53afa14eb3145c86e157f614f5a85f3cb0fc6091
[deliverable/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/features.h>
34 #include <xen/page.h>
35 #include <xen/hvc-console.h>
36
37 #include <asm/paravirt.h>
38 #include <asm/page.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/msr-index.h>
44 #include <asm/setup.h>
45 #include <asm/desc.h>
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/reboot.h>
49
50 #include "xen-ops.h"
51 #include "mmu.h"
52 #include "multicalls.h"
53
54 EXPORT_SYMBOL_GPL(hypercall_page);
55
56 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
57 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
58
59 /*
60 * Identity map, in addition to plain kernel map. This needs to be
61 * large enough to allocate page table pages to allocate the rest.
62 * Each page can map 2MB.
63 */
64 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
65
66 #ifdef CONFIG_X86_64
67 /* l3 pud for userspace vsyscall mapping */
68 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
69 #endif /* CONFIG_X86_64 */
70
71 /*
72 * Note about cr3 (pagetable base) values:
73 *
74 * xen_cr3 contains the current logical cr3 value; it contains the
75 * last set cr3. This may not be the current effective cr3, because
76 * its update may be being lazily deferred. However, a vcpu looking
77 * at its own cr3 can use this value knowing that it everything will
78 * be self-consistent.
79 *
80 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
81 * hypercall to set the vcpu cr3 is complete (so it may be a little
82 * out of date, but it will never be set early). If one vcpu is
83 * looking at another vcpu's cr3 value, it should use this variable.
84 */
85 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
86 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
87
88 struct start_info *xen_start_info;
89 EXPORT_SYMBOL_GPL(xen_start_info);
90
91 struct shared_info xen_dummy_shared_info;
92
93 /*
94 * Point at some empty memory to start with. We map the real shared_info
95 * page as soon as fixmap is up and running.
96 */
97 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
98
99 /*
100 * Flag to determine whether vcpu info placement is available on all
101 * VCPUs. We assume it is to start with, and then set it to zero on
102 * the first failure. This is because it can succeed on some VCPUs
103 * and not others, since it can involve hypervisor memory allocation,
104 * or because the guest failed to guarantee all the appropriate
105 * constraints on all VCPUs (ie buffer can't cross a page boundary).
106 *
107 * Note that any particular CPU may be using a placed vcpu structure,
108 * but we can only optimise if the all are.
109 *
110 * 0: not available, 1: available
111 */
112 static int have_vcpu_info_placement = 1;
113
114 static void xen_vcpu_setup(int cpu)
115 {
116 struct vcpu_register_vcpu_info info;
117 int err;
118 struct vcpu_info *vcpup;
119
120 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
121 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
122
123 if (!have_vcpu_info_placement)
124 return; /* already tested, not available */
125
126 vcpup = &per_cpu(xen_vcpu_info, cpu);
127
128 info.mfn = virt_to_mfn(vcpup);
129 info.offset = offset_in_page(vcpup);
130
131 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
132 cpu, vcpup, info.mfn, info.offset);
133
134 /* Check to see if the hypervisor will put the vcpu_info
135 structure where we want it, which allows direct access via
136 a percpu-variable. */
137 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
138
139 if (err) {
140 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
141 have_vcpu_info_placement = 0;
142 } else {
143 /* This cpu is using the registered vcpu info, even if
144 later ones fail to. */
145 per_cpu(xen_vcpu, cpu) = vcpup;
146
147 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
148 cpu, vcpup);
149 }
150 }
151
152 /*
153 * On restore, set the vcpu placement up again.
154 * If it fails, then we're in a bad state, since
155 * we can't back out from using it...
156 */
157 void xen_vcpu_restore(void)
158 {
159 if (have_vcpu_info_placement) {
160 int cpu;
161
162 for_each_online_cpu(cpu) {
163 bool other_cpu = (cpu != smp_processor_id());
164
165 if (other_cpu &&
166 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
167 BUG();
168
169 xen_vcpu_setup(cpu);
170
171 if (other_cpu &&
172 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
173 BUG();
174 }
175
176 BUG_ON(!have_vcpu_info_placement);
177 }
178 }
179
180 static void __init xen_banner(void)
181 {
182 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
183 struct xen_extraversion extra;
184 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
185
186 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
187 pv_info.name);
188 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
189 version >> 16, version & 0xffff, extra.extraversion,
190 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
191 }
192
193 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
194 unsigned int *cx, unsigned int *dx)
195 {
196 unsigned maskedx = ~0;
197
198 /*
199 * Mask out inconvenient features, to try and disable as many
200 * unsupported kernel subsystems as possible.
201 */
202 if (*ax == 1)
203 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
204 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
205 (1 << X86_FEATURE_MCE) | /* disable MCE */
206 (1 << X86_FEATURE_MCA) | /* disable MCA */
207 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
208
209 asm(XEN_EMULATE_PREFIX "cpuid"
210 : "=a" (*ax),
211 "=b" (*bx),
212 "=c" (*cx),
213 "=d" (*dx)
214 : "0" (*ax), "2" (*cx));
215 *dx &= maskedx;
216 }
217
218 static void xen_set_debugreg(int reg, unsigned long val)
219 {
220 HYPERVISOR_set_debugreg(reg, val);
221 }
222
223 static unsigned long xen_get_debugreg(int reg)
224 {
225 return HYPERVISOR_get_debugreg(reg);
226 }
227
228 static void xen_leave_lazy(void)
229 {
230 paravirt_leave_lazy(paravirt_get_lazy_mode());
231 xen_mc_flush();
232 }
233
234 static unsigned long xen_store_tr(void)
235 {
236 return 0;
237 }
238
239 /*
240 * Set the page permissions for a particular virtual address. If the
241 * address is a vmalloc mapping (or other non-linear mapping), then
242 * find the linear mapping of the page and also set its protections to
243 * match.
244 */
245 static void set_aliased_prot(void *v, pgprot_t prot)
246 {
247 int level;
248 pte_t *ptep;
249 pte_t pte;
250 unsigned long pfn;
251 struct page *page;
252
253 ptep = lookup_address((unsigned long)v, &level);
254 BUG_ON(ptep == NULL);
255
256 pfn = pte_pfn(*ptep);
257 page = pfn_to_page(pfn);
258
259 pte = pfn_pte(pfn, prot);
260
261 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
262 BUG();
263
264 if (!PageHighMem(page)) {
265 void *av = __va(PFN_PHYS(pfn));
266
267 if (av != v)
268 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
269 BUG();
270 } else
271 kmap_flush_unused();
272 }
273
274 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
275 {
276 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
277 int i;
278
279 for(i = 0; i < entries; i += entries_per_page)
280 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
281 }
282
283 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
284 {
285 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
286 int i;
287
288 for(i = 0; i < entries; i += entries_per_page)
289 set_aliased_prot(ldt + i, PAGE_KERNEL);
290 }
291
292 static void xen_set_ldt(const void *addr, unsigned entries)
293 {
294 struct mmuext_op *op;
295 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
296
297 op = mcs.args;
298 op->cmd = MMUEXT_SET_LDT;
299 op->arg1.linear_addr = (unsigned long)addr;
300 op->arg2.nr_ents = entries;
301
302 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
303
304 xen_mc_issue(PARAVIRT_LAZY_CPU);
305 }
306
307 static void xen_load_gdt(const struct desc_ptr *dtr)
308 {
309 unsigned long *frames;
310 unsigned long va = dtr->address;
311 unsigned int size = dtr->size + 1;
312 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
313 int f;
314 struct multicall_space mcs;
315
316 /* A GDT can be up to 64k in size, which corresponds to 8192
317 8-byte entries, or 16 4k pages.. */
318
319 BUG_ON(size > 65536);
320 BUG_ON(va & ~PAGE_MASK);
321
322 mcs = xen_mc_entry(sizeof(*frames) * pages);
323 frames = mcs.args;
324
325 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
326 frames[f] = virt_to_mfn(va);
327 make_lowmem_page_readonly((void *)va);
328 }
329
330 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
331
332 xen_mc_issue(PARAVIRT_LAZY_CPU);
333 }
334
335 static void load_TLS_descriptor(struct thread_struct *t,
336 unsigned int cpu, unsigned int i)
337 {
338 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
339 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
340 struct multicall_space mc = __xen_mc_entry(0);
341
342 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
343 }
344
345 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
346 {
347 /*
348 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
349 * it means we're in a context switch, and %gs has just been
350 * saved. This means we can zero it out to prevent faults on
351 * exit from the hypervisor if the next process has no %gs.
352 * Either way, it has been saved, and the new value will get
353 * loaded properly. This will go away as soon as Xen has been
354 * modified to not save/restore %gs for normal hypercalls.
355 *
356 * On x86_64, this hack is not used for %gs, because gs points
357 * to KERNEL_GS_BASE (and uses it for PDA references), so we
358 * must not zero %gs on x86_64
359 *
360 * For x86_64, we need to zero %fs, otherwise we may get an
361 * exception between the new %fs descriptor being loaded and
362 * %fs being effectively cleared at __switch_to().
363 */
364 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
365 #ifdef CONFIG_X86_32
366 loadsegment(gs, 0);
367 #else
368 loadsegment(fs, 0);
369 #endif
370 }
371
372 xen_mc_batch();
373
374 load_TLS_descriptor(t, cpu, 0);
375 load_TLS_descriptor(t, cpu, 1);
376 load_TLS_descriptor(t, cpu, 2);
377
378 xen_mc_issue(PARAVIRT_LAZY_CPU);
379 }
380
381 #ifdef CONFIG_X86_64
382 static void xen_load_gs_index(unsigned int idx)
383 {
384 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
385 BUG();
386 }
387 #endif
388
389 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
390 const void *ptr)
391 {
392 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
393 u64 entry = *(u64 *)ptr;
394
395 preempt_disable();
396
397 xen_mc_flush();
398 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
399 BUG();
400
401 preempt_enable();
402 }
403
404 static int cvt_gate_to_trap(int vector, const gate_desc *val,
405 struct trap_info *info)
406 {
407 if (val->type != 0xf && val->type != 0xe)
408 return 0;
409
410 info->vector = vector;
411 info->address = gate_offset(*val);
412 info->cs = gate_segment(*val);
413 info->flags = val->dpl;
414 /* interrupt gates clear IF */
415 if (val->type == 0xe)
416 info->flags |= 4;
417
418 return 1;
419 }
420
421 /* Locations of each CPU's IDT */
422 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
423
424 /* Set an IDT entry. If the entry is part of the current IDT, then
425 also update Xen. */
426 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
427 {
428 unsigned long p = (unsigned long)&dt[entrynum];
429 unsigned long start, end;
430
431 preempt_disable();
432
433 start = __get_cpu_var(idt_desc).address;
434 end = start + __get_cpu_var(idt_desc).size + 1;
435
436 xen_mc_flush();
437
438 native_write_idt_entry(dt, entrynum, g);
439
440 if (p >= start && (p + 8) <= end) {
441 struct trap_info info[2];
442
443 info[1].address = 0;
444
445 if (cvt_gate_to_trap(entrynum, g, &info[0]))
446 if (HYPERVISOR_set_trap_table(info))
447 BUG();
448 }
449
450 preempt_enable();
451 }
452
453 static void xen_convert_trap_info(const struct desc_ptr *desc,
454 struct trap_info *traps)
455 {
456 unsigned in, out, count;
457
458 count = (desc->size+1) / sizeof(gate_desc);
459 BUG_ON(count > 256);
460
461 for (in = out = 0; in < count; in++) {
462 gate_desc *entry = (gate_desc*)(desc->address) + in;
463
464 if (cvt_gate_to_trap(in, entry, &traps[out]))
465 out++;
466 }
467 traps[out].address = 0;
468 }
469
470 void xen_copy_trap_info(struct trap_info *traps)
471 {
472 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
473
474 xen_convert_trap_info(desc, traps);
475 }
476
477 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
478 hold a spinlock to protect the static traps[] array (static because
479 it avoids allocation, and saves stack space). */
480 static void xen_load_idt(const struct desc_ptr *desc)
481 {
482 static DEFINE_SPINLOCK(lock);
483 static struct trap_info traps[257];
484
485 spin_lock(&lock);
486
487 __get_cpu_var(idt_desc) = *desc;
488
489 xen_convert_trap_info(desc, traps);
490
491 xen_mc_flush();
492 if (HYPERVISOR_set_trap_table(traps))
493 BUG();
494
495 spin_unlock(&lock);
496 }
497
498 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
499 they're handled differently. */
500 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
501 const void *desc, int type)
502 {
503 preempt_disable();
504
505 switch (type) {
506 case DESC_LDT:
507 case DESC_TSS:
508 /* ignore */
509 break;
510
511 default: {
512 xmaddr_t maddr = virt_to_machine(&dt[entry]);
513
514 xen_mc_flush();
515 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
516 BUG();
517 }
518
519 }
520
521 preempt_enable();
522 }
523
524 static void xen_load_sp0(struct tss_struct *tss,
525 struct thread_struct *thread)
526 {
527 struct multicall_space mcs = xen_mc_entry(0);
528 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
529 xen_mc_issue(PARAVIRT_LAZY_CPU);
530 }
531
532 static void xen_set_iopl_mask(unsigned mask)
533 {
534 struct physdev_set_iopl set_iopl;
535
536 /* Force the change at ring 0. */
537 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
538 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
539 }
540
541 static void xen_io_delay(void)
542 {
543 }
544
545 #ifdef CONFIG_X86_LOCAL_APIC
546 static u32 xen_apic_read(unsigned long reg)
547 {
548 return 0;
549 }
550
551 static void xen_apic_write(unsigned long reg, u32 val)
552 {
553 /* Warn to see if there's any stray references */
554 WARN_ON(1);
555 }
556 #endif
557
558 static void xen_flush_tlb(void)
559 {
560 struct mmuext_op *op;
561 struct multicall_space mcs;
562
563 preempt_disable();
564
565 mcs = xen_mc_entry(sizeof(*op));
566
567 op = mcs.args;
568 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
569 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
570
571 xen_mc_issue(PARAVIRT_LAZY_MMU);
572
573 preempt_enable();
574 }
575
576 static void xen_flush_tlb_single(unsigned long addr)
577 {
578 struct mmuext_op *op;
579 struct multicall_space mcs;
580
581 preempt_disable();
582
583 mcs = xen_mc_entry(sizeof(*op));
584 op = mcs.args;
585 op->cmd = MMUEXT_INVLPG_LOCAL;
586 op->arg1.linear_addr = addr & PAGE_MASK;
587 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
588
589 xen_mc_issue(PARAVIRT_LAZY_MMU);
590
591 preempt_enable();
592 }
593
594 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
595 unsigned long va)
596 {
597 struct {
598 struct mmuext_op op;
599 cpumask_t mask;
600 } *args;
601 cpumask_t cpumask = *cpus;
602 struct multicall_space mcs;
603
604 /*
605 * A couple of (to be removed) sanity checks:
606 *
607 * - current CPU must not be in mask
608 * - mask must exist :)
609 */
610 BUG_ON(cpus_empty(cpumask));
611 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
612 BUG_ON(!mm);
613
614 /* If a CPU which we ran on has gone down, OK. */
615 cpus_and(cpumask, cpumask, cpu_online_map);
616 if (cpus_empty(cpumask))
617 return;
618
619 mcs = xen_mc_entry(sizeof(*args));
620 args = mcs.args;
621 args->mask = cpumask;
622 args->op.arg2.vcpumask = &args->mask;
623
624 if (va == TLB_FLUSH_ALL) {
625 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
626 } else {
627 args->op.cmd = MMUEXT_INVLPG_MULTI;
628 args->op.arg1.linear_addr = va;
629 }
630
631 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
632
633 xen_mc_issue(PARAVIRT_LAZY_MMU);
634 }
635
636 static void xen_clts(void)
637 {
638 struct multicall_space mcs;
639
640 mcs = xen_mc_entry(0);
641
642 MULTI_fpu_taskswitch(mcs.mc, 0);
643
644 xen_mc_issue(PARAVIRT_LAZY_CPU);
645 }
646
647 static void xen_write_cr0(unsigned long cr0)
648 {
649 struct multicall_space mcs;
650
651 /* Only pay attention to cr0.TS; everything else is
652 ignored. */
653 mcs = xen_mc_entry(0);
654
655 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
656
657 xen_mc_issue(PARAVIRT_LAZY_CPU);
658 }
659
660 static void xen_write_cr2(unsigned long cr2)
661 {
662 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
663 }
664
665 static unsigned long xen_read_cr2(void)
666 {
667 return x86_read_percpu(xen_vcpu)->arch.cr2;
668 }
669
670 static unsigned long xen_read_cr2_direct(void)
671 {
672 return x86_read_percpu(xen_vcpu_info.arch.cr2);
673 }
674
675 static void xen_write_cr4(unsigned long cr4)
676 {
677 cr4 &= ~X86_CR4_PGE;
678 cr4 &= ~X86_CR4_PSE;
679
680 native_write_cr4(cr4);
681 }
682
683 static unsigned long xen_read_cr3(void)
684 {
685 return x86_read_percpu(xen_cr3);
686 }
687
688 static void set_current_cr3(void *v)
689 {
690 x86_write_percpu(xen_current_cr3, (unsigned long)v);
691 }
692
693 static void __xen_write_cr3(bool kernel, unsigned long cr3)
694 {
695 struct mmuext_op *op;
696 struct multicall_space mcs;
697 unsigned long mfn;
698
699 if (cr3)
700 mfn = pfn_to_mfn(PFN_DOWN(cr3));
701 else
702 mfn = 0;
703
704 WARN_ON(mfn == 0 && kernel);
705
706 mcs = __xen_mc_entry(sizeof(*op));
707
708 op = mcs.args;
709 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
710 op->arg1.mfn = mfn;
711
712 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
713
714 if (kernel) {
715 x86_write_percpu(xen_cr3, cr3);
716
717 /* Update xen_current_cr3 once the batch has actually
718 been submitted. */
719 xen_mc_callback(set_current_cr3, (void *)cr3);
720 }
721 }
722
723 static void xen_write_cr3(unsigned long cr3)
724 {
725 BUG_ON(preemptible());
726
727 xen_mc_batch(); /* disables interrupts */
728
729 /* Update while interrupts are disabled, so its atomic with
730 respect to ipis */
731 x86_write_percpu(xen_cr3, cr3);
732
733 __xen_write_cr3(true, cr3);
734
735 #ifdef CONFIG_X86_64
736 {
737 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
738 if (user_pgd)
739 __xen_write_cr3(false, __pa(user_pgd));
740 else
741 __xen_write_cr3(false, 0);
742 }
743 #endif
744
745 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
746 }
747
748 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
749 {
750 int ret;
751
752 ret = 0;
753
754 switch(msr) {
755 #ifdef CONFIG_X86_64
756 unsigned which;
757 u64 base;
758
759 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
760 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
761 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
762
763 set:
764 base = ((u64)high << 32) | low;
765 if (HYPERVISOR_set_segment_base(which, base) != 0)
766 ret = -EFAULT;
767 break;
768 #endif
769
770 case MSR_STAR:
771 case MSR_CSTAR:
772 case MSR_LSTAR:
773 case MSR_SYSCALL_MASK:
774 case MSR_IA32_SYSENTER_CS:
775 case MSR_IA32_SYSENTER_ESP:
776 case MSR_IA32_SYSENTER_EIP:
777 /* Fast syscall setup is all done in hypercalls, so
778 these are all ignored. Stub them out here to stop
779 Xen console noise. */
780 break;
781
782 default:
783 ret = native_write_msr_safe(msr, low, high);
784 }
785
786 return ret;
787 }
788
789 /* Early in boot, while setting up the initial pagetable, assume
790 everything is pinned. */
791 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
792 {
793 #ifdef CONFIG_FLATMEM
794 BUG_ON(mem_map); /* should only be used early */
795 #endif
796 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
797 }
798
799 /* Early release_pte assumes that all pts are pinned, since there's
800 only init_mm and anything attached to that is pinned. */
801 static void xen_release_pte_init(u32 pfn)
802 {
803 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
804 }
805
806 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
807 {
808 struct mmuext_op op;
809 op.cmd = cmd;
810 op.arg1.mfn = pfn_to_mfn(pfn);
811 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
812 BUG();
813 }
814
815 /* This needs to make sure the new pte page is pinned iff its being
816 attached to a pinned pagetable. */
817 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
818 {
819 struct page *page = pfn_to_page(pfn);
820
821 if (PagePinned(virt_to_page(mm->pgd))) {
822 SetPagePinned(page);
823
824 if (!PageHighMem(page)) {
825 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
826 if (level == PT_PTE)
827 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
828 } else
829 /* make sure there are no stray mappings of
830 this page */
831 kmap_flush_unused();
832 }
833 }
834
835 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
836 {
837 xen_alloc_ptpage(mm, pfn, PT_PTE);
838 }
839
840 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
841 {
842 xen_alloc_ptpage(mm, pfn, PT_PMD);
843 }
844
845 static int xen_pgd_alloc(struct mm_struct *mm)
846 {
847 pgd_t *pgd = mm->pgd;
848 int ret = 0;
849
850 BUG_ON(PagePinned(virt_to_page(pgd)));
851
852 #ifdef CONFIG_X86_64
853 {
854 struct page *page = virt_to_page(pgd);
855 pgd_t *user_pgd;
856
857 BUG_ON(page->private != 0);
858
859 ret = -ENOMEM;
860
861 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
862 page->private = (unsigned long)user_pgd;
863
864 if (user_pgd != NULL) {
865 user_pgd[pgd_index(VSYSCALL_START)] =
866 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
867 ret = 0;
868 }
869
870 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
871 }
872 #endif
873
874 return ret;
875 }
876
877 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
878 {
879 #ifdef CONFIG_X86_64
880 pgd_t *user_pgd = xen_get_user_pgd(pgd);
881
882 if (user_pgd)
883 free_page((unsigned long)user_pgd);
884 #endif
885 }
886
887 /* This should never happen until we're OK to use struct page */
888 static void xen_release_ptpage(u32 pfn, unsigned level)
889 {
890 struct page *page = pfn_to_page(pfn);
891
892 if (PagePinned(page)) {
893 if (!PageHighMem(page)) {
894 if (level == PT_PTE)
895 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
896 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
897 }
898 ClearPagePinned(page);
899 }
900 }
901
902 static void xen_release_pte(u32 pfn)
903 {
904 xen_release_ptpage(pfn, PT_PTE);
905 }
906
907 static void xen_release_pmd(u32 pfn)
908 {
909 xen_release_ptpage(pfn, PT_PMD);
910 }
911
912 #if PAGETABLE_LEVELS == 4
913 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
914 {
915 xen_alloc_ptpage(mm, pfn, PT_PUD);
916 }
917
918 static void xen_release_pud(u32 pfn)
919 {
920 xen_release_ptpage(pfn, PT_PUD);
921 }
922 #endif
923
924 #ifdef CONFIG_HIGHPTE
925 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
926 {
927 pgprot_t prot = PAGE_KERNEL;
928
929 if (PagePinned(page))
930 prot = PAGE_KERNEL_RO;
931
932 if (0 && PageHighMem(page))
933 printk("mapping highpte %lx type %d prot %s\n",
934 page_to_pfn(page), type,
935 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
936
937 return kmap_atomic_prot(page, type, prot);
938 }
939 #endif
940
941 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
942 {
943 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
944 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
945 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
946 pte_val_ma(pte));
947
948 return pte;
949 }
950
951 /* Init-time set_pte while constructing initial pagetables, which
952 doesn't allow RO pagetable pages to be remapped RW */
953 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
954 {
955 pte = mask_rw_pte(ptep, pte);
956
957 xen_set_pte(ptep, pte);
958 }
959
960 static __init void xen_pagetable_setup_start(pgd_t *base)
961 {
962 }
963
964 void xen_setup_shared_info(void)
965 {
966 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
967 set_fixmap(FIX_PARAVIRT_BOOTMAP,
968 xen_start_info->shared_info);
969
970 HYPERVISOR_shared_info =
971 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
972 } else
973 HYPERVISOR_shared_info =
974 (struct shared_info *)__va(xen_start_info->shared_info);
975
976 #ifndef CONFIG_SMP
977 /* In UP this is as good a place as any to set up shared info */
978 xen_setup_vcpu_info_placement();
979 #endif
980
981 xen_setup_mfn_list_list();
982 }
983
984 static __init void xen_pagetable_setup_done(pgd_t *base)
985 {
986 xen_setup_shared_info();
987 }
988
989 static __init void xen_post_allocator_init(void)
990 {
991 pv_mmu_ops.set_pte = xen_set_pte;
992 pv_mmu_ops.set_pmd = xen_set_pmd;
993 pv_mmu_ops.set_pud = xen_set_pud;
994 #if PAGETABLE_LEVELS == 4
995 pv_mmu_ops.set_pgd = xen_set_pgd;
996 #endif
997
998 /* This will work as long as patching hasn't happened yet
999 (which it hasn't) */
1000 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1001 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1002 pv_mmu_ops.release_pte = xen_release_pte;
1003 pv_mmu_ops.release_pmd = xen_release_pmd;
1004 #if PAGETABLE_LEVELS == 4
1005 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1006 pv_mmu_ops.release_pud = xen_release_pud;
1007 #endif
1008
1009 #ifdef CONFIG_X86_64
1010 SetPagePinned(virt_to_page(level3_user_vsyscall));
1011 #endif
1012 xen_mark_init_mm_pinned();
1013 }
1014
1015 /* This is called once we have the cpu_possible_map */
1016 void xen_setup_vcpu_info_placement(void)
1017 {
1018 int cpu;
1019
1020 for_each_possible_cpu(cpu)
1021 xen_vcpu_setup(cpu);
1022
1023 /* xen_vcpu_setup managed to place the vcpu_info within the
1024 percpu area for all cpus, so make use of it */
1025 #ifdef CONFIG_X86_32
1026 if (have_vcpu_info_placement) {
1027 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1028
1029 pv_irq_ops.save_fl = xen_save_fl_direct;
1030 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1031 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1032 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1033 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1034 }
1035 #endif
1036 }
1037
1038 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1039 unsigned long addr, unsigned len)
1040 {
1041 char *start, *end, *reloc;
1042 unsigned ret;
1043
1044 start = end = reloc = NULL;
1045
1046 #define SITE(op, x) \
1047 case PARAVIRT_PATCH(op.x): \
1048 if (have_vcpu_info_placement) { \
1049 start = (char *)xen_##x##_direct; \
1050 end = xen_##x##_direct_end; \
1051 reloc = xen_##x##_direct_reloc; \
1052 } \
1053 goto patch_site
1054
1055 switch (type) {
1056 #ifdef CONFIG_X86_32
1057 SITE(pv_irq_ops, irq_enable);
1058 SITE(pv_irq_ops, irq_disable);
1059 SITE(pv_irq_ops, save_fl);
1060 SITE(pv_irq_ops, restore_fl);
1061 #endif /* CONFIG_X86_32 */
1062 #undef SITE
1063
1064 patch_site:
1065 if (start == NULL || (end-start) > len)
1066 goto default_patch;
1067
1068 ret = paravirt_patch_insns(insnbuf, len, start, end);
1069
1070 /* Note: because reloc is assigned from something that
1071 appears to be an array, gcc assumes it's non-null,
1072 but doesn't know its relationship with start and
1073 end. */
1074 if (reloc > start && reloc < end) {
1075 int reloc_off = reloc - start;
1076 long *relocp = (long *)(insnbuf + reloc_off);
1077 long delta = start - (char *)addr;
1078
1079 *relocp += delta;
1080 }
1081 break;
1082
1083 default_patch:
1084 default:
1085 ret = paravirt_patch_default(type, clobbers, insnbuf,
1086 addr, len);
1087 break;
1088 }
1089
1090 return ret;
1091 }
1092
1093 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1094 {
1095 pte_t pte;
1096
1097 phys >>= PAGE_SHIFT;
1098
1099 switch (idx) {
1100 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1101 #ifdef CONFIG_X86_F00F_BUG
1102 case FIX_F00F_IDT:
1103 #endif
1104 #ifdef CONFIG_X86_32
1105 case FIX_WP_TEST:
1106 case FIX_VDSO:
1107 # ifdef CONFIG_HIGHMEM
1108 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1109 # endif
1110 #else
1111 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1112 #endif
1113 #ifdef CONFIG_X86_LOCAL_APIC
1114 case FIX_APIC_BASE: /* maps dummy local APIC */
1115 #endif
1116 pte = pfn_pte(phys, prot);
1117 break;
1118
1119 default:
1120 pte = mfn_pte(phys, prot);
1121 break;
1122 }
1123
1124 __native_set_fixmap(idx, pte);
1125
1126 #ifdef CONFIG_X86_64
1127 /* Replicate changes to map the vsyscall page into the user
1128 pagetable vsyscall mapping. */
1129 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1130 unsigned long vaddr = __fix_to_virt(idx);
1131 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1132 }
1133 #endif
1134 }
1135
1136 static const struct pv_info xen_info __initdata = {
1137 .paravirt_enabled = 1,
1138 .shared_kernel_pmd = 0,
1139
1140 .name = "Xen",
1141 };
1142
1143 static const struct pv_init_ops xen_init_ops __initdata = {
1144 .patch = xen_patch,
1145
1146 .banner = xen_banner,
1147 .memory_setup = xen_memory_setup,
1148 .arch_setup = xen_arch_setup,
1149 .post_allocator_init = xen_post_allocator_init,
1150 };
1151
1152 static const struct pv_time_ops xen_time_ops __initdata = {
1153 .time_init = xen_time_init,
1154
1155 .set_wallclock = xen_set_wallclock,
1156 .get_wallclock = xen_get_wallclock,
1157 .get_tsc_khz = xen_tsc_khz,
1158 .sched_clock = xen_sched_clock,
1159 };
1160
1161 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1162 .cpuid = xen_cpuid,
1163
1164 .set_debugreg = xen_set_debugreg,
1165 .get_debugreg = xen_get_debugreg,
1166
1167 .clts = xen_clts,
1168
1169 .read_cr0 = native_read_cr0,
1170 .write_cr0 = xen_write_cr0,
1171
1172 .read_cr4 = native_read_cr4,
1173 .read_cr4_safe = native_read_cr4_safe,
1174 .write_cr4 = xen_write_cr4,
1175
1176 .wbinvd = native_wbinvd,
1177
1178 .read_msr = native_read_msr_safe,
1179 .write_msr = xen_write_msr_safe,
1180 .read_tsc = native_read_tsc,
1181 .read_pmc = native_read_pmc,
1182
1183 .iret = xen_iret,
1184 .irq_enable_sysexit = xen_sysexit,
1185 #ifdef CONFIG_X86_64
1186 .usergs_sysret32 = xen_sysret32,
1187 .usergs_sysret64 = xen_sysret64,
1188 #endif
1189
1190 .load_tr_desc = paravirt_nop,
1191 .set_ldt = xen_set_ldt,
1192 .load_gdt = xen_load_gdt,
1193 .load_idt = xen_load_idt,
1194 .load_tls = xen_load_tls,
1195 #ifdef CONFIG_X86_64
1196 .load_gs_index = xen_load_gs_index,
1197 #endif
1198
1199 .alloc_ldt = xen_alloc_ldt,
1200 .free_ldt = xen_free_ldt,
1201
1202 .store_gdt = native_store_gdt,
1203 .store_idt = native_store_idt,
1204 .store_tr = xen_store_tr,
1205
1206 .write_ldt_entry = xen_write_ldt_entry,
1207 .write_gdt_entry = xen_write_gdt_entry,
1208 .write_idt_entry = xen_write_idt_entry,
1209 .load_sp0 = xen_load_sp0,
1210
1211 .set_iopl_mask = xen_set_iopl_mask,
1212 .io_delay = xen_io_delay,
1213
1214 /* Xen takes care of %gs when switching to usermode for us */
1215 .swapgs = paravirt_nop,
1216
1217 .lazy_mode = {
1218 .enter = paravirt_enter_lazy_cpu,
1219 .leave = xen_leave_lazy,
1220 },
1221 };
1222
1223 static const struct pv_apic_ops xen_apic_ops __initdata = {
1224 #ifdef CONFIG_X86_LOCAL_APIC
1225 .apic_write = xen_apic_write,
1226 .apic_read = xen_apic_read,
1227 .setup_boot_clock = paravirt_nop,
1228 .setup_secondary_clock = paravirt_nop,
1229 .startup_ipi_hook = paravirt_nop,
1230 #endif
1231 };
1232
1233 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1234 .pagetable_setup_start = xen_pagetable_setup_start,
1235 .pagetable_setup_done = xen_pagetable_setup_done,
1236
1237 .read_cr2 = xen_read_cr2,
1238 .write_cr2 = xen_write_cr2,
1239
1240 .read_cr3 = xen_read_cr3,
1241 .write_cr3 = xen_write_cr3,
1242
1243 .flush_tlb_user = xen_flush_tlb,
1244 .flush_tlb_kernel = xen_flush_tlb,
1245 .flush_tlb_single = xen_flush_tlb_single,
1246 .flush_tlb_others = xen_flush_tlb_others,
1247
1248 .pte_update = paravirt_nop,
1249 .pte_update_defer = paravirt_nop,
1250
1251 .pgd_alloc = xen_pgd_alloc,
1252 .pgd_free = xen_pgd_free,
1253
1254 .alloc_pte = xen_alloc_pte_init,
1255 .release_pte = xen_release_pte_init,
1256 .alloc_pmd = xen_alloc_pte_init,
1257 .alloc_pmd_clone = paravirt_nop,
1258 .release_pmd = xen_release_pte_init,
1259
1260 #ifdef CONFIG_HIGHPTE
1261 .kmap_atomic_pte = xen_kmap_atomic_pte,
1262 #endif
1263
1264 #ifdef CONFIG_X86_64
1265 .set_pte = xen_set_pte,
1266 #else
1267 .set_pte = xen_set_pte_init,
1268 #endif
1269 .set_pte_at = xen_set_pte_at,
1270 .set_pmd = xen_set_pmd_hyper,
1271
1272 .ptep_modify_prot_start = __ptep_modify_prot_start,
1273 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1274
1275 .pte_val = xen_pte_val,
1276 .pte_flags = native_pte_flags,
1277 .pgd_val = xen_pgd_val,
1278
1279 .make_pte = xen_make_pte,
1280 .make_pgd = xen_make_pgd,
1281
1282 #ifdef CONFIG_X86_PAE
1283 .set_pte_atomic = xen_set_pte_atomic,
1284 .set_pte_present = xen_set_pte_at,
1285 .pte_clear = xen_pte_clear,
1286 .pmd_clear = xen_pmd_clear,
1287 #endif /* CONFIG_X86_PAE */
1288 .set_pud = xen_set_pud_hyper,
1289
1290 .make_pmd = xen_make_pmd,
1291 .pmd_val = xen_pmd_val,
1292
1293 #if PAGETABLE_LEVELS == 4
1294 .pud_val = xen_pud_val,
1295 .make_pud = xen_make_pud,
1296 .set_pgd = xen_set_pgd_hyper,
1297
1298 .alloc_pud = xen_alloc_pte_init,
1299 .release_pud = xen_release_pte_init,
1300 #endif /* PAGETABLE_LEVELS == 4 */
1301
1302 .activate_mm = xen_activate_mm,
1303 .dup_mmap = xen_dup_mmap,
1304 .exit_mmap = xen_exit_mmap,
1305
1306 .lazy_mode = {
1307 .enter = paravirt_enter_lazy_mmu,
1308 .leave = xen_leave_lazy,
1309 },
1310
1311 .set_fixmap = xen_set_fixmap,
1312 };
1313
1314 static void xen_reboot(int reason)
1315 {
1316 struct sched_shutdown r = { .reason = reason };
1317
1318 #ifdef CONFIG_SMP
1319 smp_send_stop();
1320 #endif
1321
1322 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1323 BUG();
1324 }
1325
1326 static void xen_restart(char *msg)
1327 {
1328 xen_reboot(SHUTDOWN_reboot);
1329 }
1330
1331 static void xen_emergency_restart(void)
1332 {
1333 xen_reboot(SHUTDOWN_reboot);
1334 }
1335
1336 static void xen_machine_halt(void)
1337 {
1338 xen_reboot(SHUTDOWN_poweroff);
1339 }
1340
1341 static void xen_crash_shutdown(struct pt_regs *regs)
1342 {
1343 xen_reboot(SHUTDOWN_crash);
1344 }
1345
1346 static const struct machine_ops __initdata xen_machine_ops = {
1347 .restart = xen_restart,
1348 .halt = xen_machine_halt,
1349 .power_off = xen_machine_halt,
1350 .shutdown = xen_machine_halt,
1351 .crash_shutdown = xen_crash_shutdown,
1352 .emergency_restart = xen_emergency_restart,
1353 };
1354
1355
1356 static void __init xen_reserve_top(void)
1357 {
1358 #ifdef CONFIG_X86_32
1359 unsigned long top = HYPERVISOR_VIRT_START;
1360 struct xen_platform_parameters pp;
1361
1362 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1363 top = pp.virt_start;
1364
1365 reserve_top_address(-top + 2 * PAGE_SIZE);
1366 #endif /* CONFIG_X86_32 */
1367 }
1368
1369 /*
1370 * Like __va(), but returns address in the kernel mapping (which is
1371 * all we have until the physical memory mapping has been set up.
1372 */
1373 static void *__ka(phys_addr_t paddr)
1374 {
1375 #ifdef CONFIG_X86_64
1376 return (void *)(paddr + __START_KERNEL_map);
1377 #else
1378 return __va(paddr);
1379 #endif
1380 }
1381
1382 /* Convert a machine address to physical address */
1383 static unsigned long m2p(phys_addr_t maddr)
1384 {
1385 phys_addr_t paddr;
1386
1387 maddr &= PTE_PFN_MASK;
1388 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1389
1390 return paddr;
1391 }
1392
1393 /* Convert a machine address to kernel virtual */
1394 static void *m2v(phys_addr_t maddr)
1395 {
1396 return __ka(m2p(maddr));
1397 }
1398
1399 #ifdef CONFIG_X86_64
1400 static void walk(pgd_t *pgd, unsigned long addr)
1401 {
1402 unsigned l4idx = pgd_index(addr);
1403 unsigned l3idx = pud_index(addr);
1404 unsigned l2idx = pmd_index(addr);
1405 unsigned l1idx = pte_index(addr);
1406 pgd_t l4;
1407 pud_t l3;
1408 pmd_t l2;
1409 pte_t l1;
1410
1411 xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1412 pgd, addr, l4idx, l3idx, l2idx, l1idx);
1413
1414 l4 = pgd[l4idx];
1415 xen_raw_printk(" l4: %016lx\n", l4.pgd);
1416 xen_raw_printk(" %016lx\n", pgd_val(l4));
1417
1418 l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1419 xen_raw_printk(" l3: %016lx\n", l3.pud);
1420 xen_raw_printk(" %016lx\n", pud_val(l3));
1421
1422 l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1423 xen_raw_printk(" l2: %016lx\n", l2.pmd);
1424 xen_raw_printk(" %016lx\n", pmd_val(l2));
1425
1426 l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1427 xen_raw_printk(" l1: %016lx\n", l1.pte);
1428 xen_raw_printk(" %016lx\n", pte_val(l1));
1429 }
1430 #endif
1431
1432 static void set_page_prot(void *addr, pgprot_t prot)
1433 {
1434 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1435 pte_t pte = pfn_pte(pfn, prot);
1436
1437 xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1438 addr, pfn, get_phys_to_machine(pfn),
1439 pgprot_val(prot), pte.pte);
1440
1441 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1442 BUG();
1443 }
1444
1445 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1446 {
1447 unsigned pmdidx, pteidx;
1448 unsigned ident_pte;
1449 unsigned long pfn;
1450
1451 ident_pte = 0;
1452 pfn = 0;
1453 for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1454 pte_t *pte_page;
1455
1456 /* Reuse or allocate a page of ptes */
1457 if (pmd_present(pmd[pmdidx]))
1458 pte_page = m2v(pmd[pmdidx].pmd);
1459 else {
1460 /* Check for free pte pages */
1461 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1462 break;
1463
1464 pte_page = &level1_ident_pgt[ident_pte];
1465 ident_pte += PTRS_PER_PTE;
1466
1467 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1468 }
1469
1470 /* Install mappings */
1471 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1472 pte_t pte;
1473
1474 if (pfn > max_pfn_mapped)
1475 max_pfn_mapped = pfn;
1476
1477 if (!pte_none(pte_page[pteidx]))
1478 continue;
1479
1480 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1481 pte_page[pteidx] = pte;
1482 }
1483 }
1484
1485 for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1486 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1487
1488 set_page_prot(pmd, PAGE_KERNEL_RO);
1489 }
1490
1491 #ifdef CONFIG_X86_64
1492 static void convert_pfn_mfn(void *v)
1493 {
1494 pte_t *pte = v;
1495 int i;
1496
1497 /* All levels are converted the same way, so just treat them
1498 as ptes. */
1499 for(i = 0; i < PTRS_PER_PTE; i++)
1500 pte[i] = xen_make_pte(pte[i].pte);
1501 }
1502
1503 /*
1504 * Set up the inital kernel pagetable.
1505 *
1506 * We can construct this by grafting the Xen provided pagetable into
1507 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1508 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1509 * means that only the kernel has a physical mapping to start with -
1510 * but that's enough to get __va working. We need to fill in the rest
1511 * of the physical mapping once some sort of allocator has been set
1512 * up.
1513 */
1514 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1515 {
1516 pud_t *l3;
1517 pmd_t *l2;
1518
1519 /* Zap identity mapping */
1520 init_level4_pgt[0] = __pgd(0);
1521
1522 /* Pre-constructed entries are in pfn, so convert to mfn */
1523 convert_pfn_mfn(init_level4_pgt);
1524 convert_pfn_mfn(level3_ident_pgt);
1525 convert_pfn_mfn(level3_kernel_pgt);
1526
1527 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1528 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1529
1530 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1531 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1532
1533 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1534 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1535 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1536
1537 /* Set up identity map */
1538 xen_map_identity_early(level2_ident_pgt, max_pfn);
1539
1540 /* Make pagetable pieces RO */
1541 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1542 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1543 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1544 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1545 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1546 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1547
1548 /* Pin down new L4 */
1549 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1550 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1551
1552 /* Unpin Xen-provided one */
1553 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1554
1555 /* Switch over */
1556 pgd = init_level4_pgt;
1557
1558 /*
1559 * At this stage there can be no user pgd, and no page
1560 * structure to attach it to, so make sure we just set kernel
1561 * pgd.
1562 */
1563 xen_mc_batch();
1564 __xen_write_cr3(true, __pa(pgd));
1565 xen_mc_issue(PARAVIRT_LAZY_CPU);
1566
1567 reserve_early(__pa(xen_start_info->pt_base),
1568 __pa(xen_start_info->pt_base +
1569 xen_start_info->nr_pt_frames * PAGE_SIZE),
1570 "XEN PAGETABLES");
1571
1572 return pgd;
1573 }
1574 #else /* !CONFIG_X86_64 */
1575 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1576
1577 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1578 {
1579 pmd_t *kernel_pmd;
1580
1581 init_pg_tables_start = __pa(pgd);
1582 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1583 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1584
1585 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1586 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1587
1588 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1589
1590 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1591 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1592 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1593
1594 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1595 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1596 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1597
1598 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1599
1600 xen_write_cr3(__pa(swapper_pg_dir));
1601
1602 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1603
1604 return swapper_pg_dir;
1605 }
1606 #endif /* CONFIG_X86_64 */
1607
1608 /* First C function to be called on Xen boot */
1609 asmlinkage void __init xen_start_kernel(void)
1610 {
1611 pgd_t *pgd;
1612
1613 if (!xen_start_info)
1614 return;
1615
1616 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1617
1618 xen_setup_features();
1619
1620 /* Install Xen paravirt ops */
1621 pv_info = xen_info;
1622 pv_init_ops = xen_init_ops;
1623 pv_time_ops = xen_time_ops;
1624 pv_cpu_ops = xen_cpu_ops;
1625 pv_apic_ops = xen_apic_ops;
1626 pv_mmu_ops = xen_mmu_ops;
1627
1628 xen_init_irq_ops();
1629
1630 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1631 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1632 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1633 }
1634
1635 machine_ops = xen_machine_ops;
1636
1637 #ifdef CONFIG_X86_64
1638 /* Disable until direct per-cpu data access. */
1639 have_vcpu_info_placement = 0;
1640 x86_64_init_pda();
1641 #endif
1642
1643 xen_smp_init();
1644
1645 /* Get mfn list */
1646 if (!xen_feature(XENFEAT_auto_translated_physmap))
1647 xen_build_dynamic_phys_to_machine();
1648
1649 pgd = (pgd_t *)xen_start_info->pt_base;
1650
1651 /* Prevent unwanted bits from being set in PTEs. */
1652 __supported_pte_mask &= ~_PAGE_GLOBAL;
1653 if (!is_initial_xendomain())
1654 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1655
1656 /* Don't do the full vcpu_info placement stuff until we have a
1657 possible map and a non-dummy shared_info. */
1658 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1659
1660 xen_raw_console_write("mapping kernel into physical memory\n");
1661 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1662
1663 init_mm.pgd = pgd;
1664
1665 /* keep using Xen gdt for now; no urgent need to change it */
1666
1667 pv_info.kernel_rpl = 1;
1668 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1669 pv_info.kernel_rpl = 0;
1670
1671 /* set the limit of our address space */
1672 xen_reserve_top();
1673
1674 #ifdef CONFIG_X86_32
1675 /* set up basic CPUID stuff */
1676 cpu_detect(&new_cpu_data);
1677 new_cpu_data.hard_math = 1;
1678 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1679 #endif
1680
1681 /* Poke various useful things into boot_params */
1682 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1683 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1684 ? __pa(xen_start_info->mod_start) : 0;
1685 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1686 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1687
1688 if (!is_initial_xendomain()) {
1689 add_preferred_console("xenboot", 0, NULL);
1690 add_preferred_console("tty", 0, NULL);
1691 add_preferred_console("hvc", 0, NULL);
1692 }
1693
1694 xen_raw_console_write("about to get started...\n");
1695
1696 #if 0
1697 xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1698 &boot_params, __pa_symbol(&boot_params),
1699 __va(__pa_symbol(&boot_params)));
1700
1701 walk(pgd, &boot_params);
1702 walk(pgd, __va(__pa(&boot_params)));
1703 #endif
1704
1705 /* Start the world */
1706 #ifdef CONFIG_X86_32
1707 i386_start_kernel();
1708 #else
1709 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1710 #endif
1711 }
This page took 0.066325 seconds and 4 git commands to generate.