426 int i;
427
428 for(i = 0; i < entries; i += entries_per_page)
429 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
430 }
431
432 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
433 {
434 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
435 int i;
436
437 for(i = 0; i < entries; i += entries_per_page)
438 set_aliased_prot(ldt + i, PAGE_KERNEL);
439 }
440
441 static void xen_set_ldt(const void *addr, unsigned entries)
442 {
443 struct mmuext_op *op;
444 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
445
446 trace_xen_cpu_set_ldt(addr, entries);
447
448 op = mcs.args;
449 op->cmd = MMUEXT_SET_LDT;
450 op->arg1.linear_addr = (unsigned long)addr;
451 op->arg2.nr_ents = entries;
452
453 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
454
455 xen_mc_issue(PARAVIRT_LAZY_CPU);
456 }
457
458 static void xen_load_gdt(const struct desc_ptr *dtr)
459 {
460 unsigned long va = dtr->address;
461 unsigned int size = dtr->size + 1;
462 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
463 unsigned long frames[pages];
464 int f;
465
466 /*
467 * A GDT can be up to 64k in size, which corresponds to 8192
468 * 8-byte entries, or 16 4k pages..
469 */
470
471 BUG_ON(size > 65536);
472 BUG_ON(va & ~PAGE_MASK);
473
474 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
475 int level;
476 pte_t *ptep;
477 unsigned long pfn, mfn;
478 void *virt;
479
480 /*
481 * The GDT is per-cpu and is in the percpu data area.
482 * That can be virtually mapped, so we need to do a
483 * page-walk to get the underlying MFN for the
484 * hypercall. The page can also be in the kernel's
485 * linear range, so we need to RO that mapping too.
486 */
487 ptep = lookup_address(va, &level);
488 BUG_ON(ptep == NULL);
489
490 pfn = pte_pfn(*ptep);
491 mfn = pfn_to_mfn(pfn);
492 virt = __va(PFN_PHYS(pfn));
493
494 frames[f] = mfn;
495
496 make_lowmem_page_readonly((void *)va);
497 make_lowmem_page_readonly(virt);
498 }
499
500 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
501 BUG();
502 }
503
504 /*
505 * load_gdt for early boot, when the gdt is only mapped once
506 */
507 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
508 {
509 unsigned long va = dtr->address;
510 unsigned int size = dtr->size + 1;
511 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
512 unsigned long frames[pages];
513 int f;
514
515 /*
516 * A GDT can be up to 64k in size, which corresponds to 8192
517 * 8-byte entries, or 16 4k pages..
518 */
519
520 BUG_ON(size > 65536);
521 BUG_ON(va & ~PAGE_MASK);
522
523 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
524 pte_t pte;
525 unsigned long pfn, mfn;
526
527 pfn = virt_to_pfn(va);
528 mfn = pfn_to_mfn(pfn);
529
530 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
531
532 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
533 BUG();
534
535 frames[f] = mfn;
536 }
537
538 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
539 BUG();
540 }
541
542 static void load_TLS_descriptor(struct thread_struct *t,
543 unsigned int cpu, unsigned int i)
544 {
545 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
546 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
547 struct multicall_space mc = __xen_mc_entry(0);
548
549 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
550 }
551
552 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
553 {
554 /*
555 * XXX sleazy hack: If we're being called in a lazy-cpu zone
556 * and lazy gs handling is enabled, it means we're in a
557 * context switch, and %gs has just been saved. This means we
558 * can zero it out to prevent faults on exit from the
559 * hypervisor if the next process has no %gs. Either way, it
560 * has been saved, and the new value will get loaded properly.
561 * This will go away as soon as Xen has been modified to not
562 * save/restore %gs for normal hypercalls.
563 *
564 * On x86_64, this hack is not used for %gs, because gs points
565 * to KERNEL_GS_BASE (and uses it for PDA references), so we
566 * must not zero %gs on x86_64
567 *
568 * For x86_64, we need to zero %fs, otherwise we may get an
569 * exception between the new %fs descriptor being loaded and
570 * %fs being effectively cleared at __switch_to().
571 */
572 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
573 #ifdef CONFIG_X86_32
574 lazy_load_gs(0);
575 #else
576 loadsegment(fs, 0);
577 #endif
578 }
579
580 xen_mc_batch();
581
582 load_TLS_descriptor(t, cpu, 0);
583 load_TLS_descriptor(t, cpu, 1);
584 load_TLS_descriptor(t, cpu, 2);
585
586 xen_mc_issue(PARAVIRT_LAZY_CPU);
587 }
588
589 #ifdef CONFIG_X86_64
590 static void xen_load_gs_index(unsigned int idx)
591 {
592 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
593 BUG();
594 }
595 #endif
596
597 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
598 const void *ptr)
599 {
600 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
601 u64 entry = *(u64 *)ptr;
602
603 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
604
605 preempt_disable();
606
607 xen_mc_flush();
608 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
609 BUG();
610
611 preempt_enable();
612 }
613
614 static int cvt_gate_to_trap(int vector, const gate_desc *val,
615 struct trap_info *info)
616 {
617 unsigned long addr;
618
619 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
620 return 0;
621
622 info->vector = vector;
623
624 addr = gate_offset(*val);
625 #ifdef CONFIG_X86_64
626 /*
627 * Look for known traps using IST, and substitute them
628 * appropriately. The debugger ones are the only ones we care
629 * about. Xen will handle faults like double_fault and
630 * machine_check, so we should never see them. Warn if
631 * there's an unexpected IST-using fault handler.
632 */
633 if (addr == (unsigned long)debug)
634 addr = (unsigned long)xen_debug;
635 else if (addr == (unsigned long)int3)
636 addr = (unsigned long)xen_int3;
637 else if (addr == (unsigned long)stack_segment)
638 addr = (unsigned long)xen_stack_segment;
639 else if (addr == (unsigned long)double_fault ||
640 addr == (unsigned long)nmi) {
641 /* Don't need to handle these */
642 return 0;
643 #ifdef CONFIG_X86_MCE
644 } else if (addr == (unsigned long)machine_check) {
645 return 0;
646 #endif
647 } else {
648 /* Some other trap using IST? */
649 if (WARN_ON(val->ist != 0))
650 return 0;
651 }
652 #endif /* CONFIG_X86_64 */
653 info->address = addr;
654
655 info->cs = gate_segment(*val);
656 info->flags = val->dpl;
657 /* interrupt gates clear IF */
658 if (val->type == GATE_INTERRUPT)
659 info->flags |= 1 << 2;
660
661 return 1;
662 }
663
664 /* Locations of each CPU's IDT */
665 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
666
667 /* Set an IDT entry. If the entry is part of the current IDT, then
668 also update Xen. */
669 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
670 {
671 unsigned long p = (unsigned long)&dt[entrynum];
672 unsigned long start, end;
673
674 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
675
676 preempt_disable();
677
678 start = __this_cpu_read(idt_desc.address);
679 end = start + __this_cpu_read(idt_desc.size) + 1;
680
681 xen_mc_flush();
682
683 native_write_idt_entry(dt, entrynum, g);
684
685 if (p >= start && (p + 8) <= end) {
686 struct trap_info info[2];
687
688 info[1].address = 0;
689
690 if (cvt_gate_to_trap(entrynum, g, &info[0]))
691 if (HYPERVISOR_set_trap_table(info))
692 BUG();
693 }
694
695 preempt_enable();
696 }
697
698 static void xen_convert_trap_info(const struct desc_ptr *desc,
699 struct trap_info *traps)
700 {
701 unsigned in, out, count;
702
703 count = (desc->size+1) / sizeof(gate_desc);
704 BUG_ON(count > 256);
705
706 for (in = out = 0; in < count; in++) {
707 gate_desc *entry = (gate_desc*)(desc->address) + in;
708
709 if (cvt_gate_to_trap(in, entry, &traps[out]))
710 out++;
711 }
712 traps[out].address = 0;
713 }
714
715 void xen_copy_trap_info(struct trap_info *traps)
716 {
717 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
718
719 xen_convert_trap_info(desc, traps);
720 }
721
722 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
723 hold a spinlock to protect the static traps[] array (static because
724 it avoids allocation, and saves stack space). */
725 static void xen_load_idt(const struct desc_ptr *desc)
726 {
727 static DEFINE_SPINLOCK(lock);
728 static struct trap_info traps[257];
729
730 trace_xen_cpu_load_idt(desc);
731
732 spin_lock(&lock);
733
734 __get_cpu_var(idt_desc) = *desc;
735
736 xen_convert_trap_info(desc, traps);
737
738 xen_mc_flush();
739 if (HYPERVISOR_set_trap_table(traps))
740 BUG();
741
742 spin_unlock(&lock);
743 }
744
745 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
746 they're handled differently. */
747 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
748 const void *desc, int type)
749 {
750 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
751
752 preempt_disable();
753
754 switch (type) {
755 case DESC_LDT:
756 case DESC_TSS:
757 /* ignore */
758 break;
759
760 default: {
761 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
762
763 xen_mc_flush();
764 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
765 BUG();
766 }
767
768 }
769
770 preempt_enable();
771 }
772
773 /*
774 * Version of write_gdt_entry for use at early boot-time needed to
775 * update an entry as simply as possible.
776 */
777 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
778 const void *desc, int type)
779 {
780 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
781
782 switch (type) {
783 case DESC_LDT:
784 case DESC_TSS:
785 /* ignore */
786 break;
787
788 default: {
789 xmaddr_t maddr = virt_to_machine(&dt[entry]);
790
791 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
792 dt[entry] = *(struct desc_struct *)desc;
793 }
794
795 }
796 }
797
798 static void xen_load_sp0(struct tss_struct *tss,
799 struct thread_struct *thread)
800 {
801 struct multicall_space mcs;
802
803 mcs = xen_mc_entry(0);
804 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
805 xen_mc_issue(PARAVIRT_LAZY_CPU);
806 }
807
808 static void xen_set_iopl_mask(unsigned mask)
809 {
810 struct physdev_set_iopl set_iopl;
811
812 /* Force the change at ring 0. */
813 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
814 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
815 }
816
817 static void xen_io_delay(void)
818 {
819 }
820
821 #ifdef CONFIG_X86_LOCAL_APIC
822 static u32 xen_apic_read(u32 reg)
823 {
824 return 0;
825 }
826
827 static void xen_apic_write(u32 reg, u32 val)
828 {
829 /* Warn to see if there's any stray references */
830 WARN_ON(1);
831 }
832
833 static u64 xen_apic_icr_read(void)
834 {
835 return 0;
836 }
837
838 static void xen_apic_icr_write(u32 low, u32 id)
839 {
840 /* Warn to see if there's any stray references */
841 WARN_ON(1);
842 }
843
844 static void xen_apic_wait_icr_idle(void)
845 {
846 return;
847 }
848
849 static u32 xen_safe_apic_wait_icr_idle(void)
850 {
851 return 0;
852 }
853
854 static void set_xen_basic_apic_ops(void)
855 {
856 apic->read = xen_apic_read;
857 apic->write = xen_apic_write;
858 apic->icr_read = xen_apic_icr_read;
859 apic->icr_write = xen_apic_icr_write;
860 apic->wait_icr_idle = xen_apic_wait_icr_idle;
861 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
862
863 #ifdef CONFIG_SMP
864 apic->send_IPI_allbutself = xen_send_IPI_allbutself;
865 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
866 apic->send_IPI_mask = xen_send_IPI_mask;
867 apic->send_IPI_all = xen_send_IPI_all;
868 apic->send_IPI_self = xen_send_IPI_self;
869 #endif
870 }
871
872 #endif
873
874 static void xen_clts(void)
875 {
876 struct multicall_space mcs;
877
878 mcs = xen_mc_entry(0);
879
880 MULTI_fpu_taskswitch(mcs.mc, 0);
881
882 xen_mc_issue(PARAVIRT_LAZY_CPU);
883 }
884
885 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
886
887 static unsigned long xen_read_cr0(void)
888 {
889 unsigned long cr0 = this_cpu_read(xen_cr0_value);
890
891 if (unlikely(cr0 == 0)) {
892 cr0 = native_read_cr0();
893 this_cpu_write(xen_cr0_value, cr0);
894 }
895
896 return cr0;
897 }
898
899 static void xen_write_cr0(unsigned long cr0)
900 {
901 struct multicall_space mcs;
902
903 this_cpu_write(xen_cr0_value, cr0);
904
905 /* Only pay attention to cr0.TS; everything else is
906 ignored. */
907 mcs = xen_mc_entry(0);
908
909 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
910
911 xen_mc_issue(PARAVIRT_LAZY_CPU);
912 }
913
914 static void xen_write_cr4(unsigned long cr4)
915 {
916 cr4 &= ~X86_CR4_PGE;
917 cr4 &= ~X86_CR4_PSE;
918
919 native_write_cr4(cr4);
920 }
921
922 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
923 {
924 int ret;
925
926 ret = 0;
927
928 switch (msr) {
929 #ifdef CONFIG_X86_64
930 unsigned which;
931 u64 base;
932
933 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
934 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
935 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
936
937 set:
938 base = ((u64)high << 32) | low;
939 if (HYPERVISOR_set_segment_base(which, base) != 0)
940 ret = -EIO;
941 break;
942 #endif
943
944 case MSR_STAR:
945 case MSR_CSTAR:
946 case MSR_LSTAR:
947 case MSR_SYSCALL_MASK:
948 case MSR_IA32_SYSENTER_CS:
949 case MSR_IA32_SYSENTER_ESP:
950 case MSR_IA32_SYSENTER_EIP:
951 /* Fast syscall setup is all done in hypercalls, so
952 these are all ignored. Stub them out here to stop
953 Xen console noise. */
954 break;
955
956 case MSR_IA32_CR_PAT:
957 if (smp_processor_id() == 0)
958 xen_set_pat(((u64)high << 32) | low);
959 break;
960
961 default:
962 ret = native_write_msr_safe(msr, low, high);
963 }
964
965 return ret;
966 }
967
968 void xen_setup_shared_info(void)
969 {
970 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
971 set_fixmap(FIX_PARAVIRT_BOOTMAP,
972 xen_start_info->shared_info);
973
974 HYPERVISOR_shared_info =
975 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
976 } else
977 HYPERVISOR_shared_info =
978 (struct shared_info *)__va(xen_start_info->shared_info);
979
980 #ifndef CONFIG_SMP
981 /* In UP this is as good a place as any to set up shared info */
982 xen_setup_vcpu_info_placement();
983 #endif
984
985 xen_setup_mfn_list_list();
986 }
987
988 /* This is called once we have the cpu_possible_mask */
989 void xen_setup_vcpu_info_placement(void)
990 {
991 int cpu;
992
993 for_each_possible_cpu(cpu)
994 xen_vcpu_setup(cpu);
995
996 /* xen_vcpu_setup managed to place the vcpu_info within the
997 percpu area for all cpus, so make use of it */
998 if (have_vcpu_info_placement) {
999 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1000 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1001 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1002 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1003 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1004 }
1005 }
1006
1007 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1008 unsigned long addr, unsigned len)
1009 {
1010 char *start, *end, *reloc;
1011 unsigned ret;
1012
1013 start = end = reloc = NULL;
1014
1015 #define SITE(op, x) \
1016 case PARAVIRT_PATCH(op.x): \
1017 if (have_vcpu_info_placement) { \
1018 start = (char *)xen_##x##_direct; \
1019 end = xen_##x##_direct_end; \
1020 reloc = xen_##x##_direct_reloc; \
1021 } \
1022 goto patch_site
1023
1024 switch (type) {
1025 SITE(pv_irq_ops, irq_enable);
1026 SITE(pv_irq_ops, irq_disable);
1027 SITE(pv_irq_ops, save_fl);
1028 SITE(pv_irq_ops, restore_fl);
1029 #undef SITE
1030
1031 patch_site:
1032 if (start == NULL || (end-start) > len)
1033 goto default_patch;
1034
1035 ret = paravirt_patch_insns(insnbuf, len, start, end);
1036
1037 /* Note: because reloc is assigned from something that
1038 appears to be an array, gcc assumes it's non-null,
1039 but doesn't know its relationship with start and
1040 end. */
1041 if (reloc > start && reloc < end) {
1042 int reloc_off = reloc - start;
1043 long *relocp = (long *)(insnbuf + reloc_off);
1044 long delta = start - (char *)addr;
1045
1046 *relocp += delta;
1047 }
1048 break;
1049
1050 default_patch:
1051 default:
1052 ret = paravirt_patch_default(type, clobbers, insnbuf,
1053 addr, len);
1054 break;
1055 }
1056
1057 return ret;
1058 }
1059
1060 static const struct pv_info xen_info __initconst = {
1061 .paravirt_enabled = 1,
1062 .shared_kernel_pmd = 0,
1063
1064 #ifdef CONFIG_X86_64
1065 .extra_user_64bit_cs = FLAT_USER_CS64,
1066 #endif
1067
1068 .name = "Xen",
1069 };
1070
1071 static const struct pv_init_ops xen_init_ops __initconst = {
1072 .patch = xen_patch,
1073 };
1074
1075 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1076 .cpuid = xen_cpuid,
1077
1078 .set_debugreg = xen_set_debugreg,
1079 .get_debugreg = xen_get_debugreg,
1080
1081 .clts = xen_clts,
1082
1083 .read_cr0 = xen_read_cr0,
1084 .write_cr0 = xen_write_cr0,
1085
1086 .read_cr4 = native_read_cr4,
1087 .read_cr4_safe = native_read_cr4_safe,
1088 .write_cr4 = xen_write_cr4,
1089
1090 .wbinvd = native_wbinvd,
1091
1092 .read_msr = native_read_msr_safe,
1093 .write_msr = xen_write_msr_safe,
1094 .read_tsc = native_read_tsc,
1095 .read_pmc = native_read_pmc,
1096
1097 .iret = xen_iret,
1098 .irq_enable_sysexit = xen_sysexit,
1099 #ifdef CONFIG_X86_64
1100 .usergs_sysret32 = xen_sysret32,
1101 .usergs_sysret64 = xen_sysret64,
1102 #endif
1103
1104 .load_tr_desc = paravirt_nop,
1105 .set_ldt = xen_set_ldt,
1106 .load_gdt = xen_load_gdt,
1107 .load_idt = xen_load_idt,
1108 .load_tls = xen_load_tls,
1109 #ifdef CONFIG_X86_64
1110 .load_gs_index = xen_load_gs_index,
1111 #endif
1112
1113 .alloc_ldt = xen_alloc_ldt,
1114 .free_ldt = xen_free_ldt,
1115
1116 .store_gdt = native_store_gdt,
1117 .store_idt = native_store_idt,
1118 .store_tr = xen_store_tr,
1119
1120 .write_ldt_entry = xen_write_ldt_entry,
1121 .write_gdt_entry = xen_write_gdt_entry,
1122 .write_idt_entry = xen_write_idt_entry,
1123 .load_sp0 = xen_load_sp0,
1124
1125 .set_iopl_mask = xen_set_iopl_mask,
1126 .io_delay = xen_io_delay,
1127
1128 /* Xen takes care of %gs when switching to usermode for us */
1129 .swapgs = paravirt_nop,
1130
1131 .start_context_switch = paravirt_start_context_switch,
1132 .end_context_switch = xen_end_context_switch,
1133 };
1134
1135 static const struct pv_apic_ops xen_apic_ops __initconst = {
1136 #ifdef CONFIG_X86_LOCAL_APIC
1137 .startup_ipi_hook = paravirt_nop,
1138 #endif
1139 };
1140
1141 static void xen_reboot(int reason)
1142 {
1143 struct sched_shutdown r = { .reason = reason };
1144
1145 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1146 BUG();
1147 }
1148
1149 static void xen_restart(char *msg)
1150 {
1151 xen_reboot(SHUTDOWN_reboot);
1152 }
1153
1154 static void xen_emergency_restart(void)
1155 {
1156 xen_reboot(SHUTDOWN_reboot);
1157 }
1158
1159 static void xen_machine_halt(void)
1160 {
1161 xen_reboot(SHUTDOWN_poweroff);
1162 }
1163
1164 static void xen_machine_power_off(void)
1165 {
1166 if (pm_power_off)
1167 pm_power_off();
1168 xen_reboot(SHUTDOWN_poweroff);
1169 }
1170
1171 static void xen_crash_shutdown(struct pt_regs *regs)
1172 {
1173 xen_reboot(SHUTDOWN_crash);
1174 }
1175
1176 static int
1177 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1178 {
1179 xen_reboot(SHUTDOWN_crash);
1180 return NOTIFY_DONE;
1181 }
1182
1183 static struct notifier_block xen_panic_block = {
1184 .notifier_call= xen_panic_event,
1185 };
1186
1187 int xen_panic_handler_init(void)
1188 {
1189 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1190 return 0;
1191 }
1192
1193 static const struct machine_ops xen_machine_ops __initconst = {
1194 .restart = xen_restart,
1195 .halt = xen_machine_halt,
1196 .power_off = xen_machine_power_off,
1197 .shutdown = xen_machine_halt,
1198 .crash_shutdown = xen_crash_shutdown,
1199 .emergency_restart = xen_emergency_restart,
1200 };
1201
1202 /*
1203 * Set up the GDT and segment registers for -fstack-protector. Until
1204 * we do this, we have to be careful not to call any stack-protected
1205 * function, which is most of the kernel.
1206 */
1207 static void __init xen_setup_stackprotector(void)
1208 {
1209 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1210 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1211
1212 setup_stack_canary_segment(0);
1213 switch_to_new_gdt(0);
1214
1215 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1216 pv_cpu_ops.load_gdt = xen_load_gdt;
1217 }
1218
1219 /* First C function to be called on Xen boot */
1220 asmlinkage void __init xen_start_kernel(void)
1221 {
1222 struct physdev_set_iopl set_iopl;
1223 int rc;
1224 pgd_t *pgd;
1225
1226 if (!xen_start_info)
1227 return;
1228
1229 xen_domain_type = XEN_PV_DOMAIN;
1230
1231 xen_setup_machphys_mapping();
1232
1233 /* Install Xen paravirt ops */
1234 pv_info = xen_info;
1235 pv_init_ops = xen_init_ops;
1236 pv_cpu_ops = xen_cpu_ops;
1237 pv_apic_ops = xen_apic_ops;
1238
1239 x86_init.resources.memory_setup = xen_memory_setup;
1240 x86_init.oem.arch_setup = xen_arch_setup;
1241 x86_init.oem.banner = xen_banner;
1242
1243 xen_init_time_ops();
1244
1245 /*
1246 * Set up some pagetable state before starting to set any ptes.
1247 */
1248
1249 xen_init_mmu_ops();
1250
1251 /* Prevent unwanted bits from being set in PTEs. */
1252 __supported_pte_mask &= ~_PAGE_GLOBAL;
1253 #if 0
1254 if (!xen_initial_domain())
1255 #endif
1256 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1257
1258 __supported_pte_mask |= _PAGE_IOMAP;
1259
1260 /*
1261 * Prevent page tables from being allocated in highmem, even
1262 * if CONFIG_HIGHPTE is enabled.
1263 */
1264 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1265
1266 /* Work out if we support NX */
1267 x86_configure_nx();
1268
1269 xen_setup_features();
1270
1271 /* Get mfn list */
1272 if (!xen_feature(XENFEAT_auto_translated_physmap))
1273 xen_build_dynamic_phys_to_machine();
1274
1275 /*
1276 * Set up kernel GDT and segment registers, mainly so that
1277 * -fstack-protector code can be executed.
1278 */
1279 xen_setup_stackprotector();
1280
1281 xen_init_irq_ops();
1282 xen_init_cpuid_mask();
1283
1284 #ifdef CONFIG_X86_LOCAL_APIC
1285 /*
1286 * set up the basic apic ops.
1287 */
1288 set_xen_basic_apic_ops();
1289 #endif
1290
1291 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1292 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1293 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1294 }
1295
1296 machine_ops = xen_machine_ops;
1297
1298 /*
1299 * The only reliable way to retain the initial address of the
1300 * percpu gdt_page is to remember it here, so we can go and
1301 * mark it RW later, when the initial percpu area is freed.
1302 */
1303 xen_initial_gdt = &per_cpu(gdt_page, 0);
1304
1305 xen_smp_init();
1306
1307 #ifdef CONFIG_ACPI_NUMA
1308 /*
1309 * The pages we from Xen are not related to machine pages, so
1310 * any NUMA information the kernel tries to get from ACPI will
1311 * be meaningless. Prevent it from trying.
1312 */
1313 acpi_numa = -1;
1314 #endif
1315
1316 pgd = (pgd_t *)xen_start_info->pt_base;
1317
1318 /* Don't do the full vcpu_info placement stuff until we have a
1319 possible map and a non-dummy shared_info. */
1320 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1321
1322 local_irq_disable();
1323 early_boot_irqs_disabled = true;
1324
1325 xen_raw_console_write("mapping kernel into physical memory\n");
1326 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1327
1328 /* Allocate and initialize top and mid mfn levels for p2m structure */
1329 xen_build_mfn_list_list();
1330
1331 /* keep using Xen gdt for now; no urgent need to change it */
1332
1333 #ifdef CONFIG_X86_32
1334 pv_info.kernel_rpl = 1;
1335 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1336 pv_info.kernel_rpl = 0;
1337 #else
1338 pv_info.kernel_rpl = 0;
1339 #endif
1340 /* set the limit of our address space */
1341 xen_reserve_top();
1342
1343 /* We used to do this in xen_arch_setup, but that is too late on AMD
1344 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1345 * which pokes 0xcf8 port.
1346 */
1347 set_iopl.iopl = 1;
1348 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1349 if (rc != 0)
1350 xen_raw_printk("physdev_op failed %d\n", rc);
1351
1352 #ifdef CONFIG_X86_32
1353 /* set up basic CPUID stuff */
1354 cpu_detect(&new_cpu_data);
1355 new_cpu_data.hard_math = 1;
1356 new_cpu_data.wp_works_ok = 1;
1357 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1358 #endif
1359
1360 /* Poke various useful things into boot_params */
1361 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1362 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1363 ? __pa(xen_start_info->mod_start) : 0;
1364 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1365 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1366
1367 if (!xen_initial_domain()) {
1368 add_preferred_console("xenboot", 0, NULL);
1369 add_preferred_console("tty", 0, NULL);
1370 add_preferred_console("hvc", 0, NULL);
1371 if (pci_xen)
1372 x86_init.pci.arch_init = pci_xen_init;
1373 } else {
1374 const struct dom0_vga_console_info *info =
1375 (void *)((char *)xen_start_info +
1376 xen_start_info->console.dom0.info_off);
1377
1378 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1379 xen_start_info->console.domU.mfn = 0;
1380 xen_start_info->console.domU.evtchn = 0;
1381
1382 /* Make sure ACS will be enabled */
1383 pci_request_acs();
1384
1385 xen_acpi_sleep_register();
1386 }
1387
1388
1389 xen_raw_console_write("about to get started...\n");
1390
1391 xen_setup_runstate_info(0);
1392
1393 /* Start the world */
1394 #ifdef CONFIG_X86_32
1395 i386_start_kernel();
1396 #else
1397 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1398 #endif
1399 }
1400
1401 static int init_hvm_pv_info(int *major, int *minor)
1402 {
1403 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1404 u64 pfn;
1405
1406 base = xen_cpuid_base();
1407 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1408
1409 *major = eax >> 16;
1410 *minor = eax & 0xffff;
1411 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1412
1413 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1414
1415 pfn = __pa(hypercall_page);
1416 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1417
1418 xen_setup_features();
1419
1420 pv_info.name = "Xen HVM";
1421
1422 xen_domain_type = XEN_HVM_DOMAIN;
1423
1424 return 0;
1425 }
1426
1427 void __ref xen_hvm_init_shared_info(void)
1428 {
1429 int cpu;
1430 struct xen_add_to_physmap xatp;
1431 static struct shared_info *shared_info_page = 0;
1432
1433 if (!shared_info_page)
1434 shared_info_page = (struct shared_info *)
1435 extend_brk(PAGE_SIZE, PAGE_SIZE);
1436 xatp.domid = DOMID_SELF;
1437 xatp.idx = 0;
1438 xatp.space = XENMAPSPACE_shared_info;
1439 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1440 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1441 BUG();
1442
1443 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1444
1445 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1446 * page, we use it in the event channel upcall and in some pvclock
1447 * related functions. We don't need the vcpu_info placement
1448 * optimizations because we don't use any pv_mmu or pv_irq op on
1449 * HVM.
1450 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1451 * online but xen_hvm_init_shared_info is run at resume time too and
1452 * in that case multiple vcpus might be online. */
1453 for_each_online_cpu(cpu) {
1454 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1455 }
1456 }
1457
1458 #ifdef CONFIG_XEN_PVHVM
1459 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1460 unsigned long action, void *hcpu)
1461 {
1462 int cpu = (long)hcpu;
1463 switch (action) {
1464 case CPU_UP_PREPARE:
1465 xen_vcpu_setup(cpu);
1466 if (xen_have_vector_callback)
1467 xen_init_lock_cpu(cpu);
1468 break;
1469 default:
1470 break;
1471 }
1472 return NOTIFY_OK;
1473 }
1474
1475 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1476 .notifier_call = xen_hvm_cpu_notify,
1477 };
1478
1479 static void __init xen_hvm_guest_init(void)
1480 {
1481 int r;
1482 int major, minor;
1483
1484 r = init_hvm_pv_info(&major, &minor);
1485 if (r < 0)
1486 return;
1487
1488 xen_hvm_init_shared_info();
1489
1490 if (xen_feature(XENFEAT_hvm_callback_vector))
1491 xen_have_vector_callback = 1;
1492 xen_hvm_smp_init();
1493 register_cpu_notifier(&xen_hvm_cpu_notifier);
1494 xen_unplug_emulated_devices();
1495 x86_init.irqs.intr_init = xen_init_IRQ;
1496 xen_hvm_init_time_ops();
1497 xen_hvm_init_mmu_ops();
1498 }
1499
1500 static bool __init xen_hvm_platform(void)
1501 {
1502 if (xen_pv_domain())
1503 return false;
1504
1505 if (!xen_cpuid_base())
1506 return false;
1507
1508 return true;
1509 }
1510
1511 bool xen_hvm_need_lapic(void)
1512 {
1513 if (xen_pv_domain())
1514 return false;
1515 if (!xen_hvm_domain())
1516 return false;
1517 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1518 return false;
1519 return true;
1520 }
1521 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1522
1523 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1524 .name = "Xen HVM",
1525 .detect = xen_hvm_platform,
1526 .init_platform = xen_hvm_guest_init,
1527 };
1528 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1529 #endif
This page took 0.114472 seconds and 5 git commands to generate.