xen/mce: Add mcelog support for Xen platform
[deliverable/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/interface/xen-mca.h>
42 #include <xen/features.h>
43 #include <xen/page.h>
44 #include <xen/hvm.h>
45 #include <xen/hvc-console.h>
46 #include <xen/acpi.h>
47
48 #include <asm/paravirt.h>
49 #include <asm/apic.h>
50 #include <asm/page.h>
51 #include <asm/xen/pci.h>
52 #include <asm/xen/hypercall.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/fixmap.h>
55 #include <asm/processor.h>
56 #include <asm/proto.h>
57 #include <asm/msr-index.h>
58 #include <asm/traps.h>
59 #include <asm/setup.h>
60 #include <asm/desc.h>
61 #include <asm/pgalloc.h>
62 #include <asm/pgtable.h>
63 #include <asm/tlbflush.h>
64 #include <asm/reboot.h>
65 #include <asm/stackprotector.h>
66 #include <asm/hypervisor.h>
67 #include <asm/mwait.h>
68 #include <asm/pci_x86.h>
69
70 #ifdef CONFIG_ACPI
71 #include <linux/acpi.h>
72 #include <asm/acpi.h>
73 #include <acpi/pdc_intel.h>
74 #include <acpi/processor.h>
75 #include <xen/interface/platform.h>
76 #endif
77
78 #include "xen-ops.h"
79 #include "mmu.h"
80 #include "smp.h"
81 #include "multicalls.h"
82
83 EXPORT_SYMBOL_GPL(hypercall_page);
84
85 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
86 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
87
88 enum xen_domain_type xen_domain_type = XEN_NATIVE;
89 EXPORT_SYMBOL_GPL(xen_domain_type);
90
91 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
92 EXPORT_SYMBOL(machine_to_phys_mapping);
93 unsigned long machine_to_phys_nr;
94 EXPORT_SYMBOL(machine_to_phys_nr);
95
96 struct start_info *xen_start_info;
97 EXPORT_SYMBOL_GPL(xen_start_info);
98
99 struct shared_info xen_dummy_shared_info;
100
101 void *xen_initial_gdt;
102
103 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
104 __read_mostly int xen_have_vector_callback;
105 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
106
107 /*
108 * Point at some empty memory to start with. We map the real shared_info
109 * page as soon as fixmap is up and running.
110 */
111 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
112
113 /*
114 * Flag to determine whether vcpu info placement is available on all
115 * VCPUs. We assume it is to start with, and then set it to zero on
116 * the first failure. This is because it can succeed on some VCPUs
117 * and not others, since it can involve hypervisor memory allocation,
118 * or because the guest failed to guarantee all the appropriate
119 * constraints on all VCPUs (ie buffer can't cross a page boundary).
120 *
121 * Note that any particular CPU may be using a placed vcpu structure,
122 * but we can only optimise if the all are.
123 *
124 * 0: not available, 1: available
125 */
126 static int have_vcpu_info_placement = 1;
127
128 static void clamp_max_cpus(void)
129 {
130 #ifdef CONFIG_SMP
131 if (setup_max_cpus > MAX_VIRT_CPUS)
132 setup_max_cpus = MAX_VIRT_CPUS;
133 #endif
134 }
135
136 static void xen_vcpu_setup(int cpu)
137 {
138 struct vcpu_register_vcpu_info info;
139 int err;
140 struct vcpu_info *vcpup;
141
142 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
143
144 if (cpu < MAX_VIRT_CPUS)
145 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
146
147 if (!have_vcpu_info_placement) {
148 if (cpu >= MAX_VIRT_CPUS)
149 clamp_max_cpus();
150 return;
151 }
152
153 vcpup = &per_cpu(xen_vcpu_info, cpu);
154 info.mfn = arbitrary_virt_to_mfn(vcpup);
155 info.offset = offset_in_page(vcpup);
156
157 /* Check to see if the hypervisor will put the vcpu_info
158 structure where we want it, which allows direct access via
159 a percpu-variable. */
160 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
161
162 if (err) {
163 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
164 have_vcpu_info_placement = 0;
165 clamp_max_cpus();
166 } else {
167 /* This cpu is using the registered vcpu info, even if
168 later ones fail to. */
169 per_cpu(xen_vcpu, cpu) = vcpup;
170 }
171 }
172
173 /*
174 * On restore, set the vcpu placement up again.
175 * If it fails, then we're in a bad state, since
176 * we can't back out from using it...
177 */
178 void xen_vcpu_restore(void)
179 {
180 int cpu;
181
182 for_each_online_cpu(cpu) {
183 bool other_cpu = (cpu != smp_processor_id());
184
185 if (other_cpu &&
186 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
187 BUG();
188
189 xen_setup_runstate_info(cpu);
190
191 if (have_vcpu_info_placement)
192 xen_vcpu_setup(cpu);
193
194 if (other_cpu &&
195 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
196 BUG();
197 }
198 }
199
200 static void __init xen_banner(void)
201 {
202 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
203 struct xen_extraversion extra;
204 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
205
206 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
207 pv_info.name);
208 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
209 version >> 16, version & 0xffff, extra.extraversion,
210 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
211 }
212
213 #define CPUID_THERM_POWER_LEAF 6
214 #define APERFMPERF_PRESENT 0
215
216 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
217 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
218
219 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
220 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
221 static __read_mostly unsigned int cpuid_leaf5_edx_val;
222
223 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
224 unsigned int *cx, unsigned int *dx)
225 {
226 unsigned maskebx = ~0;
227 unsigned maskecx = ~0;
228 unsigned maskedx = ~0;
229 unsigned setecx = 0;
230 /*
231 * Mask out inconvenient features, to try and disable as many
232 * unsupported kernel subsystems as possible.
233 */
234 switch (*ax) {
235 case 1:
236 maskecx = cpuid_leaf1_ecx_mask;
237 setecx = cpuid_leaf1_ecx_set_mask;
238 maskedx = cpuid_leaf1_edx_mask;
239 break;
240
241 case CPUID_MWAIT_LEAF:
242 /* Synthesize the values.. */
243 *ax = 0;
244 *bx = 0;
245 *cx = cpuid_leaf5_ecx_val;
246 *dx = cpuid_leaf5_edx_val;
247 return;
248
249 case CPUID_THERM_POWER_LEAF:
250 /* Disabling APERFMPERF for kernel usage */
251 maskecx = ~(1 << APERFMPERF_PRESENT);
252 break;
253
254 case 0xb:
255 /* Suppress extended topology stuff */
256 maskebx = 0;
257 break;
258 }
259
260 asm(XEN_EMULATE_PREFIX "cpuid"
261 : "=a" (*ax),
262 "=b" (*bx),
263 "=c" (*cx),
264 "=d" (*dx)
265 : "0" (*ax), "2" (*cx));
266
267 *bx &= maskebx;
268 *cx &= maskecx;
269 *cx |= setecx;
270 *dx &= maskedx;
271
272 }
273
274 static bool __init xen_check_mwait(void)
275 {
276 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
277 !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
278 struct xen_platform_op op = {
279 .cmd = XENPF_set_processor_pminfo,
280 .u.set_pminfo.id = -1,
281 .u.set_pminfo.type = XEN_PM_PDC,
282 };
283 uint32_t buf[3];
284 unsigned int ax, bx, cx, dx;
285 unsigned int mwait_mask;
286
287 /* We need to determine whether it is OK to expose the MWAIT
288 * capability to the kernel to harvest deeper than C3 states from ACPI
289 * _CST using the processor_harvest_xen.c module. For this to work, we
290 * need to gather the MWAIT_LEAF values (which the cstate.c code
291 * checks against). The hypervisor won't expose the MWAIT flag because
292 * it would break backwards compatibility; so we will find out directly
293 * from the hardware and hypercall.
294 */
295 if (!xen_initial_domain())
296 return false;
297
298 ax = 1;
299 cx = 0;
300
301 native_cpuid(&ax, &bx, &cx, &dx);
302
303 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
304 (1 << (X86_FEATURE_MWAIT % 32));
305
306 if ((cx & mwait_mask) != mwait_mask)
307 return false;
308
309 /* We need to emulate the MWAIT_LEAF and for that we need both
310 * ecx and edx. The hypercall provides only partial information.
311 */
312
313 ax = CPUID_MWAIT_LEAF;
314 bx = 0;
315 cx = 0;
316 dx = 0;
317
318 native_cpuid(&ax, &bx, &cx, &dx);
319
320 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
321 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
322 */
323 buf[0] = ACPI_PDC_REVISION_ID;
324 buf[1] = 1;
325 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
326
327 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
328
329 if ((HYPERVISOR_dom0_op(&op) == 0) &&
330 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
331 cpuid_leaf5_ecx_val = cx;
332 cpuid_leaf5_edx_val = dx;
333 }
334 return true;
335 #else
336 return false;
337 #endif
338 }
339 static void __init xen_init_cpuid_mask(void)
340 {
341 unsigned int ax, bx, cx, dx;
342 unsigned int xsave_mask;
343
344 cpuid_leaf1_edx_mask =
345 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
346 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
347
348 if (!xen_initial_domain())
349 cpuid_leaf1_edx_mask &=
350 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
351 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
352 ax = 1;
353 cx = 0;
354 xen_cpuid(&ax, &bx, &cx, &dx);
355
356 xsave_mask =
357 (1 << (X86_FEATURE_XSAVE % 32)) |
358 (1 << (X86_FEATURE_OSXSAVE % 32));
359
360 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
361 if ((cx & xsave_mask) != xsave_mask)
362 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
363 if (xen_check_mwait())
364 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
365 }
366
367 static void xen_set_debugreg(int reg, unsigned long val)
368 {
369 HYPERVISOR_set_debugreg(reg, val);
370 }
371
372 static unsigned long xen_get_debugreg(int reg)
373 {
374 return HYPERVISOR_get_debugreg(reg);
375 }
376
377 static void xen_end_context_switch(struct task_struct *next)
378 {
379 xen_mc_flush();
380 paravirt_end_context_switch(next);
381 }
382
383 static unsigned long xen_store_tr(void)
384 {
385 return 0;
386 }
387
388 /*
389 * Set the page permissions for a particular virtual address. If the
390 * address is a vmalloc mapping (or other non-linear mapping), then
391 * find the linear mapping of the page and also set its protections to
392 * match.
393 */
394 static void set_aliased_prot(void *v, pgprot_t prot)
395 {
396 int level;
397 pte_t *ptep;
398 pte_t pte;
399 unsigned long pfn;
400 struct page *page;
401
402 ptep = lookup_address((unsigned long)v, &level);
403 BUG_ON(ptep == NULL);
404
405 pfn = pte_pfn(*ptep);
406 page = pfn_to_page(pfn);
407
408 pte = pfn_pte(pfn, prot);
409
410 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
411 BUG();
412
413 if (!PageHighMem(page)) {
414 void *av = __va(PFN_PHYS(pfn));
415
416 if (av != v)
417 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
418 BUG();
419 } else
420 kmap_flush_unused();
421 }
422
423 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
424 {
425 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
426 int i;
427
428 for(i = 0; i < entries; i += entries_per_page)
429 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
430 }
431
432 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
433 {
434 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
435 int i;
436
437 for(i = 0; i < entries; i += entries_per_page)
438 set_aliased_prot(ldt + i, PAGE_KERNEL);
439 }
440
441 static void xen_set_ldt(const void *addr, unsigned entries)
442 {
443 struct mmuext_op *op;
444 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
445
446 trace_xen_cpu_set_ldt(addr, entries);
447
448 op = mcs.args;
449 op->cmd = MMUEXT_SET_LDT;
450 op->arg1.linear_addr = (unsigned long)addr;
451 op->arg2.nr_ents = entries;
452
453 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
454
455 xen_mc_issue(PARAVIRT_LAZY_CPU);
456 }
457
458 static void xen_load_gdt(const struct desc_ptr *dtr)
459 {
460 unsigned long va = dtr->address;
461 unsigned int size = dtr->size + 1;
462 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
463 unsigned long frames[pages];
464 int f;
465
466 /*
467 * A GDT can be up to 64k in size, which corresponds to 8192
468 * 8-byte entries, or 16 4k pages..
469 */
470
471 BUG_ON(size > 65536);
472 BUG_ON(va & ~PAGE_MASK);
473
474 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
475 int level;
476 pte_t *ptep;
477 unsigned long pfn, mfn;
478 void *virt;
479
480 /*
481 * The GDT is per-cpu and is in the percpu data area.
482 * That can be virtually mapped, so we need to do a
483 * page-walk to get the underlying MFN for the
484 * hypercall. The page can also be in the kernel's
485 * linear range, so we need to RO that mapping too.
486 */
487 ptep = lookup_address(va, &level);
488 BUG_ON(ptep == NULL);
489
490 pfn = pte_pfn(*ptep);
491 mfn = pfn_to_mfn(pfn);
492 virt = __va(PFN_PHYS(pfn));
493
494 frames[f] = mfn;
495
496 make_lowmem_page_readonly((void *)va);
497 make_lowmem_page_readonly(virt);
498 }
499
500 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
501 BUG();
502 }
503
504 /*
505 * load_gdt for early boot, when the gdt is only mapped once
506 */
507 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
508 {
509 unsigned long va = dtr->address;
510 unsigned int size = dtr->size + 1;
511 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
512 unsigned long frames[pages];
513 int f;
514
515 /*
516 * A GDT can be up to 64k in size, which corresponds to 8192
517 * 8-byte entries, or 16 4k pages..
518 */
519
520 BUG_ON(size > 65536);
521 BUG_ON(va & ~PAGE_MASK);
522
523 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
524 pte_t pte;
525 unsigned long pfn, mfn;
526
527 pfn = virt_to_pfn(va);
528 mfn = pfn_to_mfn(pfn);
529
530 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
531
532 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
533 BUG();
534
535 frames[f] = mfn;
536 }
537
538 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
539 BUG();
540 }
541
542 static void load_TLS_descriptor(struct thread_struct *t,
543 unsigned int cpu, unsigned int i)
544 {
545 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
546 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
547 struct multicall_space mc = __xen_mc_entry(0);
548
549 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
550 }
551
552 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
553 {
554 /*
555 * XXX sleazy hack: If we're being called in a lazy-cpu zone
556 * and lazy gs handling is enabled, it means we're in a
557 * context switch, and %gs has just been saved. This means we
558 * can zero it out to prevent faults on exit from the
559 * hypervisor if the next process has no %gs. Either way, it
560 * has been saved, and the new value will get loaded properly.
561 * This will go away as soon as Xen has been modified to not
562 * save/restore %gs for normal hypercalls.
563 *
564 * On x86_64, this hack is not used for %gs, because gs points
565 * to KERNEL_GS_BASE (and uses it for PDA references), so we
566 * must not zero %gs on x86_64
567 *
568 * For x86_64, we need to zero %fs, otherwise we may get an
569 * exception between the new %fs descriptor being loaded and
570 * %fs being effectively cleared at __switch_to().
571 */
572 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
573 #ifdef CONFIG_X86_32
574 lazy_load_gs(0);
575 #else
576 loadsegment(fs, 0);
577 #endif
578 }
579
580 xen_mc_batch();
581
582 load_TLS_descriptor(t, cpu, 0);
583 load_TLS_descriptor(t, cpu, 1);
584 load_TLS_descriptor(t, cpu, 2);
585
586 xen_mc_issue(PARAVIRT_LAZY_CPU);
587 }
588
589 #ifdef CONFIG_X86_64
590 static void xen_load_gs_index(unsigned int idx)
591 {
592 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
593 BUG();
594 }
595 #endif
596
597 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
598 const void *ptr)
599 {
600 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
601 u64 entry = *(u64 *)ptr;
602
603 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
604
605 preempt_disable();
606
607 xen_mc_flush();
608 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
609 BUG();
610
611 preempt_enable();
612 }
613
614 static int cvt_gate_to_trap(int vector, const gate_desc *val,
615 struct trap_info *info)
616 {
617 unsigned long addr;
618
619 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
620 return 0;
621
622 info->vector = vector;
623
624 addr = gate_offset(*val);
625 #ifdef CONFIG_X86_64
626 /*
627 * Look for known traps using IST, and substitute them
628 * appropriately. The debugger ones are the only ones we care
629 * about. Xen will handle faults like double_fault and
630 * machine_check, so we should never see them. Warn if
631 * there's an unexpected IST-using fault handler.
632 */
633 if (addr == (unsigned long)debug)
634 addr = (unsigned long)xen_debug;
635 else if (addr == (unsigned long)int3)
636 addr = (unsigned long)xen_int3;
637 else if (addr == (unsigned long)stack_segment)
638 addr = (unsigned long)xen_stack_segment;
639 else if (addr == (unsigned long)double_fault ||
640 addr == (unsigned long)nmi) {
641 /* Don't need to handle these */
642 return 0;
643 #ifdef CONFIG_X86_MCE
644 } else if (addr == (unsigned long)machine_check) {
645 return 0;
646 #endif
647 } else {
648 /* Some other trap using IST? */
649 if (WARN_ON(val->ist != 0))
650 return 0;
651 }
652 #endif /* CONFIG_X86_64 */
653 info->address = addr;
654
655 info->cs = gate_segment(*val);
656 info->flags = val->dpl;
657 /* interrupt gates clear IF */
658 if (val->type == GATE_INTERRUPT)
659 info->flags |= 1 << 2;
660
661 return 1;
662 }
663
664 /* Locations of each CPU's IDT */
665 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
666
667 /* Set an IDT entry. If the entry is part of the current IDT, then
668 also update Xen. */
669 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
670 {
671 unsigned long p = (unsigned long)&dt[entrynum];
672 unsigned long start, end;
673
674 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
675
676 preempt_disable();
677
678 start = __this_cpu_read(idt_desc.address);
679 end = start + __this_cpu_read(idt_desc.size) + 1;
680
681 xen_mc_flush();
682
683 native_write_idt_entry(dt, entrynum, g);
684
685 if (p >= start && (p + 8) <= end) {
686 struct trap_info info[2];
687
688 info[1].address = 0;
689
690 if (cvt_gate_to_trap(entrynum, g, &info[0]))
691 if (HYPERVISOR_set_trap_table(info))
692 BUG();
693 }
694
695 preempt_enable();
696 }
697
698 static void xen_convert_trap_info(const struct desc_ptr *desc,
699 struct trap_info *traps)
700 {
701 unsigned in, out, count;
702
703 count = (desc->size+1) / sizeof(gate_desc);
704 BUG_ON(count > 256);
705
706 for (in = out = 0; in < count; in++) {
707 gate_desc *entry = (gate_desc*)(desc->address) + in;
708
709 if (cvt_gate_to_trap(in, entry, &traps[out]))
710 out++;
711 }
712 traps[out].address = 0;
713 }
714
715 void xen_copy_trap_info(struct trap_info *traps)
716 {
717 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
718
719 xen_convert_trap_info(desc, traps);
720 }
721
722 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
723 hold a spinlock to protect the static traps[] array (static because
724 it avoids allocation, and saves stack space). */
725 static void xen_load_idt(const struct desc_ptr *desc)
726 {
727 static DEFINE_SPINLOCK(lock);
728 static struct trap_info traps[257];
729
730 trace_xen_cpu_load_idt(desc);
731
732 spin_lock(&lock);
733
734 __get_cpu_var(idt_desc) = *desc;
735
736 xen_convert_trap_info(desc, traps);
737
738 xen_mc_flush();
739 if (HYPERVISOR_set_trap_table(traps))
740 BUG();
741
742 spin_unlock(&lock);
743 }
744
745 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
746 they're handled differently. */
747 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
748 const void *desc, int type)
749 {
750 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
751
752 preempt_disable();
753
754 switch (type) {
755 case DESC_LDT:
756 case DESC_TSS:
757 /* ignore */
758 break;
759
760 default: {
761 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
762
763 xen_mc_flush();
764 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
765 BUG();
766 }
767
768 }
769
770 preempt_enable();
771 }
772
773 /*
774 * Version of write_gdt_entry for use at early boot-time needed to
775 * update an entry as simply as possible.
776 */
777 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
778 const void *desc, int type)
779 {
780 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
781
782 switch (type) {
783 case DESC_LDT:
784 case DESC_TSS:
785 /* ignore */
786 break;
787
788 default: {
789 xmaddr_t maddr = virt_to_machine(&dt[entry]);
790
791 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
792 dt[entry] = *(struct desc_struct *)desc;
793 }
794
795 }
796 }
797
798 static void xen_load_sp0(struct tss_struct *tss,
799 struct thread_struct *thread)
800 {
801 struct multicall_space mcs;
802
803 mcs = xen_mc_entry(0);
804 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
805 xen_mc_issue(PARAVIRT_LAZY_CPU);
806 }
807
808 static void xen_set_iopl_mask(unsigned mask)
809 {
810 struct physdev_set_iopl set_iopl;
811
812 /* Force the change at ring 0. */
813 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
814 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
815 }
816
817 static void xen_io_delay(void)
818 {
819 }
820
821 #ifdef CONFIG_X86_LOCAL_APIC
822 static unsigned long xen_set_apic_id(unsigned int x)
823 {
824 WARN_ON(1);
825 return x;
826 }
827 static unsigned int xen_get_apic_id(unsigned long x)
828 {
829 return ((x)>>24) & 0xFFu;
830 }
831 static u32 xen_apic_read(u32 reg)
832 {
833 struct xen_platform_op op = {
834 .cmd = XENPF_get_cpuinfo,
835 .interface_version = XENPF_INTERFACE_VERSION,
836 .u.pcpu_info.xen_cpuid = 0,
837 };
838 int ret = 0;
839
840 /* Shouldn't need this as APIC is turned off for PV, and we only
841 * get called on the bootup processor. But just in case. */
842 if (!xen_initial_domain() || smp_processor_id())
843 return 0;
844
845 if (reg == APIC_LVR)
846 return 0x10;
847
848 if (reg != APIC_ID)
849 return 0;
850
851 ret = HYPERVISOR_dom0_op(&op);
852 if (ret)
853 return 0;
854
855 return op.u.pcpu_info.apic_id << 24;
856 }
857
858 static void xen_apic_write(u32 reg, u32 val)
859 {
860 /* Warn to see if there's any stray references */
861 WARN_ON(1);
862 }
863
864 static u64 xen_apic_icr_read(void)
865 {
866 return 0;
867 }
868
869 static void xen_apic_icr_write(u32 low, u32 id)
870 {
871 /* Warn to see if there's any stray references */
872 WARN_ON(1);
873 }
874
875 static void xen_apic_wait_icr_idle(void)
876 {
877 return;
878 }
879
880 static u32 xen_safe_apic_wait_icr_idle(void)
881 {
882 return 0;
883 }
884
885 static void set_xen_basic_apic_ops(void)
886 {
887 apic->read = xen_apic_read;
888 apic->write = xen_apic_write;
889 apic->icr_read = xen_apic_icr_read;
890 apic->icr_write = xen_apic_icr_write;
891 apic->wait_icr_idle = xen_apic_wait_icr_idle;
892 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
893 apic->set_apic_id = xen_set_apic_id;
894 apic->get_apic_id = xen_get_apic_id;
895
896 #ifdef CONFIG_SMP
897 apic->send_IPI_allbutself = xen_send_IPI_allbutself;
898 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
899 apic->send_IPI_mask = xen_send_IPI_mask;
900 apic->send_IPI_all = xen_send_IPI_all;
901 apic->send_IPI_self = xen_send_IPI_self;
902 #endif
903 }
904
905 #endif
906
907 static void xen_clts(void)
908 {
909 struct multicall_space mcs;
910
911 mcs = xen_mc_entry(0);
912
913 MULTI_fpu_taskswitch(mcs.mc, 0);
914
915 xen_mc_issue(PARAVIRT_LAZY_CPU);
916 }
917
918 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
919
920 static unsigned long xen_read_cr0(void)
921 {
922 unsigned long cr0 = this_cpu_read(xen_cr0_value);
923
924 if (unlikely(cr0 == 0)) {
925 cr0 = native_read_cr0();
926 this_cpu_write(xen_cr0_value, cr0);
927 }
928
929 return cr0;
930 }
931
932 static void xen_write_cr0(unsigned long cr0)
933 {
934 struct multicall_space mcs;
935
936 this_cpu_write(xen_cr0_value, cr0);
937
938 /* Only pay attention to cr0.TS; everything else is
939 ignored. */
940 mcs = xen_mc_entry(0);
941
942 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
943
944 xen_mc_issue(PARAVIRT_LAZY_CPU);
945 }
946
947 static void xen_write_cr4(unsigned long cr4)
948 {
949 cr4 &= ~X86_CR4_PGE;
950 cr4 &= ~X86_CR4_PSE;
951
952 native_write_cr4(cr4);
953 }
954
955 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
956 {
957 int ret;
958
959 ret = 0;
960
961 switch (msr) {
962 #ifdef CONFIG_X86_64
963 unsigned which;
964 u64 base;
965
966 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
967 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
968 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
969
970 set:
971 base = ((u64)high << 32) | low;
972 if (HYPERVISOR_set_segment_base(which, base) != 0)
973 ret = -EIO;
974 break;
975 #endif
976
977 case MSR_STAR:
978 case MSR_CSTAR:
979 case MSR_LSTAR:
980 case MSR_SYSCALL_MASK:
981 case MSR_IA32_SYSENTER_CS:
982 case MSR_IA32_SYSENTER_ESP:
983 case MSR_IA32_SYSENTER_EIP:
984 /* Fast syscall setup is all done in hypercalls, so
985 these are all ignored. Stub them out here to stop
986 Xen console noise. */
987 break;
988
989 case MSR_IA32_CR_PAT:
990 if (smp_processor_id() == 0)
991 xen_set_pat(((u64)high << 32) | low);
992 break;
993
994 default:
995 ret = native_write_msr_safe(msr, low, high);
996 }
997
998 return ret;
999 }
1000
1001 void xen_setup_shared_info(void)
1002 {
1003 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1004 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1005 xen_start_info->shared_info);
1006
1007 HYPERVISOR_shared_info =
1008 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1009 } else
1010 HYPERVISOR_shared_info =
1011 (struct shared_info *)__va(xen_start_info->shared_info);
1012
1013 #ifndef CONFIG_SMP
1014 /* In UP this is as good a place as any to set up shared info */
1015 xen_setup_vcpu_info_placement();
1016 #endif
1017
1018 xen_setup_mfn_list_list();
1019 }
1020
1021 /* This is called once we have the cpu_possible_mask */
1022 void xen_setup_vcpu_info_placement(void)
1023 {
1024 int cpu;
1025
1026 for_each_possible_cpu(cpu)
1027 xen_vcpu_setup(cpu);
1028
1029 /* xen_vcpu_setup managed to place the vcpu_info within the
1030 percpu area for all cpus, so make use of it */
1031 if (have_vcpu_info_placement) {
1032 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1033 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1034 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1035 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1036 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1037 }
1038 }
1039
1040 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1041 unsigned long addr, unsigned len)
1042 {
1043 char *start, *end, *reloc;
1044 unsigned ret;
1045
1046 start = end = reloc = NULL;
1047
1048 #define SITE(op, x) \
1049 case PARAVIRT_PATCH(op.x): \
1050 if (have_vcpu_info_placement) { \
1051 start = (char *)xen_##x##_direct; \
1052 end = xen_##x##_direct_end; \
1053 reloc = xen_##x##_direct_reloc; \
1054 } \
1055 goto patch_site
1056
1057 switch (type) {
1058 SITE(pv_irq_ops, irq_enable);
1059 SITE(pv_irq_ops, irq_disable);
1060 SITE(pv_irq_ops, save_fl);
1061 SITE(pv_irq_ops, restore_fl);
1062 #undef SITE
1063
1064 patch_site:
1065 if (start == NULL || (end-start) > len)
1066 goto default_patch;
1067
1068 ret = paravirt_patch_insns(insnbuf, len, start, end);
1069
1070 /* Note: because reloc is assigned from something that
1071 appears to be an array, gcc assumes it's non-null,
1072 but doesn't know its relationship with start and
1073 end. */
1074 if (reloc > start && reloc < end) {
1075 int reloc_off = reloc - start;
1076 long *relocp = (long *)(insnbuf + reloc_off);
1077 long delta = start - (char *)addr;
1078
1079 *relocp += delta;
1080 }
1081 break;
1082
1083 default_patch:
1084 default:
1085 ret = paravirt_patch_default(type, clobbers, insnbuf,
1086 addr, len);
1087 break;
1088 }
1089
1090 return ret;
1091 }
1092
1093 static const struct pv_info xen_info __initconst = {
1094 .paravirt_enabled = 1,
1095 .shared_kernel_pmd = 0,
1096
1097 #ifdef CONFIG_X86_64
1098 .extra_user_64bit_cs = FLAT_USER_CS64,
1099 #endif
1100
1101 .name = "Xen",
1102 };
1103
1104 static const struct pv_init_ops xen_init_ops __initconst = {
1105 .patch = xen_patch,
1106 };
1107
1108 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1109 .cpuid = xen_cpuid,
1110
1111 .set_debugreg = xen_set_debugreg,
1112 .get_debugreg = xen_get_debugreg,
1113
1114 .clts = xen_clts,
1115
1116 .read_cr0 = xen_read_cr0,
1117 .write_cr0 = xen_write_cr0,
1118
1119 .read_cr4 = native_read_cr4,
1120 .read_cr4_safe = native_read_cr4_safe,
1121 .write_cr4 = xen_write_cr4,
1122
1123 .wbinvd = native_wbinvd,
1124
1125 .read_msr = native_read_msr_safe,
1126 .rdmsr_regs = native_rdmsr_safe_regs,
1127 .write_msr = xen_write_msr_safe,
1128 .wrmsr_regs = native_wrmsr_safe_regs,
1129
1130 .read_tsc = native_read_tsc,
1131 .read_pmc = native_read_pmc,
1132
1133 .iret = xen_iret,
1134 .irq_enable_sysexit = xen_sysexit,
1135 #ifdef CONFIG_X86_64
1136 .usergs_sysret32 = xen_sysret32,
1137 .usergs_sysret64 = xen_sysret64,
1138 #endif
1139
1140 .load_tr_desc = paravirt_nop,
1141 .set_ldt = xen_set_ldt,
1142 .load_gdt = xen_load_gdt,
1143 .load_idt = xen_load_idt,
1144 .load_tls = xen_load_tls,
1145 #ifdef CONFIG_X86_64
1146 .load_gs_index = xen_load_gs_index,
1147 #endif
1148
1149 .alloc_ldt = xen_alloc_ldt,
1150 .free_ldt = xen_free_ldt,
1151
1152 .store_gdt = native_store_gdt,
1153 .store_idt = native_store_idt,
1154 .store_tr = xen_store_tr,
1155
1156 .write_ldt_entry = xen_write_ldt_entry,
1157 .write_gdt_entry = xen_write_gdt_entry,
1158 .write_idt_entry = xen_write_idt_entry,
1159 .load_sp0 = xen_load_sp0,
1160
1161 .set_iopl_mask = xen_set_iopl_mask,
1162 .io_delay = xen_io_delay,
1163
1164 /* Xen takes care of %gs when switching to usermode for us */
1165 .swapgs = paravirt_nop,
1166
1167 .start_context_switch = paravirt_start_context_switch,
1168 .end_context_switch = xen_end_context_switch,
1169 };
1170
1171 static const struct pv_apic_ops xen_apic_ops __initconst = {
1172 #ifdef CONFIG_X86_LOCAL_APIC
1173 .startup_ipi_hook = paravirt_nop,
1174 #endif
1175 };
1176
1177 static void xen_reboot(int reason)
1178 {
1179 struct sched_shutdown r = { .reason = reason };
1180
1181 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1182 BUG();
1183 }
1184
1185 static void xen_restart(char *msg)
1186 {
1187 xen_reboot(SHUTDOWN_reboot);
1188 }
1189
1190 static void xen_emergency_restart(void)
1191 {
1192 xen_reboot(SHUTDOWN_reboot);
1193 }
1194
1195 static void xen_machine_halt(void)
1196 {
1197 xen_reboot(SHUTDOWN_poweroff);
1198 }
1199
1200 static void xen_machine_power_off(void)
1201 {
1202 if (pm_power_off)
1203 pm_power_off();
1204 xen_reboot(SHUTDOWN_poweroff);
1205 }
1206
1207 static void xen_crash_shutdown(struct pt_regs *regs)
1208 {
1209 xen_reboot(SHUTDOWN_crash);
1210 }
1211
1212 static int
1213 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1214 {
1215 xen_reboot(SHUTDOWN_crash);
1216 return NOTIFY_DONE;
1217 }
1218
1219 static struct notifier_block xen_panic_block = {
1220 .notifier_call= xen_panic_event,
1221 };
1222
1223 int xen_panic_handler_init(void)
1224 {
1225 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1226 return 0;
1227 }
1228
1229 static const struct machine_ops xen_machine_ops __initconst = {
1230 .restart = xen_restart,
1231 .halt = xen_machine_halt,
1232 .power_off = xen_machine_power_off,
1233 .shutdown = xen_machine_halt,
1234 .crash_shutdown = xen_crash_shutdown,
1235 .emergency_restart = xen_emergency_restart,
1236 };
1237
1238 /*
1239 * Set up the GDT and segment registers for -fstack-protector. Until
1240 * we do this, we have to be careful not to call any stack-protected
1241 * function, which is most of the kernel.
1242 */
1243 static void __init xen_setup_stackprotector(void)
1244 {
1245 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1246 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1247
1248 setup_stack_canary_segment(0);
1249 switch_to_new_gdt(0);
1250
1251 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1252 pv_cpu_ops.load_gdt = xen_load_gdt;
1253 }
1254
1255 /* First C function to be called on Xen boot */
1256 asmlinkage void __init xen_start_kernel(void)
1257 {
1258 struct physdev_set_iopl set_iopl;
1259 int rc;
1260 pgd_t *pgd;
1261
1262 if (!xen_start_info)
1263 return;
1264
1265 xen_domain_type = XEN_PV_DOMAIN;
1266
1267 xen_setup_machphys_mapping();
1268
1269 /* Install Xen paravirt ops */
1270 pv_info = xen_info;
1271 pv_init_ops = xen_init_ops;
1272 pv_cpu_ops = xen_cpu_ops;
1273 pv_apic_ops = xen_apic_ops;
1274
1275 x86_init.resources.memory_setup = xen_memory_setup;
1276 x86_init.oem.arch_setup = xen_arch_setup;
1277 x86_init.oem.banner = xen_banner;
1278
1279 xen_init_time_ops();
1280
1281 /*
1282 * Set up some pagetable state before starting to set any ptes.
1283 */
1284
1285 xen_init_mmu_ops();
1286
1287 /* Prevent unwanted bits from being set in PTEs. */
1288 __supported_pte_mask &= ~_PAGE_GLOBAL;
1289 #if 0
1290 if (!xen_initial_domain())
1291 #endif
1292 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1293
1294 __supported_pte_mask |= _PAGE_IOMAP;
1295
1296 /*
1297 * Prevent page tables from being allocated in highmem, even
1298 * if CONFIG_HIGHPTE is enabled.
1299 */
1300 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1301
1302 /* Work out if we support NX */
1303 x86_configure_nx();
1304
1305 xen_setup_features();
1306
1307 /* Get mfn list */
1308 if (!xen_feature(XENFEAT_auto_translated_physmap))
1309 xen_build_dynamic_phys_to_machine();
1310
1311 /*
1312 * Set up kernel GDT and segment registers, mainly so that
1313 * -fstack-protector code can be executed.
1314 */
1315 xen_setup_stackprotector();
1316
1317 xen_init_irq_ops();
1318 xen_init_cpuid_mask();
1319
1320 #ifdef CONFIG_X86_LOCAL_APIC
1321 /*
1322 * set up the basic apic ops.
1323 */
1324 set_xen_basic_apic_ops();
1325 #endif
1326
1327 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1328 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1329 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1330 }
1331
1332 machine_ops = xen_machine_ops;
1333
1334 /*
1335 * The only reliable way to retain the initial address of the
1336 * percpu gdt_page is to remember it here, so we can go and
1337 * mark it RW later, when the initial percpu area is freed.
1338 */
1339 xen_initial_gdt = &per_cpu(gdt_page, 0);
1340
1341 xen_smp_init();
1342
1343 #ifdef CONFIG_ACPI_NUMA
1344 /*
1345 * The pages we from Xen are not related to machine pages, so
1346 * any NUMA information the kernel tries to get from ACPI will
1347 * be meaningless. Prevent it from trying.
1348 */
1349 acpi_numa = -1;
1350 #endif
1351
1352 pgd = (pgd_t *)xen_start_info->pt_base;
1353
1354 /* Don't do the full vcpu_info placement stuff until we have a
1355 possible map and a non-dummy shared_info. */
1356 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1357
1358 local_irq_disable();
1359 early_boot_irqs_disabled = true;
1360
1361 xen_raw_console_write("mapping kernel into physical memory\n");
1362 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1363
1364 /* Allocate and initialize top and mid mfn levels for p2m structure */
1365 xen_build_mfn_list_list();
1366
1367 /* keep using Xen gdt for now; no urgent need to change it */
1368
1369 #ifdef CONFIG_X86_32
1370 pv_info.kernel_rpl = 1;
1371 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1372 pv_info.kernel_rpl = 0;
1373 #else
1374 pv_info.kernel_rpl = 0;
1375 #endif
1376 /* set the limit of our address space */
1377 xen_reserve_top();
1378
1379 /* We used to do this in xen_arch_setup, but that is too late on AMD
1380 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1381 * which pokes 0xcf8 port.
1382 */
1383 set_iopl.iopl = 1;
1384 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1385 if (rc != 0)
1386 xen_raw_printk("physdev_op failed %d\n", rc);
1387
1388 #ifdef CONFIG_X86_32
1389 /* set up basic CPUID stuff */
1390 cpu_detect(&new_cpu_data);
1391 new_cpu_data.hard_math = 1;
1392 new_cpu_data.wp_works_ok = 1;
1393 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1394 #endif
1395
1396 /* Poke various useful things into boot_params */
1397 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1398 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1399 ? __pa(xen_start_info->mod_start) : 0;
1400 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1401 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1402
1403 if (!xen_initial_domain()) {
1404 add_preferred_console("xenboot", 0, NULL);
1405 add_preferred_console("tty", 0, NULL);
1406 add_preferred_console("hvc", 0, NULL);
1407 if (pci_xen)
1408 x86_init.pci.arch_init = pci_xen_init;
1409 } else {
1410 const struct dom0_vga_console_info *info =
1411 (void *)((char *)xen_start_info +
1412 xen_start_info->console.dom0.info_off);
1413
1414 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1415 xen_start_info->console.domU.mfn = 0;
1416 xen_start_info->console.domU.evtchn = 0;
1417
1418 xen_init_apic();
1419
1420 /* Make sure ACS will be enabled */
1421 pci_request_acs();
1422
1423 xen_acpi_sleep_register();
1424 }
1425 #ifdef CONFIG_PCI
1426 /* PCI BIOS service won't work from a PV guest. */
1427 pci_probe &= ~PCI_PROBE_BIOS;
1428 #endif
1429 xen_raw_console_write("about to get started...\n");
1430
1431 xen_setup_runstate_info(0);
1432
1433 /* Start the world */
1434 #ifdef CONFIG_X86_32
1435 i386_start_kernel();
1436 #else
1437 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1438 #endif
1439 }
1440
1441 static int init_hvm_pv_info(int *major, int *minor)
1442 {
1443 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1444 u64 pfn;
1445
1446 base = xen_cpuid_base();
1447 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1448
1449 *major = eax >> 16;
1450 *minor = eax & 0xffff;
1451 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1452
1453 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1454
1455 pfn = __pa(hypercall_page);
1456 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1457
1458 xen_setup_features();
1459
1460 pv_info.name = "Xen HVM";
1461
1462 xen_domain_type = XEN_HVM_DOMAIN;
1463
1464 return 0;
1465 }
1466
1467 void __ref xen_hvm_init_shared_info(void)
1468 {
1469 int cpu;
1470 struct xen_add_to_physmap xatp;
1471 static struct shared_info *shared_info_page = 0;
1472
1473 if (!shared_info_page)
1474 shared_info_page = (struct shared_info *)
1475 extend_brk(PAGE_SIZE, PAGE_SIZE);
1476 xatp.domid = DOMID_SELF;
1477 xatp.idx = 0;
1478 xatp.space = XENMAPSPACE_shared_info;
1479 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1480 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1481 BUG();
1482
1483 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1484
1485 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1486 * page, we use it in the event channel upcall and in some pvclock
1487 * related functions. We don't need the vcpu_info placement
1488 * optimizations because we don't use any pv_mmu or pv_irq op on
1489 * HVM.
1490 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1491 * online but xen_hvm_init_shared_info is run at resume time too and
1492 * in that case multiple vcpus might be online. */
1493 for_each_online_cpu(cpu) {
1494 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1495 }
1496 }
1497
1498 #ifdef CONFIG_XEN_PVHVM
1499 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1500 unsigned long action, void *hcpu)
1501 {
1502 int cpu = (long)hcpu;
1503 switch (action) {
1504 case CPU_UP_PREPARE:
1505 xen_vcpu_setup(cpu);
1506 if (xen_have_vector_callback)
1507 xen_init_lock_cpu(cpu);
1508 break;
1509 default:
1510 break;
1511 }
1512 return NOTIFY_OK;
1513 }
1514
1515 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1516 .notifier_call = xen_hvm_cpu_notify,
1517 };
1518
1519 static void __init xen_hvm_guest_init(void)
1520 {
1521 int r;
1522 int major, minor;
1523
1524 r = init_hvm_pv_info(&major, &minor);
1525 if (r < 0)
1526 return;
1527
1528 xen_hvm_init_shared_info();
1529
1530 if (xen_feature(XENFEAT_hvm_callback_vector))
1531 xen_have_vector_callback = 1;
1532 xen_hvm_smp_init();
1533 register_cpu_notifier(&xen_hvm_cpu_notifier);
1534 xen_unplug_emulated_devices();
1535 x86_init.irqs.intr_init = xen_init_IRQ;
1536 xen_hvm_init_time_ops();
1537 xen_hvm_init_mmu_ops();
1538 }
1539
1540 static bool __init xen_hvm_platform(void)
1541 {
1542 if (xen_pv_domain())
1543 return false;
1544
1545 if (!xen_cpuid_base())
1546 return false;
1547
1548 return true;
1549 }
1550
1551 bool xen_hvm_need_lapic(void)
1552 {
1553 if (xen_pv_domain())
1554 return false;
1555 if (!xen_hvm_domain())
1556 return false;
1557 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1558 return false;
1559 return true;
1560 }
1561 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1562
1563 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1564 .name = "Xen HVM",
1565 .detect = xen_hvm_platform,
1566 .init_platform = xen_hvm_guest_init,
1567 };
1568 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1569 #endif
This page took 0.062888 seconds and 5 git commands to generate.