x86: make lazy %gs optional on x86_32
[deliverable/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/version.h>
32 #include <xen/interface/physdev.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/apic.h>
40 #include <asm/page.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/msr-index.h>
46 #include <asm/setup.h>
47 #include <asm/desc.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/reboot.h>
51
52 #include "xen-ops.h"
53 #include "mmu.h"
54 #include "multicalls.h"
55
56 EXPORT_SYMBOL_GPL(hypercall_page);
57
58 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
59 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
60
61 enum xen_domain_type xen_domain_type = XEN_NATIVE;
62 EXPORT_SYMBOL_GPL(xen_domain_type);
63
64 struct start_info *xen_start_info;
65 EXPORT_SYMBOL_GPL(xen_start_info);
66
67 struct shared_info xen_dummy_shared_info;
68
69 void *xen_initial_gdt;
70
71 /*
72 * Point at some empty memory to start with. We map the real shared_info
73 * page as soon as fixmap is up and running.
74 */
75 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
76
77 /*
78 * Flag to determine whether vcpu info placement is available on all
79 * VCPUs. We assume it is to start with, and then set it to zero on
80 * the first failure. This is because it can succeed on some VCPUs
81 * and not others, since it can involve hypervisor memory allocation,
82 * or because the guest failed to guarantee all the appropriate
83 * constraints on all VCPUs (ie buffer can't cross a page boundary).
84 *
85 * Note that any particular CPU may be using a placed vcpu structure,
86 * but we can only optimise if the all are.
87 *
88 * 0: not available, 1: available
89 */
90 static int have_vcpu_info_placement = 1;
91
92 static void xen_vcpu_setup(int cpu)
93 {
94 struct vcpu_register_vcpu_info info;
95 int err;
96 struct vcpu_info *vcpup;
97
98 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
99 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
100
101 if (!have_vcpu_info_placement)
102 return; /* already tested, not available */
103
104 vcpup = &per_cpu(xen_vcpu_info, cpu);
105
106 info.mfn = virt_to_mfn(vcpup);
107 info.offset = offset_in_page(vcpup);
108
109 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
110 cpu, vcpup, info.mfn, info.offset);
111
112 /* Check to see if the hypervisor will put the vcpu_info
113 structure where we want it, which allows direct access via
114 a percpu-variable. */
115 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
116
117 if (err) {
118 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
119 have_vcpu_info_placement = 0;
120 } else {
121 /* This cpu is using the registered vcpu info, even if
122 later ones fail to. */
123 per_cpu(xen_vcpu, cpu) = vcpup;
124
125 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
126 cpu, vcpup);
127 }
128 }
129
130 /*
131 * On restore, set the vcpu placement up again.
132 * If it fails, then we're in a bad state, since
133 * we can't back out from using it...
134 */
135 void xen_vcpu_restore(void)
136 {
137 if (have_vcpu_info_placement) {
138 int cpu;
139
140 for_each_online_cpu(cpu) {
141 bool other_cpu = (cpu != smp_processor_id());
142
143 if (other_cpu &&
144 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
145 BUG();
146
147 xen_vcpu_setup(cpu);
148
149 if (other_cpu &&
150 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
151 BUG();
152 }
153
154 BUG_ON(!have_vcpu_info_placement);
155 }
156 }
157
158 static void __init xen_banner(void)
159 {
160 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
161 struct xen_extraversion extra;
162 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
163
164 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
165 pv_info.name);
166 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
167 version >> 16, version & 0xffff, extra.extraversion,
168 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
169 }
170
171 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
172 unsigned int *cx, unsigned int *dx)
173 {
174 unsigned maskedx = ~0;
175
176 /*
177 * Mask out inconvenient features, to try and disable as many
178 * unsupported kernel subsystems as possible.
179 */
180 if (*ax == 1)
181 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
182 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
183 (1 << X86_FEATURE_MCE) | /* disable MCE */
184 (1 << X86_FEATURE_MCA) | /* disable MCA */
185 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
186
187 asm(XEN_EMULATE_PREFIX "cpuid"
188 : "=a" (*ax),
189 "=b" (*bx),
190 "=c" (*cx),
191 "=d" (*dx)
192 : "0" (*ax), "2" (*cx));
193 *dx &= maskedx;
194 }
195
196 static void xen_set_debugreg(int reg, unsigned long val)
197 {
198 HYPERVISOR_set_debugreg(reg, val);
199 }
200
201 static unsigned long xen_get_debugreg(int reg)
202 {
203 return HYPERVISOR_get_debugreg(reg);
204 }
205
206 void xen_leave_lazy(void)
207 {
208 paravirt_leave_lazy(paravirt_get_lazy_mode());
209 xen_mc_flush();
210 }
211
212 static unsigned long xen_store_tr(void)
213 {
214 return 0;
215 }
216
217 /*
218 * Set the page permissions for a particular virtual address. If the
219 * address is a vmalloc mapping (or other non-linear mapping), then
220 * find the linear mapping of the page and also set its protections to
221 * match.
222 */
223 static void set_aliased_prot(void *v, pgprot_t prot)
224 {
225 int level;
226 pte_t *ptep;
227 pte_t pte;
228 unsigned long pfn;
229 struct page *page;
230
231 ptep = lookup_address((unsigned long)v, &level);
232 BUG_ON(ptep == NULL);
233
234 pfn = pte_pfn(*ptep);
235 page = pfn_to_page(pfn);
236
237 pte = pfn_pte(pfn, prot);
238
239 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
240 BUG();
241
242 if (!PageHighMem(page)) {
243 void *av = __va(PFN_PHYS(pfn));
244
245 if (av != v)
246 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
247 BUG();
248 } else
249 kmap_flush_unused();
250 }
251
252 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
253 {
254 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
255 int i;
256
257 for(i = 0; i < entries; i += entries_per_page)
258 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
259 }
260
261 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
262 {
263 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
264 int i;
265
266 for(i = 0; i < entries; i += entries_per_page)
267 set_aliased_prot(ldt + i, PAGE_KERNEL);
268 }
269
270 static void xen_set_ldt(const void *addr, unsigned entries)
271 {
272 struct mmuext_op *op;
273 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
274
275 op = mcs.args;
276 op->cmd = MMUEXT_SET_LDT;
277 op->arg1.linear_addr = (unsigned long)addr;
278 op->arg2.nr_ents = entries;
279
280 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
281
282 xen_mc_issue(PARAVIRT_LAZY_CPU);
283 }
284
285 static void xen_load_gdt(const struct desc_ptr *dtr)
286 {
287 unsigned long *frames;
288 unsigned long va = dtr->address;
289 unsigned int size = dtr->size + 1;
290 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
291 int f;
292 struct multicall_space mcs;
293
294 /* A GDT can be up to 64k in size, which corresponds to 8192
295 8-byte entries, or 16 4k pages.. */
296
297 BUG_ON(size > 65536);
298 BUG_ON(va & ~PAGE_MASK);
299
300 mcs = xen_mc_entry(sizeof(*frames) * pages);
301 frames = mcs.args;
302
303 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
304 frames[f] = virt_to_mfn(va);
305 make_lowmem_page_readonly((void *)va);
306 }
307
308 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
309
310 xen_mc_issue(PARAVIRT_LAZY_CPU);
311 }
312
313 static void load_TLS_descriptor(struct thread_struct *t,
314 unsigned int cpu, unsigned int i)
315 {
316 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
317 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
318 struct multicall_space mc = __xen_mc_entry(0);
319
320 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
321 }
322
323 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
324 {
325 /*
326 * XXX sleazy hack: If we're being called in a lazy-cpu zone
327 * and lazy gs handling is enabled, it means we're in a
328 * context switch, and %gs has just been saved. This means we
329 * can zero it out to prevent faults on exit from the
330 * hypervisor if the next process has no %gs. Either way, it
331 * has been saved, and the new value will get loaded properly.
332 * This will go away as soon as Xen has been modified to not
333 * save/restore %gs for normal hypercalls.
334 *
335 * On x86_64, this hack is not used for %gs, because gs points
336 * to KERNEL_GS_BASE (and uses it for PDA references), so we
337 * must not zero %gs on x86_64
338 *
339 * For x86_64, we need to zero %fs, otherwise we may get an
340 * exception between the new %fs descriptor being loaded and
341 * %fs being effectively cleared at __switch_to().
342 */
343 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
344 #ifdef CONFIG_X86_32
345 lazy_load_gs(0);
346 #else
347 loadsegment(fs, 0);
348 #endif
349 }
350
351 xen_mc_batch();
352
353 load_TLS_descriptor(t, cpu, 0);
354 load_TLS_descriptor(t, cpu, 1);
355 load_TLS_descriptor(t, cpu, 2);
356
357 xen_mc_issue(PARAVIRT_LAZY_CPU);
358 }
359
360 #ifdef CONFIG_X86_64
361 static void xen_load_gs_index(unsigned int idx)
362 {
363 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
364 BUG();
365 }
366 #endif
367
368 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
369 const void *ptr)
370 {
371 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
372 u64 entry = *(u64 *)ptr;
373
374 preempt_disable();
375
376 xen_mc_flush();
377 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
378 BUG();
379
380 preempt_enable();
381 }
382
383 static int cvt_gate_to_trap(int vector, const gate_desc *val,
384 struct trap_info *info)
385 {
386 if (val->type != 0xf && val->type != 0xe)
387 return 0;
388
389 info->vector = vector;
390 info->address = gate_offset(*val);
391 info->cs = gate_segment(*val);
392 info->flags = val->dpl;
393 /* interrupt gates clear IF */
394 if (val->type == 0xe)
395 info->flags |= 4;
396
397 return 1;
398 }
399
400 /* Locations of each CPU's IDT */
401 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
402
403 /* Set an IDT entry. If the entry is part of the current IDT, then
404 also update Xen. */
405 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
406 {
407 unsigned long p = (unsigned long)&dt[entrynum];
408 unsigned long start, end;
409
410 preempt_disable();
411
412 start = __get_cpu_var(idt_desc).address;
413 end = start + __get_cpu_var(idt_desc).size + 1;
414
415 xen_mc_flush();
416
417 native_write_idt_entry(dt, entrynum, g);
418
419 if (p >= start && (p + 8) <= end) {
420 struct trap_info info[2];
421
422 info[1].address = 0;
423
424 if (cvt_gate_to_trap(entrynum, g, &info[0]))
425 if (HYPERVISOR_set_trap_table(info))
426 BUG();
427 }
428
429 preempt_enable();
430 }
431
432 static void xen_convert_trap_info(const struct desc_ptr *desc,
433 struct trap_info *traps)
434 {
435 unsigned in, out, count;
436
437 count = (desc->size+1) / sizeof(gate_desc);
438 BUG_ON(count > 256);
439
440 for (in = out = 0; in < count; in++) {
441 gate_desc *entry = (gate_desc*)(desc->address) + in;
442
443 if (cvt_gate_to_trap(in, entry, &traps[out]))
444 out++;
445 }
446 traps[out].address = 0;
447 }
448
449 void xen_copy_trap_info(struct trap_info *traps)
450 {
451 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
452
453 xen_convert_trap_info(desc, traps);
454 }
455
456 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
457 hold a spinlock to protect the static traps[] array (static because
458 it avoids allocation, and saves stack space). */
459 static void xen_load_idt(const struct desc_ptr *desc)
460 {
461 static DEFINE_SPINLOCK(lock);
462 static struct trap_info traps[257];
463
464 spin_lock(&lock);
465
466 __get_cpu_var(idt_desc) = *desc;
467
468 xen_convert_trap_info(desc, traps);
469
470 xen_mc_flush();
471 if (HYPERVISOR_set_trap_table(traps))
472 BUG();
473
474 spin_unlock(&lock);
475 }
476
477 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
478 they're handled differently. */
479 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
480 const void *desc, int type)
481 {
482 preempt_disable();
483
484 switch (type) {
485 case DESC_LDT:
486 case DESC_TSS:
487 /* ignore */
488 break;
489
490 default: {
491 xmaddr_t maddr = virt_to_machine(&dt[entry]);
492
493 xen_mc_flush();
494 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
495 BUG();
496 }
497
498 }
499
500 preempt_enable();
501 }
502
503 static void xen_load_sp0(struct tss_struct *tss,
504 struct thread_struct *thread)
505 {
506 struct multicall_space mcs = xen_mc_entry(0);
507 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
508 xen_mc_issue(PARAVIRT_LAZY_CPU);
509 }
510
511 static void xen_set_iopl_mask(unsigned mask)
512 {
513 struct physdev_set_iopl set_iopl;
514
515 /* Force the change at ring 0. */
516 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
517 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
518 }
519
520 static void xen_io_delay(void)
521 {
522 }
523
524 #ifdef CONFIG_X86_LOCAL_APIC
525 static u32 xen_apic_read(u32 reg)
526 {
527 return 0;
528 }
529
530 static void xen_apic_write(u32 reg, u32 val)
531 {
532 /* Warn to see if there's any stray references */
533 WARN_ON(1);
534 }
535
536 static u64 xen_apic_icr_read(void)
537 {
538 return 0;
539 }
540
541 static void xen_apic_icr_write(u32 low, u32 id)
542 {
543 /* Warn to see if there's any stray references */
544 WARN_ON(1);
545 }
546
547 static void xen_apic_wait_icr_idle(void)
548 {
549 return;
550 }
551
552 static u32 xen_safe_apic_wait_icr_idle(void)
553 {
554 return 0;
555 }
556
557 static struct apic_ops xen_basic_apic_ops = {
558 .read = xen_apic_read,
559 .write = xen_apic_write,
560 .icr_read = xen_apic_icr_read,
561 .icr_write = xen_apic_icr_write,
562 .wait_icr_idle = xen_apic_wait_icr_idle,
563 .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle,
564 };
565
566 #endif
567
568
569 static void xen_clts(void)
570 {
571 struct multicall_space mcs;
572
573 mcs = xen_mc_entry(0);
574
575 MULTI_fpu_taskswitch(mcs.mc, 0);
576
577 xen_mc_issue(PARAVIRT_LAZY_CPU);
578 }
579
580 static void xen_write_cr0(unsigned long cr0)
581 {
582 struct multicall_space mcs;
583
584 /* Only pay attention to cr0.TS; everything else is
585 ignored. */
586 mcs = xen_mc_entry(0);
587
588 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
589
590 xen_mc_issue(PARAVIRT_LAZY_CPU);
591 }
592
593 static void xen_write_cr4(unsigned long cr4)
594 {
595 cr4 &= ~X86_CR4_PGE;
596 cr4 &= ~X86_CR4_PSE;
597
598 native_write_cr4(cr4);
599 }
600
601 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
602 {
603 int ret;
604
605 ret = 0;
606
607 switch (msr) {
608 #ifdef CONFIG_X86_64
609 unsigned which;
610 u64 base;
611
612 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
613 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
614 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
615
616 set:
617 base = ((u64)high << 32) | low;
618 if (HYPERVISOR_set_segment_base(which, base) != 0)
619 ret = -EFAULT;
620 break;
621 #endif
622
623 case MSR_STAR:
624 case MSR_CSTAR:
625 case MSR_LSTAR:
626 case MSR_SYSCALL_MASK:
627 case MSR_IA32_SYSENTER_CS:
628 case MSR_IA32_SYSENTER_ESP:
629 case MSR_IA32_SYSENTER_EIP:
630 /* Fast syscall setup is all done in hypercalls, so
631 these are all ignored. Stub them out here to stop
632 Xen console noise. */
633 break;
634
635 default:
636 ret = native_write_msr_safe(msr, low, high);
637 }
638
639 return ret;
640 }
641
642 void xen_setup_shared_info(void)
643 {
644 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
645 set_fixmap(FIX_PARAVIRT_BOOTMAP,
646 xen_start_info->shared_info);
647
648 HYPERVISOR_shared_info =
649 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
650 } else
651 HYPERVISOR_shared_info =
652 (struct shared_info *)__va(xen_start_info->shared_info);
653
654 #ifndef CONFIG_SMP
655 /* In UP this is as good a place as any to set up shared info */
656 xen_setup_vcpu_info_placement();
657 #endif
658
659 xen_setup_mfn_list_list();
660 }
661
662 /* This is called once we have the cpu_possible_map */
663 void xen_setup_vcpu_info_placement(void)
664 {
665 int cpu;
666
667 for_each_possible_cpu(cpu)
668 xen_vcpu_setup(cpu);
669
670 /* xen_vcpu_setup managed to place the vcpu_info within the
671 percpu area for all cpus, so make use of it */
672 if (have_vcpu_info_placement) {
673 printk(KERN_INFO "Xen: using vcpu_info placement\n");
674
675 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
676 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
677 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
678 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
679 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
680 }
681 }
682
683 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
684 unsigned long addr, unsigned len)
685 {
686 char *start, *end, *reloc;
687 unsigned ret;
688
689 start = end = reloc = NULL;
690
691 #define SITE(op, x) \
692 case PARAVIRT_PATCH(op.x): \
693 if (have_vcpu_info_placement) { \
694 start = (char *)xen_##x##_direct; \
695 end = xen_##x##_direct_end; \
696 reloc = xen_##x##_direct_reloc; \
697 } \
698 goto patch_site
699
700 switch (type) {
701 SITE(pv_irq_ops, irq_enable);
702 SITE(pv_irq_ops, irq_disable);
703 SITE(pv_irq_ops, save_fl);
704 SITE(pv_irq_ops, restore_fl);
705 #undef SITE
706
707 patch_site:
708 if (start == NULL || (end-start) > len)
709 goto default_patch;
710
711 ret = paravirt_patch_insns(insnbuf, len, start, end);
712
713 /* Note: because reloc is assigned from something that
714 appears to be an array, gcc assumes it's non-null,
715 but doesn't know its relationship with start and
716 end. */
717 if (reloc > start && reloc < end) {
718 int reloc_off = reloc - start;
719 long *relocp = (long *)(insnbuf + reloc_off);
720 long delta = start - (char *)addr;
721
722 *relocp += delta;
723 }
724 break;
725
726 default_patch:
727 default:
728 ret = paravirt_patch_default(type, clobbers, insnbuf,
729 addr, len);
730 break;
731 }
732
733 return ret;
734 }
735
736 static const struct pv_info xen_info __initdata = {
737 .paravirt_enabled = 1,
738 .shared_kernel_pmd = 0,
739
740 .name = "Xen",
741 };
742
743 static const struct pv_init_ops xen_init_ops __initdata = {
744 .patch = xen_patch,
745
746 .banner = xen_banner,
747 .memory_setup = xen_memory_setup,
748 .arch_setup = xen_arch_setup,
749 .post_allocator_init = xen_post_allocator_init,
750 };
751
752 static const struct pv_time_ops xen_time_ops __initdata = {
753 .time_init = xen_time_init,
754
755 .set_wallclock = xen_set_wallclock,
756 .get_wallclock = xen_get_wallclock,
757 .get_tsc_khz = xen_tsc_khz,
758 .sched_clock = xen_sched_clock,
759 };
760
761 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
762 .cpuid = xen_cpuid,
763
764 .set_debugreg = xen_set_debugreg,
765 .get_debugreg = xen_get_debugreg,
766
767 .clts = xen_clts,
768
769 .read_cr0 = native_read_cr0,
770 .write_cr0 = xen_write_cr0,
771
772 .read_cr4 = native_read_cr4,
773 .read_cr4_safe = native_read_cr4_safe,
774 .write_cr4 = xen_write_cr4,
775
776 .wbinvd = native_wbinvd,
777
778 .read_msr = native_read_msr_safe,
779 .write_msr = xen_write_msr_safe,
780 .read_tsc = native_read_tsc,
781 .read_pmc = native_read_pmc,
782
783 .iret = xen_iret,
784 .irq_enable_sysexit = xen_sysexit,
785 #ifdef CONFIG_X86_64
786 .usergs_sysret32 = xen_sysret32,
787 .usergs_sysret64 = xen_sysret64,
788 #endif
789
790 .load_tr_desc = paravirt_nop,
791 .set_ldt = xen_set_ldt,
792 .load_gdt = xen_load_gdt,
793 .load_idt = xen_load_idt,
794 .load_tls = xen_load_tls,
795 #ifdef CONFIG_X86_64
796 .load_gs_index = xen_load_gs_index,
797 #endif
798
799 .alloc_ldt = xen_alloc_ldt,
800 .free_ldt = xen_free_ldt,
801
802 .store_gdt = native_store_gdt,
803 .store_idt = native_store_idt,
804 .store_tr = xen_store_tr,
805
806 .write_ldt_entry = xen_write_ldt_entry,
807 .write_gdt_entry = xen_write_gdt_entry,
808 .write_idt_entry = xen_write_idt_entry,
809 .load_sp0 = xen_load_sp0,
810
811 .set_iopl_mask = xen_set_iopl_mask,
812 .io_delay = xen_io_delay,
813
814 /* Xen takes care of %gs when switching to usermode for us */
815 .swapgs = paravirt_nop,
816
817 .lazy_mode = {
818 .enter = paravirt_enter_lazy_cpu,
819 .leave = xen_leave_lazy,
820 },
821 };
822
823 static const struct pv_apic_ops xen_apic_ops __initdata = {
824 #ifdef CONFIG_X86_LOCAL_APIC
825 .setup_boot_clock = paravirt_nop,
826 .setup_secondary_clock = paravirt_nop,
827 .startup_ipi_hook = paravirt_nop,
828 #endif
829 };
830
831 static void xen_reboot(int reason)
832 {
833 struct sched_shutdown r = { .reason = reason };
834
835 #ifdef CONFIG_SMP
836 smp_send_stop();
837 #endif
838
839 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
840 BUG();
841 }
842
843 static void xen_restart(char *msg)
844 {
845 xen_reboot(SHUTDOWN_reboot);
846 }
847
848 static void xen_emergency_restart(void)
849 {
850 xen_reboot(SHUTDOWN_reboot);
851 }
852
853 static void xen_machine_halt(void)
854 {
855 xen_reboot(SHUTDOWN_poweroff);
856 }
857
858 static void xen_crash_shutdown(struct pt_regs *regs)
859 {
860 xen_reboot(SHUTDOWN_crash);
861 }
862
863 static const struct machine_ops __initdata xen_machine_ops = {
864 .restart = xen_restart,
865 .halt = xen_machine_halt,
866 .power_off = xen_machine_halt,
867 .shutdown = xen_machine_halt,
868 .crash_shutdown = xen_crash_shutdown,
869 .emergency_restart = xen_emergency_restart,
870 };
871
872
873 /* First C function to be called on Xen boot */
874 asmlinkage void __init xen_start_kernel(void)
875 {
876 pgd_t *pgd;
877
878 if (!xen_start_info)
879 return;
880
881 xen_domain_type = XEN_PV_DOMAIN;
882
883 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
884
885 xen_setup_features();
886
887 /* Install Xen paravirt ops */
888 pv_info = xen_info;
889 pv_init_ops = xen_init_ops;
890 pv_time_ops = xen_time_ops;
891 pv_cpu_ops = xen_cpu_ops;
892 pv_apic_ops = xen_apic_ops;
893 pv_mmu_ops = xen_mmu_ops;
894
895 xen_init_irq_ops();
896
897 #ifdef CONFIG_X86_LOCAL_APIC
898 /*
899 * set up the basic apic ops.
900 */
901 apic_ops = &xen_basic_apic_ops;
902 #endif
903
904 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
905 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
906 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
907 }
908
909 machine_ops = xen_machine_ops;
910
911 #ifdef CONFIG_X86_64
912 /*
913 * Setup percpu state. We only need to do this for 64-bit
914 * because 32-bit already has %fs set properly.
915 */
916 load_percpu_segment(0);
917 #endif
918 /*
919 * The only reliable way to retain the initial address of the
920 * percpu gdt_page is to remember it here, so we can go and
921 * mark it RW later, when the initial percpu area is freed.
922 */
923 xen_initial_gdt = &per_cpu(gdt_page, 0);
924
925 xen_smp_init();
926
927 /* Get mfn list */
928 if (!xen_feature(XENFEAT_auto_translated_physmap))
929 xen_build_dynamic_phys_to_machine();
930
931 pgd = (pgd_t *)xen_start_info->pt_base;
932
933 /* Prevent unwanted bits from being set in PTEs. */
934 __supported_pte_mask &= ~_PAGE_GLOBAL;
935 if (!xen_initial_domain())
936 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
937
938 /* Don't do the full vcpu_info placement stuff until we have a
939 possible map and a non-dummy shared_info. */
940 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
941
942 xen_raw_console_write("mapping kernel into physical memory\n");
943 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
944
945 init_mm.pgd = pgd;
946
947 /* keep using Xen gdt for now; no urgent need to change it */
948
949 pv_info.kernel_rpl = 1;
950 if (xen_feature(XENFEAT_supervisor_mode_kernel))
951 pv_info.kernel_rpl = 0;
952
953 /* set the limit of our address space */
954 xen_reserve_top();
955
956 #ifdef CONFIG_X86_32
957 /* set up basic CPUID stuff */
958 cpu_detect(&new_cpu_data);
959 new_cpu_data.hard_math = 1;
960 new_cpu_data.x86_capability[0] = cpuid_edx(1);
961 #endif
962
963 /* Poke various useful things into boot_params */
964 boot_params.hdr.type_of_loader = (9 << 4) | 0;
965 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
966 ? __pa(xen_start_info->mod_start) : 0;
967 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
968 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
969
970 if (!xen_initial_domain()) {
971 add_preferred_console("xenboot", 0, NULL);
972 add_preferred_console("tty", 0, NULL);
973 add_preferred_console("hvc", 0, NULL);
974 }
975
976 xen_raw_console_write("about to get started...\n");
977
978 /* Start the world */
979 #ifdef CONFIG_X86_32
980 i386_start_kernel();
981 #else
982 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
983 #endif
984 }
This page took 0.090964 seconds and 5 git commands to generate.