xen: unpin initial Xen pagetable once we're finished with it
[deliverable/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28
29 #include <xen/interface/xen.h>
30 #include <xen/interface/physdev.h>
31 #include <xen/interface/vcpu.h>
32 #include <xen/interface/sched.h>
33 #include <xen/features.h>
34 #include <xen/page.h>
35
36 #include <asm/paravirt.h>
37 #include <asm/page.h>
38 #include <asm/xen/hypercall.h>
39 #include <asm/xen/hypervisor.h>
40 #include <asm/fixmap.h>
41 #include <asm/processor.h>
42 #include <asm/setup.h>
43 #include <asm/desc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 #include <asm/reboot.h>
47
48 #include "xen-ops.h"
49 #include "mmu.h"
50 #include "multicalls.h"
51
52 EXPORT_SYMBOL_GPL(hypercall_page);
53
54 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
55 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
56
57 /*
58 * Note about cr3 (pagetable base) values:
59 *
60 * xen_cr3 contains the current logical cr3 value; it contains the
61 * last set cr3. This may not be the current effective cr3, because
62 * its update may be being lazily deferred. However, a vcpu looking
63 * at its own cr3 can use this value knowing that it everything will
64 * be self-consistent.
65 *
66 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
67 * hypercall to set the vcpu cr3 is complete (so it may be a little
68 * out of date, but it will never be set early). If one vcpu is
69 * looking at another vcpu's cr3 value, it should use this variable.
70 */
71 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
72 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
73
74 struct start_info *xen_start_info;
75 EXPORT_SYMBOL_GPL(xen_start_info);
76
77 static /* __initdata */ struct shared_info dummy_shared_info;
78
79 /*
80 * Point at some empty memory to start with. We map the real shared_info
81 * page as soon as fixmap is up and running.
82 */
83 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
84
85 /*
86 * Flag to determine whether vcpu info placement is available on all
87 * VCPUs. We assume it is to start with, and then set it to zero on
88 * the first failure. This is because it can succeed on some VCPUs
89 * and not others, since it can involve hypervisor memory allocation,
90 * or because the guest failed to guarantee all the appropriate
91 * constraints on all VCPUs (ie buffer can't cross a page boundary).
92 *
93 * Note that any particular CPU may be using a placed vcpu structure,
94 * but we can only optimise if the all are.
95 *
96 * 0: not available, 1: available
97 */
98 static int have_vcpu_info_placement = 0;
99
100 static void __init xen_vcpu_setup(int cpu)
101 {
102 struct vcpu_register_vcpu_info info;
103 int err;
104 struct vcpu_info *vcpup;
105
106 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
107
108 if (!have_vcpu_info_placement)
109 return; /* already tested, not available */
110
111 vcpup = &per_cpu(xen_vcpu_info, cpu);
112
113 info.mfn = virt_to_mfn(vcpup);
114 info.offset = offset_in_page(vcpup);
115
116 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
117 cpu, vcpup, info.mfn, info.offset);
118
119 /* Check to see if the hypervisor will put the vcpu_info
120 structure where we want it, which allows direct access via
121 a percpu-variable. */
122 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
123
124 if (err) {
125 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
126 have_vcpu_info_placement = 0;
127 } else {
128 /* This cpu is using the registered vcpu info, even if
129 later ones fail to. */
130 per_cpu(xen_vcpu, cpu) = vcpup;
131
132 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
133 cpu, vcpup);
134 }
135 }
136
137 static void __init xen_banner(void)
138 {
139 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
140 pv_info.name);
141 printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
142 }
143
144 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
145 unsigned int *cx, unsigned int *dx)
146 {
147 unsigned maskedx = ~0;
148
149 /*
150 * Mask out inconvenient features, to try and disable as many
151 * unsupported kernel subsystems as possible.
152 */
153 if (*ax == 1)
154 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
155 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
156 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
157
158 asm(XEN_EMULATE_PREFIX "cpuid"
159 : "=a" (*ax),
160 "=b" (*bx),
161 "=c" (*cx),
162 "=d" (*dx)
163 : "0" (*ax), "2" (*cx));
164 *dx &= maskedx;
165 }
166
167 static void xen_set_debugreg(int reg, unsigned long val)
168 {
169 HYPERVISOR_set_debugreg(reg, val);
170 }
171
172 static unsigned long xen_get_debugreg(int reg)
173 {
174 return HYPERVISOR_get_debugreg(reg);
175 }
176
177 static unsigned long xen_save_fl(void)
178 {
179 struct vcpu_info *vcpu;
180 unsigned long flags;
181
182 vcpu = x86_read_percpu(xen_vcpu);
183
184 /* flag has opposite sense of mask */
185 flags = !vcpu->evtchn_upcall_mask;
186
187 /* convert to IF type flag
188 -0 -> 0x00000000
189 -1 -> 0xffffffff
190 */
191 return (-flags) & X86_EFLAGS_IF;
192 }
193
194 static void xen_restore_fl(unsigned long flags)
195 {
196 struct vcpu_info *vcpu;
197
198 /* convert from IF type flag */
199 flags = !(flags & X86_EFLAGS_IF);
200
201 /* There's a one instruction preempt window here. We need to
202 make sure we're don't switch CPUs between getting the vcpu
203 pointer and updating the mask. */
204 preempt_disable();
205 vcpu = x86_read_percpu(xen_vcpu);
206 vcpu->evtchn_upcall_mask = flags;
207 preempt_enable_no_resched();
208
209 /* Doesn't matter if we get preempted here, because any
210 pending event will get dealt with anyway. */
211
212 if (flags == 0) {
213 preempt_check_resched();
214 barrier(); /* unmask then check (avoid races) */
215 if (unlikely(vcpu->evtchn_upcall_pending))
216 force_evtchn_callback();
217 }
218 }
219
220 static void xen_irq_disable(void)
221 {
222 /* There's a one instruction preempt window here. We need to
223 make sure we're don't switch CPUs between getting the vcpu
224 pointer and updating the mask. */
225 preempt_disable();
226 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
227 preempt_enable_no_resched();
228 }
229
230 static void xen_irq_enable(void)
231 {
232 struct vcpu_info *vcpu;
233
234 /* There's a one instruction preempt window here. We need to
235 make sure we're don't switch CPUs between getting the vcpu
236 pointer and updating the mask. */
237 preempt_disable();
238 vcpu = x86_read_percpu(xen_vcpu);
239 vcpu->evtchn_upcall_mask = 0;
240 preempt_enable_no_resched();
241
242 /* Doesn't matter if we get preempted here, because any
243 pending event will get dealt with anyway. */
244
245 barrier(); /* unmask then check (avoid races) */
246 if (unlikely(vcpu->evtchn_upcall_pending))
247 force_evtchn_callback();
248 }
249
250 static void xen_safe_halt(void)
251 {
252 /* Blocking includes an implicit local_irq_enable(). */
253 if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
254 BUG();
255 }
256
257 static void xen_halt(void)
258 {
259 if (irqs_disabled())
260 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
261 else
262 xen_safe_halt();
263 }
264
265 static void xen_leave_lazy(void)
266 {
267 paravirt_leave_lazy(paravirt_get_lazy_mode());
268 xen_mc_flush();
269 }
270
271 static unsigned long xen_store_tr(void)
272 {
273 return 0;
274 }
275
276 static void xen_set_ldt(const void *addr, unsigned entries)
277 {
278 struct mmuext_op *op;
279 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
280
281 op = mcs.args;
282 op->cmd = MMUEXT_SET_LDT;
283 op->arg1.linear_addr = (unsigned long)addr;
284 op->arg2.nr_ents = entries;
285
286 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
287
288 xen_mc_issue(PARAVIRT_LAZY_CPU);
289 }
290
291 static void xen_load_gdt(const struct desc_ptr *dtr)
292 {
293 unsigned long *frames;
294 unsigned long va = dtr->address;
295 unsigned int size = dtr->size + 1;
296 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
297 int f;
298 struct multicall_space mcs;
299
300 /* A GDT can be up to 64k in size, which corresponds to 8192
301 8-byte entries, or 16 4k pages.. */
302
303 BUG_ON(size > 65536);
304 BUG_ON(va & ~PAGE_MASK);
305
306 mcs = xen_mc_entry(sizeof(*frames) * pages);
307 frames = mcs.args;
308
309 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
310 frames[f] = virt_to_mfn(va);
311 make_lowmem_page_readonly((void *)va);
312 }
313
314 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
315
316 xen_mc_issue(PARAVIRT_LAZY_CPU);
317 }
318
319 static void load_TLS_descriptor(struct thread_struct *t,
320 unsigned int cpu, unsigned int i)
321 {
322 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
323 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
324 struct multicall_space mc = __xen_mc_entry(0);
325
326 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
327 }
328
329 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
330 {
331 xen_mc_batch();
332
333 load_TLS_descriptor(t, cpu, 0);
334 load_TLS_descriptor(t, cpu, 1);
335 load_TLS_descriptor(t, cpu, 2);
336
337 xen_mc_issue(PARAVIRT_LAZY_CPU);
338
339 /*
340 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
341 * it means we're in a context switch, and %gs has just been
342 * saved. This means we can zero it out to prevent faults on
343 * exit from the hypervisor if the next process has no %gs.
344 * Either way, it has been saved, and the new value will get
345 * loaded properly. This will go away as soon as Xen has been
346 * modified to not save/restore %gs for normal hypercalls.
347 */
348 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
349 loadsegment(gs, 0);
350 }
351
352 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
353 const void *ptr)
354 {
355 unsigned long lp = (unsigned long)&dt[entrynum];
356 xmaddr_t mach_lp = virt_to_machine(lp);
357 u64 entry = *(u64 *)ptr;
358
359 preempt_disable();
360
361 xen_mc_flush();
362 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
363 BUG();
364
365 preempt_enable();
366 }
367
368 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
369 struct trap_info *info)
370 {
371 u8 type, dpl;
372
373 type = (high >> 8) & 0x1f;
374 dpl = (high >> 13) & 3;
375
376 if (type != 0xf && type != 0xe)
377 return 0;
378
379 info->vector = vector;
380 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
381 info->cs = low >> 16;
382 info->flags = dpl;
383 /* interrupt gates clear IF */
384 if (type == 0xe)
385 info->flags |= 4;
386
387 return 1;
388 }
389
390 /* Locations of each CPU's IDT */
391 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
392
393 /* Set an IDT entry. If the entry is part of the current IDT, then
394 also update Xen. */
395 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
396 {
397 unsigned long p = (unsigned long)&dt[entrynum];
398 unsigned long start, end;
399
400 preempt_disable();
401
402 start = __get_cpu_var(idt_desc).address;
403 end = start + __get_cpu_var(idt_desc).size + 1;
404
405 xen_mc_flush();
406
407 native_write_idt_entry(dt, entrynum, g);
408
409 if (p >= start && (p + 8) <= end) {
410 struct trap_info info[2];
411 u32 *desc = (u32 *)g;
412
413 info[1].address = 0;
414
415 if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
416 if (HYPERVISOR_set_trap_table(info))
417 BUG();
418 }
419
420 preempt_enable();
421 }
422
423 static void xen_convert_trap_info(const struct desc_ptr *desc,
424 struct trap_info *traps)
425 {
426 unsigned in, out, count;
427
428 count = (desc->size+1) / 8;
429 BUG_ON(count > 256);
430
431 for (in = out = 0; in < count; in++) {
432 const u32 *entry = (u32 *)(desc->address + in * 8);
433
434 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
435 out++;
436 }
437 traps[out].address = 0;
438 }
439
440 void xen_copy_trap_info(struct trap_info *traps)
441 {
442 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
443
444 xen_convert_trap_info(desc, traps);
445 }
446
447 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
448 hold a spinlock to protect the static traps[] array (static because
449 it avoids allocation, and saves stack space). */
450 static void xen_load_idt(const struct desc_ptr *desc)
451 {
452 static DEFINE_SPINLOCK(lock);
453 static struct trap_info traps[257];
454
455 spin_lock(&lock);
456
457 __get_cpu_var(idt_desc) = *desc;
458
459 xen_convert_trap_info(desc, traps);
460
461 xen_mc_flush();
462 if (HYPERVISOR_set_trap_table(traps))
463 BUG();
464
465 spin_unlock(&lock);
466 }
467
468 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
469 they're handled differently. */
470 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
471 const void *desc, int type)
472 {
473 preempt_disable();
474
475 switch (type) {
476 case DESC_LDT:
477 case DESC_TSS:
478 /* ignore */
479 break;
480
481 default: {
482 xmaddr_t maddr = virt_to_machine(&dt[entry]);
483
484 xen_mc_flush();
485 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
486 BUG();
487 }
488
489 }
490
491 preempt_enable();
492 }
493
494 static void xen_load_sp0(struct tss_struct *tss,
495 struct thread_struct *thread)
496 {
497 struct multicall_space mcs = xen_mc_entry(0);
498 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
499 xen_mc_issue(PARAVIRT_LAZY_CPU);
500 }
501
502 static void xen_set_iopl_mask(unsigned mask)
503 {
504 struct physdev_set_iopl set_iopl;
505
506 /* Force the change at ring 0. */
507 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
508 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
509 }
510
511 static void xen_io_delay(void)
512 {
513 }
514
515 #ifdef CONFIG_X86_LOCAL_APIC
516 static u32 xen_apic_read(unsigned long reg)
517 {
518 return 0;
519 }
520
521 static void xen_apic_write(unsigned long reg, u32 val)
522 {
523 /* Warn to see if there's any stray references */
524 WARN_ON(1);
525 }
526 #endif
527
528 static void xen_flush_tlb(void)
529 {
530 struct mmuext_op *op;
531 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
532
533 op = mcs.args;
534 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
535 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
536
537 xen_mc_issue(PARAVIRT_LAZY_MMU);
538 }
539
540 static void xen_flush_tlb_single(unsigned long addr)
541 {
542 struct mmuext_op *op;
543 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
544
545 op = mcs.args;
546 op->cmd = MMUEXT_INVLPG_LOCAL;
547 op->arg1.linear_addr = addr & PAGE_MASK;
548 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
549
550 xen_mc_issue(PARAVIRT_LAZY_MMU);
551 }
552
553 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
554 unsigned long va)
555 {
556 struct {
557 struct mmuext_op op;
558 cpumask_t mask;
559 } *args;
560 cpumask_t cpumask = *cpus;
561 struct multicall_space mcs;
562
563 /*
564 * A couple of (to be removed) sanity checks:
565 *
566 * - current CPU must not be in mask
567 * - mask must exist :)
568 */
569 BUG_ON(cpus_empty(cpumask));
570 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
571 BUG_ON(!mm);
572
573 /* If a CPU which we ran on has gone down, OK. */
574 cpus_and(cpumask, cpumask, cpu_online_map);
575 if (cpus_empty(cpumask))
576 return;
577
578 mcs = xen_mc_entry(sizeof(*args));
579 args = mcs.args;
580 args->mask = cpumask;
581 args->op.arg2.vcpumask = &args->mask;
582
583 if (va == TLB_FLUSH_ALL) {
584 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
585 } else {
586 args->op.cmd = MMUEXT_INVLPG_MULTI;
587 args->op.arg1.linear_addr = va;
588 }
589
590 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
591
592 xen_mc_issue(PARAVIRT_LAZY_MMU);
593 }
594
595 static void xen_write_cr2(unsigned long cr2)
596 {
597 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
598 }
599
600 static unsigned long xen_read_cr2(void)
601 {
602 return x86_read_percpu(xen_vcpu)->arch.cr2;
603 }
604
605 static unsigned long xen_read_cr2_direct(void)
606 {
607 return x86_read_percpu(xen_vcpu_info.arch.cr2);
608 }
609
610 static void xen_write_cr4(unsigned long cr4)
611 {
612 /* Just ignore cr4 changes; Xen doesn't allow us to do
613 anything anyway. */
614 }
615
616 static unsigned long xen_read_cr3(void)
617 {
618 return x86_read_percpu(xen_cr3);
619 }
620
621 static void set_current_cr3(void *v)
622 {
623 x86_write_percpu(xen_current_cr3, (unsigned long)v);
624 }
625
626 static void xen_write_cr3(unsigned long cr3)
627 {
628 struct mmuext_op *op;
629 struct multicall_space mcs;
630 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
631
632 BUG_ON(preemptible());
633
634 mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
635
636 /* Update while interrupts are disabled, so its atomic with
637 respect to ipis */
638 x86_write_percpu(xen_cr3, cr3);
639
640 op = mcs.args;
641 op->cmd = MMUEXT_NEW_BASEPTR;
642 op->arg1.mfn = mfn;
643
644 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
645
646 /* Update xen_update_cr3 once the batch has actually
647 been submitted. */
648 xen_mc_callback(set_current_cr3, (void *)cr3);
649
650 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
651 }
652
653 /* Early in boot, while setting up the initial pagetable, assume
654 everything is pinned. */
655 static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
656 {
657 BUG_ON(mem_map); /* should only be used early */
658 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
659 }
660
661 /* Early release_pt assumes that all pts are pinned, since there's
662 only init_mm and anything attached to that is pinned. */
663 static void xen_release_pt_init(u32 pfn)
664 {
665 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
666 }
667
668 static void pin_pagetable_pfn(unsigned level, unsigned long pfn)
669 {
670 struct mmuext_op op;
671 op.cmd = level;
672 op.arg1.mfn = pfn_to_mfn(pfn);
673 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
674 BUG();
675 }
676
677 /* This needs to make sure the new pte page is pinned iff its being
678 attached to a pinned pagetable. */
679 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
680 {
681 struct page *page = pfn_to_page(pfn);
682
683 if (PagePinned(virt_to_page(mm->pgd))) {
684 SetPagePinned(page);
685
686 if (!PageHighMem(page)) {
687 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
688 pin_pagetable_pfn(level, pfn);
689 } else
690 /* make sure there are no stray mappings of
691 this page */
692 kmap_flush_unused();
693 }
694 }
695
696 static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
697 {
698 xen_alloc_ptpage(mm, pfn, MMUEXT_PIN_L1_TABLE);
699 }
700
701 static void xen_alloc_pd(struct mm_struct *mm, u32 pfn)
702 {
703 xen_alloc_ptpage(mm, pfn, MMUEXT_PIN_L2_TABLE);
704 }
705
706 /* This should never happen until we're OK to use struct page */
707 static void xen_release_pt(u32 pfn)
708 {
709 struct page *page = pfn_to_page(pfn);
710
711 if (PagePinned(page)) {
712 if (!PageHighMem(page)) {
713 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
714 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
715 }
716 }
717 }
718
719 #ifdef CONFIG_HIGHPTE
720 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
721 {
722 pgprot_t prot = PAGE_KERNEL;
723
724 if (PagePinned(page))
725 prot = PAGE_KERNEL_RO;
726
727 if (0 && PageHighMem(page))
728 printk("mapping highpte %lx type %d prot %s\n",
729 page_to_pfn(page), type,
730 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
731
732 return kmap_atomic_prot(page, type, prot);
733 }
734 #endif
735
736 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
737 {
738 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
739 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
740 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
741 pte_val_ma(pte));
742
743 return pte;
744 }
745
746 /* Init-time set_pte while constructing initial pagetables, which
747 doesn't allow RO pagetable pages to be remapped RW */
748 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
749 {
750 pte = mask_rw_pte(ptep, pte);
751
752 xen_set_pte(ptep, pte);
753 }
754
755 static __init void xen_pagetable_setup_start(pgd_t *base)
756 {
757 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
758
759 /* special set_pte for pagetable initialization */
760 pv_mmu_ops.set_pte = xen_set_pte_init;
761
762 init_mm.pgd = base;
763 /*
764 * copy top-level of Xen-supplied pagetable into place. For
765 * !PAE we can use this as-is, but for PAE it is a stand-in
766 * while we copy the pmd pages.
767 */
768 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
769
770 if (PTRS_PER_PMD > 1) {
771 int i;
772 /*
773 * For PAE, need to allocate new pmds, rather than
774 * share Xen's, since Xen doesn't like pmd's being
775 * shared between address spaces.
776 */
777 for (i = 0; i < PTRS_PER_PGD; i++) {
778 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
779 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
780
781 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
782 PAGE_SIZE);
783
784 make_lowmem_page_readonly(pmd);
785
786 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
787 } else
788 pgd_clear(&base[i]);
789 }
790 }
791
792 /* make sure zero_page is mapped RO so we can use it in pagetables */
793 make_lowmem_page_readonly(empty_zero_page);
794 make_lowmem_page_readonly(base);
795 /*
796 * Switch to new pagetable. This is done before
797 * pagetable_init has done anything so that the new pages
798 * added to the table can be prepared properly for Xen.
799 */
800 xen_write_cr3(__pa(base));
801
802 /* Unpin initial Xen pagetable */
803 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
804 PFN_DOWN(__pa(xen_start_info->pt_base)));
805 }
806
807 static __init void xen_pagetable_setup_done(pgd_t *base)
808 {
809 /* This will work as long as patching hasn't happened yet
810 (which it hasn't) */
811 pv_mmu_ops.alloc_pt = xen_alloc_pt;
812 pv_mmu_ops.alloc_pd = xen_alloc_pd;
813 pv_mmu_ops.release_pt = xen_release_pt;
814 pv_mmu_ops.release_pd = xen_release_pt;
815 pv_mmu_ops.set_pte = xen_set_pte;
816
817 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
818 /*
819 * Create a mapping for the shared info page.
820 * Should be set_fixmap(), but shared_info is a machine
821 * address with no corresponding pseudo-phys address.
822 */
823 set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
824 PFN_DOWN(xen_start_info->shared_info),
825 PAGE_KERNEL);
826
827 HYPERVISOR_shared_info =
828 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
829
830 } else
831 HYPERVISOR_shared_info =
832 (struct shared_info *)__va(xen_start_info->shared_info);
833
834 /* Actually pin the pagetable down, but we can't set PG_pinned
835 yet because the page structures don't exist yet. */
836 {
837 unsigned level;
838
839 #ifdef CONFIG_X86_PAE
840 level = MMUEXT_PIN_L3_TABLE;
841 #else
842 level = MMUEXT_PIN_L2_TABLE;
843 #endif
844
845 pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
846 }
847 }
848
849 /* This is called once we have the cpu_possible_map */
850 void __init xen_setup_vcpu_info_placement(void)
851 {
852 int cpu;
853
854 for_each_possible_cpu(cpu)
855 xen_vcpu_setup(cpu);
856
857 /* xen_vcpu_setup managed to place the vcpu_info within the
858 percpu area for all cpus, so make use of it */
859 if (have_vcpu_info_placement) {
860 printk(KERN_INFO "Xen: using vcpu_info placement\n");
861
862 pv_irq_ops.save_fl = xen_save_fl_direct;
863 pv_irq_ops.restore_fl = xen_restore_fl_direct;
864 pv_irq_ops.irq_disable = xen_irq_disable_direct;
865 pv_irq_ops.irq_enable = xen_irq_enable_direct;
866 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
867 pv_cpu_ops.iret = xen_iret_direct;
868 }
869 }
870
871 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
872 unsigned long addr, unsigned len)
873 {
874 char *start, *end, *reloc;
875 unsigned ret;
876
877 start = end = reloc = NULL;
878
879 #define SITE(op, x) \
880 case PARAVIRT_PATCH(op.x): \
881 if (have_vcpu_info_placement) { \
882 start = (char *)xen_##x##_direct; \
883 end = xen_##x##_direct_end; \
884 reloc = xen_##x##_direct_reloc; \
885 } \
886 goto patch_site
887
888 switch (type) {
889 SITE(pv_irq_ops, irq_enable);
890 SITE(pv_irq_ops, irq_disable);
891 SITE(pv_irq_ops, save_fl);
892 SITE(pv_irq_ops, restore_fl);
893 #undef SITE
894
895 patch_site:
896 if (start == NULL || (end-start) > len)
897 goto default_patch;
898
899 ret = paravirt_patch_insns(insnbuf, len, start, end);
900
901 /* Note: because reloc is assigned from something that
902 appears to be an array, gcc assumes it's non-null,
903 but doesn't know its relationship with start and
904 end. */
905 if (reloc > start && reloc < end) {
906 int reloc_off = reloc - start;
907 long *relocp = (long *)(insnbuf + reloc_off);
908 long delta = start - (char *)addr;
909
910 *relocp += delta;
911 }
912 break;
913
914 default_patch:
915 default:
916 ret = paravirt_patch_default(type, clobbers, insnbuf,
917 addr, len);
918 break;
919 }
920
921 return ret;
922 }
923
924 static const struct pv_info xen_info __initdata = {
925 .paravirt_enabled = 1,
926 .shared_kernel_pmd = 0,
927
928 .name = "Xen",
929 };
930
931 static const struct pv_init_ops xen_init_ops __initdata = {
932 .patch = xen_patch,
933
934 .banner = xen_banner,
935 .memory_setup = xen_memory_setup,
936 .arch_setup = xen_arch_setup,
937 .post_allocator_init = xen_mark_init_mm_pinned,
938 };
939
940 static const struct pv_time_ops xen_time_ops __initdata = {
941 .time_init = xen_time_init,
942
943 .set_wallclock = xen_set_wallclock,
944 .get_wallclock = xen_get_wallclock,
945 .get_cpu_khz = xen_cpu_khz,
946 .sched_clock = xen_sched_clock,
947 };
948
949 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
950 .cpuid = xen_cpuid,
951
952 .set_debugreg = xen_set_debugreg,
953 .get_debugreg = xen_get_debugreg,
954
955 .clts = native_clts,
956
957 .read_cr0 = native_read_cr0,
958 .write_cr0 = native_write_cr0,
959
960 .read_cr4 = native_read_cr4,
961 .read_cr4_safe = native_read_cr4_safe,
962 .write_cr4 = xen_write_cr4,
963
964 .wbinvd = native_wbinvd,
965
966 .read_msr = native_read_msr_safe,
967 .write_msr = native_write_msr_safe,
968 .read_tsc = native_read_tsc,
969 .read_pmc = native_read_pmc,
970
971 .iret = (void *)&hypercall_page[__HYPERVISOR_iret],
972 .irq_enable_syscall_ret = NULL, /* never called */
973
974 .load_tr_desc = paravirt_nop,
975 .set_ldt = xen_set_ldt,
976 .load_gdt = xen_load_gdt,
977 .load_idt = xen_load_idt,
978 .load_tls = xen_load_tls,
979
980 .store_gdt = native_store_gdt,
981 .store_idt = native_store_idt,
982 .store_tr = xen_store_tr,
983
984 .write_ldt_entry = xen_write_ldt_entry,
985 .write_gdt_entry = xen_write_gdt_entry,
986 .write_idt_entry = xen_write_idt_entry,
987 .load_sp0 = xen_load_sp0,
988
989 .set_iopl_mask = xen_set_iopl_mask,
990 .io_delay = xen_io_delay,
991
992 .lazy_mode = {
993 .enter = paravirt_enter_lazy_cpu,
994 .leave = xen_leave_lazy,
995 },
996 };
997
998 static const struct pv_irq_ops xen_irq_ops __initdata = {
999 .init_IRQ = xen_init_IRQ,
1000 .save_fl = xen_save_fl,
1001 .restore_fl = xen_restore_fl,
1002 .irq_disable = xen_irq_disable,
1003 .irq_enable = xen_irq_enable,
1004 .safe_halt = xen_safe_halt,
1005 .halt = xen_halt,
1006 };
1007
1008 static const struct pv_apic_ops xen_apic_ops __initdata = {
1009 #ifdef CONFIG_X86_LOCAL_APIC
1010 .apic_write = xen_apic_write,
1011 .apic_write_atomic = xen_apic_write,
1012 .apic_read = xen_apic_read,
1013 .setup_boot_clock = paravirt_nop,
1014 .setup_secondary_clock = paravirt_nop,
1015 .startup_ipi_hook = paravirt_nop,
1016 #endif
1017 };
1018
1019 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1020 .pagetable_setup_start = xen_pagetable_setup_start,
1021 .pagetable_setup_done = xen_pagetable_setup_done,
1022
1023 .read_cr2 = xen_read_cr2,
1024 .write_cr2 = xen_write_cr2,
1025
1026 .read_cr3 = xen_read_cr3,
1027 .write_cr3 = xen_write_cr3,
1028
1029 .flush_tlb_user = xen_flush_tlb,
1030 .flush_tlb_kernel = xen_flush_tlb,
1031 .flush_tlb_single = xen_flush_tlb_single,
1032 .flush_tlb_others = xen_flush_tlb_others,
1033
1034 .pte_update = paravirt_nop,
1035 .pte_update_defer = paravirt_nop,
1036
1037 .alloc_pt = xen_alloc_pt_init,
1038 .release_pt = xen_release_pt_init,
1039 .alloc_pd = xen_alloc_pt_init,
1040 .alloc_pd_clone = paravirt_nop,
1041 .release_pd = xen_release_pt_init,
1042
1043 #ifdef CONFIG_HIGHPTE
1044 .kmap_atomic_pte = xen_kmap_atomic_pte,
1045 #endif
1046
1047 .set_pte = NULL, /* see xen_pagetable_setup_* */
1048 .set_pte_at = xen_set_pte_at,
1049 .set_pmd = xen_set_pmd,
1050
1051 .pte_val = xen_pte_val,
1052 .pgd_val = xen_pgd_val,
1053
1054 .make_pte = xen_make_pte,
1055 .make_pgd = xen_make_pgd,
1056
1057 #ifdef CONFIG_X86_PAE
1058 .set_pte_atomic = xen_set_pte_atomic,
1059 .set_pte_present = xen_set_pte_at,
1060 .set_pud = xen_set_pud,
1061 .pte_clear = xen_pte_clear,
1062 .pmd_clear = xen_pmd_clear,
1063
1064 .make_pmd = xen_make_pmd,
1065 .pmd_val = xen_pmd_val,
1066 #endif /* PAE */
1067
1068 .activate_mm = xen_activate_mm,
1069 .dup_mmap = xen_dup_mmap,
1070 .exit_mmap = xen_exit_mmap,
1071
1072 .lazy_mode = {
1073 .enter = paravirt_enter_lazy_mmu,
1074 .leave = xen_leave_lazy,
1075 },
1076 };
1077
1078 #ifdef CONFIG_SMP
1079 static const struct smp_ops xen_smp_ops __initdata = {
1080 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1081 .smp_prepare_cpus = xen_smp_prepare_cpus,
1082 .cpu_up = xen_cpu_up,
1083 .smp_cpus_done = xen_smp_cpus_done,
1084
1085 .smp_send_stop = xen_smp_send_stop,
1086 .smp_send_reschedule = xen_smp_send_reschedule,
1087 .smp_call_function_mask = xen_smp_call_function_mask,
1088 };
1089 #endif /* CONFIG_SMP */
1090
1091 static void xen_reboot(int reason)
1092 {
1093 #ifdef CONFIG_SMP
1094 smp_send_stop();
1095 #endif
1096
1097 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1098 BUG();
1099 }
1100
1101 static void xen_restart(char *msg)
1102 {
1103 xen_reboot(SHUTDOWN_reboot);
1104 }
1105
1106 static void xen_emergency_restart(void)
1107 {
1108 xen_reboot(SHUTDOWN_reboot);
1109 }
1110
1111 static void xen_machine_halt(void)
1112 {
1113 xen_reboot(SHUTDOWN_poweroff);
1114 }
1115
1116 static void xen_crash_shutdown(struct pt_regs *regs)
1117 {
1118 xen_reboot(SHUTDOWN_crash);
1119 }
1120
1121 static const struct machine_ops __initdata xen_machine_ops = {
1122 .restart = xen_restart,
1123 .halt = xen_machine_halt,
1124 .power_off = xen_machine_halt,
1125 .shutdown = xen_machine_halt,
1126 .crash_shutdown = xen_crash_shutdown,
1127 .emergency_restart = xen_emergency_restart,
1128 };
1129
1130
1131 static void __init xen_reserve_top(void)
1132 {
1133 unsigned long top = HYPERVISOR_VIRT_START;
1134 struct xen_platform_parameters pp;
1135
1136 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1137 top = pp.virt_start;
1138
1139 reserve_top_address(-top + 2 * PAGE_SIZE);
1140 }
1141
1142 /* First C function to be called on Xen boot */
1143 asmlinkage void __init xen_start_kernel(void)
1144 {
1145 pgd_t *pgd;
1146
1147 if (!xen_start_info)
1148 return;
1149
1150 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1151
1152 /* Install Xen paravirt ops */
1153 pv_info = xen_info;
1154 pv_init_ops = xen_init_ops;
1155 pv_time_ops = xen_time_ops;
1156 pv_cpu_ops = xen_cpu_ops;
1157 pv_irq_ops = xen_irq_ops;
1158 pv_apic_ops = xen_apic_ops;
1159 pv_mmu_ops = xen_mmu_ops;
1160
1161 machine_ops = xen_machine_ops;
1162
1163 #ifdef CONFIG_SMP
1164 smp_ops = xen_smp_ops;
1165 #endif
1166
1167 xen_setup_features();
1168
1169 /* Get mfn list */
1170 if (!xen_feature(XENFEAT_auto_translated_physmap))
1171 phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1172
1173 pgd = (pgd_t *)xen_start_info->pt_base;
1174
1175 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1176
1177 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1178
1179 /* keep using Xen gdt for now; no urgent need to change it */
1180
1181 x86_write_percpu(xen_cr3, __pa(pgd));
1182 x86_write_percpu(xen_current_cr3, __pa(pgd));
1183
1184 #ifdef CONFIG_SMP
1185 /* Don't do the full vcpu_info placement stuff until we have a
1186 possible map. */
1187 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1188 #else
1189 /* May as well do it now, since there's no good time to call
1190 it later on UP. */
1191 xen_setup_vcpu_info_placement();
1192 #endif
1193
1194 pv_info.kernel_rpl = 1;
1195 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1196 pv_info.kernel_rpl = 0;
1197
1198 /* set the limit of our address space */
1199 xen_reserve_top();
1200
1201 /* set up basic CPUID stuff */
1202 cpu_detect(&new_cpu_data);
1203 new_cpu_data.hard_math = 1;
1204 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1205
1206 /* Poke various useful things into boot_params */
1207 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1208 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1209 ? __pa(xen_start_info->mod_start) : 0;
1210 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1211
1212 /* Start the world */
1213 start_kernel();
1214 }
This page took 0.109646 seconds and 5 git commands to generate.