Merge remote-tracking branches 'asoc/fix/rcar', 'asoc/fix/rt5670' and 'asoc/fix/wm894...
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51
52 #include <trace/events/xen.h>
53
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81
82 /*
83 * Protects atomic reservation decrease/increase against concurrent increases.
84 * Also protects non-atomic updates of current_pages and balloon lists.
85 */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87
88 #ifdef CONFIG_X86_32
89 /*
90 * Identity map, in addition to plain kernel map. This needs to be
91 * large enough to allocate page table pages to allocate the rest.
92 * Each page can map 2MB.
93 */
94 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101
102 /*
103 * Note about cr3 (pagetable base) values:
104 *
105 * xen_cr3 contains the current logical cr3 value; it contains the
106 * last set cr3. This may not be the current effective cr3, because
107 * its update may be being lazily deferred. However, a vcpu looking
108 * at its own cr3 can use this value knowing that it everything will
109 * be self-consistent.
110 *
111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112 * hypercall to set the vcpu cr3 is complete (so it may be a little
113 * out of date, but it will never be set early). If one vcpu is
114 * looking at another vcpu's cr3 value, it should use this variable.
115 */
116 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
118
119 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
120
121 /*
122 * Just beyond the highest usermode address. STACK_TOP_MAX has a
123 * redzone above it, so round it up to a PGD boundary.
124 */
125 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
126
127 unsigned long arbitrary_virt_to_mfn(void *vaddr)
128 {
129 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
130
131 return PFN_DOWN(maddr.maddr);
132 }
133
134 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
135 {
136 unsigned long address = (unsigned long)vaddr;
137 unsigned int level;
138 pte_t *pte;
139 unsigned offset;
140
141 /*
142 * if the PFN is in the linear mapped vaddr range, we can just use
143 * the (quick) virt_to_machine() p2m lookup
144 */
145 if (virt_addr_valid(vaddr))
146 return virt_to_machine(vaddr);
147
148 /* otherwise we have to do a (slower) full page-table walk */
149
150 pte = lookup_address(address, &level);
151 BUG_ON(pte == NULL);
152 offset = address & ~PAGE_MASK;
153 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
154 }
155 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
156
157 void make_lowmem_page_readonly(void *vaddr)
158 {
159 pte_t *pte, ptev;
160 unsigned long address = (unsigned long)vaddr;
161 unsigned int level;
162
163 pte = lookup_address(address, &level);
164 if (pte == NULL)
165 return; /* vaddr missing */
166
167 ptev = pte_wrprotect(*pte);
168
169 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
170 BUG();
171 }
172
173 void make_lowmem_page_readwrite(void *vaddr)
174 {
175 pte_t *pte, ptev;
176 unsigned long address = (unsigned long)vaddr;
177 unsigned int level;
178
179 pte = lookup_address(address, &level);
180 if (pte == NULL)
181 return; /* vaddr missing */
182
183 ptev = pte_mkwrite(*pte);
184
185 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
186 BUG();
187 }
188
189
190 static bool xen_page_pinned(void *ptr)
191 {
192 struct page *page = virt_to_page(ptr);
193
194 return PagePinned(page);
195 }
196
197 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
198 {
199 struct multicall_space mcs;
200 struct mmu_update *u;
201
202 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
203
204 mcs = xen_mc_entry(sizeof(*u));
205 u = mcs.args;
206
207 /* ptep might be kmapped when using 32-bit HIGHPTE */
208 u->ptr = virt_to_machine(ptep).maddr;
209 u->val = pte_val_ma(pteval);
210
211 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
212
213 xen_mc_issue(PARAVIRT_LAZY_MMU);
214 }
215 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
216
217 static void xen_extend_mmu_update(const struct mmu_update *update)
218 {
219 struct multicall_space mcs;
220 struct mmu_update *u;
221
222 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
223
224 if (mcs.mc != NULL) {
225 mcs.mc->args[1]++;
226 } else {
227 mcs = __xen_mc_entry(sizeof(*u));
228 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
229 }
230
231 u = mcs.args;
232 *u = *update;
233 }
234
235 static void xen_extend_mmuext_op(const struct mmuext_op *op)
236 {
237 struct multicall_space mcs;
238 struct mmuext_op *u;
239
240 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
241
242 if (mcs.mc != NULL) {
243 mcs.mc->args[1]++;
244 } else {
245 mcs = __xen_mc_entry(sizeof(*u));
246 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
247 }
248
249 u = mcs.args;
250 *u = *op;
251 }
252
253 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
254 {
255 struct mmu_update u;
256
257 preempt_disable();
258
259 xen_mc_batch();
260
261 /* ptr may be ioremapped for 64-bit pagetable setup */
262 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
263 u.val = pmd_val_ma(val);
264 xen_extend_mmu_update(&u);
265
266 xen_mc_issue(PARAVIRT_LAZY_MMU);
267
268 preempt_enable();
269 }
270
271 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
272 {
273 trace_xen_mmu_set_pmd(ptr, val);
274
275 /* If page is not pinned, we can just update the entry
276 directly */
277 if (!xen_page_pinned(ptr)) {
278 *ptr = val;
279 return;
280 }
281
282 xen_set_pmd_hyper(ptr, val);
283 }
284
285 /*
286 * Associate a virtual page frame with a given physical page frame
287 * and protection flags for that frame.
288 */
289 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
290 {
291 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
292 }
293
294 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
295 {
296 struct mmu_update u;
297
298 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
299 return false;
300
301 xen_mc_batch();
302
303 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
304 u.val = pte_val_ma(pteval);
305 xen_extend_mmu_update(&u);
306
307 xen_mc_issue(PARAVIRT_LAZY_MMU);
308
309 return true;
310 }
311
312 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
313 {
314 if (!xen_batched_set_pte(ptep, pteval)) {
315 /*
316 * Could call native_set_pte() here and trap and
317 * emulate the PTE write but with 32-bit guests this
318 * needs two traps (one for each of the two 32-bit
319 * words in the PTE) so do one hypercall directly
320 * instead.
321 */
322 struct mmu_update u;
323
324 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
325 u.val = pte_val_ma(pteval);
326 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
327 }
328 }
329
330 static void xen_set_pte(pte_t *ptep, pte_t pteval)
331 {
332 trace_xen_mmu_set_pte(ptep, pteval);
333 __xen_set_pte(ptep, pteval);
334 }
335
336 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
337 pte_t *ptep, pte_t pteval)
338 {
339 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
340 __xen_set_pte(ptep, pteval);
341 }
342
343 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
344 unsigned long addr, pte_t *ptep)
345 {
346 /* Just return the pte as-is. We preserve the bits on commit */
347 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
348 return *ptep;
349 }
350
351 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
352 pte_t *ptep, pte_t pte)
353 {
354 struct mmu_update u;
355
356 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
357 xen_mc_batch();
358
359 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
360 u.val = pte_val_ma(pte);
361 xen_extend_mmu_update(&u);
362
363 xen_mc_issue(PARAVIRT_LAZY_MMU);
364 }
365
366 /* Assume pteval_t is equivalent to all the other *val_t types. */
367 static pteval_t pte_mfn_to_pfn(pteval_t val)
368 {
369 if (val & _PAGE_PRESENT) {
370 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
371 unsigned long pfn = mfn_to_pfn(mfn);
372
373 pteval_t flags = val & PTE_FLAGS_MASK;
374 if (unlikely(pfn == ~0))
375 val = flags & ~_PAGE_PRESENT;
376 else
377 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
378 }
379
380 return val;
381 }
382
383 static pteval_t pte_pfn_to_mfn(pteval_t val)
384 {
385 if (val & _PAGE_PRESENT) {
386 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
387 pteval_t flags = val & PTE_FLAGS_MASK;
388 unsigned long mfn;
389
390 if (!xen_feature(XENFEAT_auto_translated_physmap))
391 mfn = __pfn_to_mfn(pfn);
392 else
393 mfn = pfn;
394 /*
395 * If there's no mfn for the pfn, then just create an
396 * empty non-present pte. Unfortunately this loses
397 * information about the original pfn, so
398 * pte_mfn_to_pfn is asymmetric.
399 */
400 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
401 mfn = 0;
402 flags = 0;
403 } else
404 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
405 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
406 }
407
408 return val;
409 }
410
411 __visible pteval_t xen_pte_val(pte_t pte)
412 {
413 pteval_t pteval = pte.pte;
414
415 return pte_mfn_to_pfn(pteval);
416 }
417 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
418
419 __visible pgdval_t xen_pgd_val(pgd_t pgd)
420 {
421 return pte_mfn_to_pfn(pgd.pgd);
422 }
423 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
424
425 __visible pte_t xen_make_pte(pteval_t pte)
426 {
427 pte = pte_pfn_to_mfn(pte);
428
429 return native_make_pte(pte);
430 }
431 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
432
433 __visible pgd_t xen_make_pgd(pgdval_t pgd)
434 {
435 pgd = pte_pfn_to_mfn(pgd);
436 return native_make_pgd(pgd);
437 }
438 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
439
440 __visible pmdval_t xen_pmd_val(pmd_t pmd)
441 {
442 return pte_mfn_to_pfn(pmd.pmd);
443 }
444 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
445
446 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
447 {
448 struct mmu_update u;
449
450 preempt_disable();
451
452 xen_mc_batch();
453
454 /* ptr may be ioremapped for 64-bit pagetable setup */
455 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
456 u.val = pud_val_ma(val);
457 xen_extend_mmu_update(&u);
458
459 xen_mc_issue(PARAVIRT_LAZY_MMU);
460
461 preempt_enable();
462 }
463
464 static void xen_set_pud(pud_t *ptr, pud_t val)
465 {
466 trace_xen_mmu_set_pud(ptr, val);
467
468 /* If page is not pinned, we can just update the entry
469 directly */
470 if (!xen_page_pinned(ptr)) {
471 *ptr = val;
472 return;
473 }
474
475 xen_set_pud_hyper(ptr, val);
476 }
477
478 #ifdef CONFIG_X86_PAE
479 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
480 {
481 trace_xen_mmu_set_pte_atomic(ptep, pte);
482 set_64bit((u64 *)ptep, native_pte_val(pte));
483 }
484
485 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
486 {
487 trace_xen_mmu_pte_clear(mm, addr, ptep);
488 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
489 native_pte_clear(mm, addr, ptep);
490 }
491
492 static void xen_pmd_clear(pmd_t *pmdp)
493 {
494 trace_xen_mmu_pmd_clear(pmdp);
495 set_pmd(pmdp, __pmd(0));
496 }
497 #endif /* CONFIG_X86_PAE */
498
499 __visible pmd_t xen_make_pmd(pmdval_t pmd)
500 {
501 pmd = pte_pfn_to_mfn(pmd);
502 return native_make_pmd(pmd);
503 }
504 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
505
506 #if CONFIG_PGTABLE_LEVELS == 4
507 __visible pudval_t xen_pud_val(pud_t pud)
508 {
509 return pte_mfn_to_pfn(pud.pud);
510 }
511 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
512
513 __visible pud_t xen_make_pud(pudval_t pud)
514 {
515 pud = pte_pfn_to_mfn(pud);
516
517 return native_make_pud(pud);
518 }
519 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
520
521 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
522 {
523 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
524 unsigned offset = pgd - pgd_page;
525 pgd_t *user_ptr = NULL;
526
527 if (offset < pgd_index(USER_LIMIT)) {
528 struct page *page = virt_to_page(pgd_page);
529 user_ptr = (pgd_t *)page->private;
530 if (user_ptr)
531 user_ptr += offset;
532 }
533
534 return user_ptr;
535 }
536
537 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
538 {
539 struct mmu_update u;
540
541 u.ptr = virt_to_machine(ptr).maddr;
542 u.val = pgd_val_ma(val);
543 xen_extend_mmu_update(&u);
544 }
545
546 /*
547 * Raw hypercall-based set_pgd, intended for in early boot before
548 * there's a page structure. This implies:
549 * 1. The only existing pagetable is the kernel's
550 * 2. It is always pinned
551 * 3. It has no user pagetable attached to it
552 */
553 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
554 {
555 preempt_disable();
556
557 xen_mc_batch();
558
559 __xen_set_pgd_hyper(ptr, val);
560
561 xen_mc_issue(PARAVIRT_LAZY_MMU);
562
563 preempt_enable();
564 }
565
566 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
567 {
568 pgd_t *user_ptr = xen_get_user_pgd(ptr);
569
570 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
571
572 /* If page is not pinned, we can just update the entry
573 directly */
574 if (!xen_page_pinned(ptr)) {
575 *ptr = val;
576 if (user_ptr) {
577 WARN_ON(xen_page_pinned(user_ptr));
578 *user_ptr = val;
579 }
580 return;
581 }
582
583 /* If it's pinned, then we can at least batch the kernel and
584 user updates together. */
585 xen_mc_batch();
586
587 __xen_set_pgd_hyper(ptr, val);
588 if (user_ptr)
589 __xen_set_pgd_hyper(user_ptr, val);
590
591 xen_mc_issue(PARAVIRT_LAZY_MMU);
592 }
593 #endif /* CONFIG_PGTABLE_LEVELS == 4 */
594
595 /*
596 * (Yet another) pagetable walker. This one is intended for pinning a
597 * pagetable. This means that it walks a pagetable and calls the
598 * callback function on each page it finds making up the page table,
599 * at every level. It walks the entire pagetable, but it only bothers
600 * pinning pte pages which are below limit. In the normal case this
601 * will be STACK_TOP_MAX, but at boot we need to pin up to
602 * FIXADDR_TOP.
603 *
604 * For 32-bit the important bit is that we don't pin beyond there,
605 * because then we start getting into Xen's ptes.
606 *
607 * For 64-bit, we must skip the Xen hole in the middle of the address
608 * space, just after the big x86-64 virtual hole.
609 */
610 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
611 int (*func)(struct mm_struct *mm, struct page *,
612 enum pt_level),
613 unsigned long limit)
614 {
615 int flush = 0;
616 unsigned hole_low, hole_high;
617 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
618 unsigned pgdidx, pudidx, pmdidx;
619
620 /* The limit is the last byte to be touched */
621 limit--;
622 BUG_ON(limit >= FIXADDR_TOP);
623
624 if (xen_feature(XENFEAT_auto_translated_physmap))
625 return 0;
626
627 /*
628 * 64-bit has a great big hole in the middle of the address
629 * space, which contains the Xen mappings. On 32-bit these
630 * will end up making a zero-sized hole and so is a no-op.
631 */
632 hole_low = pgd_index(USER_LIMIT);
633 hole_high = pgd_index(PAGE_OFFSET);
634
635 pgdidx_limit = pgd_index(limit);
636 #if PTRS_PER_PUD > 1
637 pudidx_limit = pud_index(limit);
638 #else
639 pudidx_limit = 0;
640 #endif
641 #if PTRS_PER_PMD > 1
642 pmdidx_limit = pmd_index(limit);
643 #else
644 pmdidx_limit = 0;
645 #endif
646
647 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
648 pud_t *pud;
649
650 if (pgdidx >= hole_low && pgdidx < hole_high)
651 continue;
652
653 if (!pgd_val(pgd[pgdidx]))
654 continue;
655
656 pud = pud_offset(&pgd[pgdidx], 0);
657
658 if (PTRS_PER_PUD > 1) /* not folded */
659 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
660
661 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
662 pmd_t *pmd;
663
664 if (pgdidx == pgdidx_limit &&
665 pudidx > pudidx_limit)
666 goto out;
667
668 if (pud_none(pud[pudidx]))
669 continue;
670
671 pmd = pmd_offset(&pud[pudidx], 0);
672
673 if (PTRS_PER_PMD > 1) /* not folded */
674 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
675
676 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
677 struct page *pte;
678
679 if (pgdidx == pgdidx_limit &&
680 pudidx == pudidx_limit &&
681 pmdidx > pmdidx_limit)
682 goto out;
683
684 if (pmd_none(pmd[pmdidx]))
685 continue;
686
687 pte = pmd_page(pmd[pmdidx]);
688 flush |= (*func)(mm, pte, PT_PTE);
689 }
690 }
691 }
692
693 out:
694 /* Do the top level last, so that the callbacks can use it as
695 a cue to do final things like tlb flushes. */
696 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
697
698 return flush;
699 }
700
701 static int xen_pgd_walk(struct mm_struct *mm,
702 int (*func)(struct mm_struct *mm, struct page *,
703 enum pt_level),
704 unsigned long limit)
705 {
706 return __xen_pgd_walk(mm, mm->pgd, func, limit);
707 }
708
709 /* If we're using split pte locks, then take the page's lock and
710 return a pointer to it. Otherwise return NULL. */
711 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
712 {
713 spinlock_t *ptl = NULL;
714
715 #if USE_SPLIT_PTE_PTLOCKS
716 ptl = ptlock_ptr(page);
717 spin_lock_nest_lock(ptl, &mm->page_table_lock);
718 #endif
719
720 return ptl;
721 }
722
723 static void xen_pte_unlock(void *v)
724 {
725 spinlock_t *ptl = v;
726 spin_unlock(ptl);
727 }
728
729 static void xen_do_pin(unsigned level, unsigned long pfn)
730 {
731 struct mmuext_op op;
732
733 op.cmd = level;
734 op.arg1.mfn = pfn_to_mfn(pfn);
735
736 xen_extend_mmuext_op(&op);
737 }
738
739 static int xen_pin_page(struct mm_struct *mm, struct page *page,
740 enum pt_level level)
741 {
742 unsigned pgfl = TestSetPagePinned(page);
743 int flush;
744
745 if (pgfl)
746 flush = 0; /* already pinned */
747 else if (PageHighMem(page))
748 /* kmaps need flushing if we found an unpinned
749 highpage */
750 flush = 1;
751 else {
752 void *pt = lowmem_page_address(page);
753 unsigned long pfn = page_to_pfn(page);
754 struct multicall_space mcs = __xen_mc_entry(0);
755 spinlock_t *ptl;
756
757 flush = 0;
758
759 /*
760 * We need to hold the pagetable lock between the time
761 * we make the pagetable RO and when we actually pin
762 * it. If we don't, then other users may come in and
763 * attempt to update the pagetable by writing it,
764 * which will fail because the memory is RO but not
765 * pinned, so Xen won't do the trap'n'emulate.
766 *
767 * If we're using split pte locks, we can't hold the
768 * entire pagetable's worth of locks during the
769 * traverse, because we may wrap the preempt count (8
770 * bits). The solution is to mark RO and pin each PTE
771 * page while holding the lock. This means the number
772 * of locks we end up holding is never more than a
773 * batch size (~32 entries, at present).
774 *
775 * If we're not using split pte locks, we needn't pin
776 * the PTE pages independently, because we're
777 * protected by the overall pagetable lock.
778 */
779 ptl = NULL;
780 if (level == PT_PTE)
781 ptl = xen_pte_lock(page, mm);
782
783 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
784 pfn_pte(pfn, PAGE_KERNEL_RO),
785 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
786
787 if (ptl) {
788 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
789
790 /* Queue a deferred unlock for when this batch
791 is completed. */
792 xen_mc_callback(xen_pte_unlock, ptl);
793 }
794 }
795
796 return flush;
797 }
798
799 /* This is called just after a mm has been created, but it has not
800 been used yet. We need to make sure that its pagetable is all
801 read-only, and can be pinned. */
802 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
803 {
804 trace_xen_mmu_pgd_pin(mm, pgd);
805
806 xen_mc_batch();
807
808 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
809 /* re-enable interrupts for flushing */
810 xen_mc_issue(0);
811
812 kmap_flush_unused();
813
814 xen_mc_batch();
815 }
816
817 #ifdef CONFIG_X86_64
818 {
819 pgd_t *user_pgd = xen_get_user_pgd(pgd);
820
821 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
822
823 if (user_pgd) {
824 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
825 xen_do_pin(MMUEXT_PIN_L4_TABLE,
826 PFN_DOWN(__pa(user_pgd)));
827 }
828 }
829 #else /* CONFIG_X86_32 */
830 #ifdef CONFIG_X86_PAE
831 /* Need to make sure unshared kernel PMD is pinnable */
832 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
833 PT_PMD);
834 #endif
835 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
836 #endif /* CONFIG_X86_64 */
837 xen_mc_issue(0);
838 }
839
840 static void xen_pgd_pin(struct mm_struct *mm)
841 {
842 __xen_pgd_pin(mm, mm->pgd);
843 }
844
845 /*
846 * On save, we need to pin all pagetables to make sure they get their
847 * mfns turned into pfns. Search the list for any unpinned pgds and pin
848 * them (unpinned pgds are not currently in use, probably because the
849 * process is under construction or destruction).
850 *
851 * Expected to be called in stop_machine() ("equivalent to taking
852 * every spinlock in the system"), so the locking doesn't really
853 * matter all that much.
854 */
855 void xen_mm_pin_all(void)
856 {
857 struct page *page;
858
859 spin_lock(&pgd_lock);
860
861 list_for_each_entry(page, &pgd_list, lru) {
862 if (!PagePinned(page)) {
863 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
864 SetPageSavePinned(page);
865 }
866 }
867
868 spin_unlock(&pgd_lock);
869 }
870
871 /*
872 * The init_mm pagetable is really pinned as soon as its created, but
873 * that's before we have page structures to store the bits. So do all
874 * the book-keeping now.
875 */
876 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
877 enum pt_level level)
878 {
879 SetPagePinned(page);
880 return 0;
881 }
882
883 static void __init xen_mark_init_mm_pinned(void)
884 {
885 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
886 }
887
888 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
889 enum pt_level level)
890 {
891 unsigned pgfl = TestClearPagePinned(page);
892
893 if (pgfl && !PageHighMem(page)) {
894 void *pt = lowmem_page_address(page);
895 unsigned long pfn = page_to_pfn(page);
896 spinlock_t *ptl = NULL;
897 struct multicall_space mcs;
898
899 /*
900 * Do the converse to pin_page. If we're using split
901 * pte locks, we must be holding the lock for while
902 * the pte page is unpinned but still RO to prevent
903 * concurrent updates from seeing it in this
904 * partially-pinned state.
905 */
906 if (level == PT_PTE) {
907 ptl = xen_pte_lock(page, mm);
908
909 if (ptl)
910 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
911 }
912
913 mcs = __xen_mc_entry(0);
914
915 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
916 pfn_pte(pfn, PAGE_KERNEL),
917 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
918
919 if (ptl) {
920 /* unlock when batch completed */
921 xen_mc_callback(xen_pte_unlock, ptl);
922 }
923 }
924
925 return 0; /* never need to flush on unpin */
926 }
927
928 /* Release a pagetables pages back as normal RW */
929 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
930 {
931 trace_xen_mmu_pgd_unpin(mm, pgd);
932
933 xen_mc_batch();
934
935 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
936
937 #ifdef CONFIG_X86_64
938 {
939 pgd_t *user_pgd = xen_get_user_pgd(pgd);
940
941 if (user_pgd) {
942 xen_do_pin(MMUEXT_UNPIN_TABLE,
943 PFN_DOWN(__pa(user_pgd)));
944 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
945 }
946 }
947 #endif
948
949 #ifdef CONFIG_X86_PAE
950 /* Need to make sure unshared kernel PMD is unpinned */
951 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
952 PT_PMD);
953 #endif
954
955 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
956
957 xen_mc_issue(0);
958 }
959
960 static void xen_pgd_unpin(struct mm_struct *mm)
961 {
962 __xen_pgd_unpin(mm, mm->pgd);
963 }
964
965 /*
966 * On resume, undo any pinning done at save, so that the rest of the
967 * kernel doesn't see any unexpected pinned pagetables.
968 */
969 void xen_mm_unpin_all(void)
970 {
971 struct page *page;
972
973 spin_lock(&pgd_lock);
974
975 list_for_each_entry(page, &pgd_list, lru) {
976 if (PageSavePinned(page)) {
977 BUG_ON(!PagePinned(page));
978 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
979 ClearPageSavePinned(page);
980 }
981 }
982
983 spin_unlock(&pgd_lock);
984 }
985
986 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
987 {
988 spin_lock(&next->page_table_lock);
989 xen_pgd_pin(next);
990 spin_unlock(&next->page_table_lock);
991 }
992
993 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
994 {
995 spin_lock(&mm->page_table_lock);
996 xen_pgd_pin(mm);
997 spin_unlock(&mm->page_table_lock);
998 }
999
1000
1001 #ifdef CONFIG_SMP
1002 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1003 we need to repoint it somewhere else before we can unpin it. */
1004 static void drop_other_mm_ref(void *info)
1005 {
1006 struct mm_struct *mm = info;
1007 struct mm_struct *active_mm;
1008
1009 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1010
1011 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1012 leave_mm(smp_processor_id());
1013
1014 /* If this cpu still has a stale cr3 reference, then make sure
1015 it has been flushed. */
1016 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1017 load_cr3(swapper_pg_dir);
1018 }
1019
1020 static void xen_drop_mm_ref(struct mm_struct *mm)
1021 {
1022 cpumask_var_t mask;
1023 unsigned cpu;
1024
1025 if (current->active_mm == mm) {
1026 if (current->mm == mm)
1027 load_cr3(swapper_pg_dir);
1028 else
1029 leave_mm(smp_processor_id());
1030 }
1031
1032 /* Get the "official" set of cpus referring to our pagetable. */
1033 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1034 for_each_online_cpu(cpu) {
1035 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1036 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1037 continue;
1038 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1039 }
1040 return;
1041 }
1042 cpumask_copy(mask, mm_cpumask(mm));
1043
1044 /* It's possible that a vcpu may have a stale reference to our
1045 cr3, because its in lazy mode, and it hasn't yet flushed
1046 its set of pending hypercalls yet. In this case, we can
1047 look at its actual current cr3 value, and force it to flush
1048 if needed. */
1049 for_each_online_cpu(cpu) {
1050 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1051 cpumask_set_cpu(cpu, mask);
1052 }
1053
1054 if (!cpumask_empty(mask))
1055 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1056 free_cpumask_var(mask);
1057 }
1058 #else
1059 static void xen_drop_mm_ref(struct mm_struct *mm)
1060 {
1061 if (current->active_mm == mm)
1062 load_cr3(swapper_pg_dir);
1063 }
1064 #endif
1065
1066 /*
1067 * While a process runs, Xen pins its pagetables, which means that the
1068 * hypervisor forces it to be read-only, and it controls all updates
1069 * to it. This means that all pagetable updates have to go via the
1070 * hypervisor, which is moderately expensive.
1071 *
1072 * Since we're pulling the pagetable down, we switch to use init_mm,
1073 * unpin old process pagetable and mark it all read-write, which
1074 * allows further operations on it to be simple memory accesses.
1075 *
1076 * The only subtle point is that another CPU may be still using the
1077 * pagetable because of lazy tlb flushing. This means we need need to
1078 * switch all CPUs off this pagetable before we can unpin it.
1079 */
1080 static void xen_exit_mmap(struct mm_struct *mm)
1081 {
1082 get_cpu(); /* make sure we don't move around */
1083 xen_drop_mm_ref(mm);
1084 put_cpu();
1085
1086 spin_lock(&mm->page_table_lock);
1087
1088 /* pgd may not be pinned in the error exit path of execve */
1089 if (xen_page_pinned(mm->pgd))
1090 xen_pgd_unpin(mm);
1091
1092 spin_unlock(&mm->page_table_lock);
1093 }
1094
1095 static void xen_post_allocator_init(void);
1096
1097 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1098 {
1099 struct mmuext_op op;
1100
1101 op.cmd = cmd;
1102 op.arg1.mfn = pfn_to_mfn(pfn);
1103 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1104 BUG();
1105 }
1106
1107 #ifdef CONFIG_X86_64
1108 static void __init xen_cleanhighmap(unsigned long vaddr,
1109 unsigned long vaddr_end)
1110 {
1111 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1112 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1113
1114 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1115 * We include the PMD passed in on _both_ boundaries. */
1116 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1117 pmd++, vaddr += PMD_SIZE) {
1118 if (pmd_none(*pmd))
1119 continue;
1120 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1121 set_pmd(pmd, __pmd(0));
1122 }
1123 /* In case we did something silly, we should crash in this function
1124 * instead of somewhere later and be confusing. */
1125 xen_mc_flush();
1126 }
1127
1128 /*
1129 * Make a page range writeable and free it.
1130 */
1131 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1132 {
1133 void *vaddr = __va(paddr);
1134 void *vaddr_end = vaddr + size;
1135
1136 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1137 make_lowmem_page_readwrite(vaddr);
1138
1139 memblock_free(paddr, size);
1140 }
1141
1142 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1143 {
1144 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1145
1146 if (unpin)
1147 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1148 ClearPagePinned(virt_to_page(__va(pa)));
1149 xen_free_ro_pages(pa, PAGE_SIZE);
1150 }
1151
1152 /*
1153 * Since it is well isolated we can (and since it is perhaps large we should)
1154 * also free the page tables mapping the initial P->M table.
1155 */
1156 static void __init xen_cleanmfnmap(unsigned long vaddr)
1157 {
1158 unsigned long va = vaddr & PMD_MASK;
1159 unsigned long pa;
1160 pgd_t *pgd = pgd_offset_k(va);
1161 pud_t *pud_page = pud_offset(pgd, 0);
1162 pud_t *pud;
1163 pmd_t *pmd;
1164 pte_t *pte;
1165 unsigned int i;
1166 bool unpin;
1167
1168 unpin = (vaddr == 2 * PGDIR_SIZE);
1169 set_pgd(pgd, __pgd(0));
1170 do {
1171 pud = pud_page + pud_index(va);
1172 if (pud_none(*pud)) {
1173 va += PUD_SIZE;
1174 } else if (pud_large(*pud)) {
1175 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1176 xen_free_ro_pages(pa, PUD_SIZE);
1177 va += PUD_SIZE;
1178 } else {
1179 pmd = pmd_offset(pud, va);
1180 if (pmd_large(*pmd)) {
1181 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1182 xen_free_ro_pages(pa, PMD_SIZE);
1183 } else if (!pmd_none(*pmd)) {
1184 pte = pte_offset_kernel(pmd, va);
1185 set_pmd(pmd, __pmd(0));
1186 for (i = 0; i < PTRS_PER_PTE; ++i) {
1187 if (pte_none(pte[i]))
1188 break;
1189 pa = pte_pfn(pte[i]) << PAGE_SHIFT;
1190 xen_free_ro_pages(pa, PAGE_SIZE);
1191 }
1192 xen_cleanmfnmap_free_pgtbl(pte, unpin);
1193 }
1194 va += PMD_SIZE;
1195 if (pmd_index(va))
1196 continue;
1197 set_pud(pud, __pud(0));
1198 xen_cleanmfnmap_free_pgtbl(pmd, unpin);
1199 }
1200
1201 } while (pud_index(va) || pmd_index(va));
1202 xen_cleanmfnmap_free_pgtbl(pud_page, unpin);
1203 }
1204
1205 static void __init xen_pagetable_p2m_free(void)
1206 {
1207 unsigned long size;
1208 unsigned long addr;
1209
1210 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1211
1212 /* No memory or already called. */
1213 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1214 return;
1215
1216 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1217 memset((void *)xen_start_info->mfn_list, 0xff, size);
1218
1219 addr = xen_start_info->mfn_list;
1220 /*
1221 * We could be in __ka space.
1222 * We roundup to the PMD, which means that if anybody at this stage is
1223 * using the __ka address of xen_start_info or
1224 * xen_start_info->shared_info they are in going to crash. Fortunatly
1225 * we have already revectored in xen_setup_kernel_pagetable and in
1226 * xen_setup_shared_info.
1227 */
1228 size = roundup(size, PMD_SIZE);
1229
1230 if (addr >= __START_KERNEL_map) {
1231 xen_cleanhighmap(addr, addr + size);
1232 size = PAGE_ALIGN(xen_start_info->nr_pages *
1233 sizeof(unsigned long));
1234 memblock_free(__pa(addr), size);
1235 } else {
1236 xen_cleanmfnmap(addr);
1237 }
1238 }
1239
1240 static void __init xen_pagetable_cleanhighmap(void)
1241 {
1242 unsigned long size;
1243 unsigned long addr;
1244
1245 /* At this stage, cleanup_highmap has already cleaned __ka space
1246 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1247 * the ramdisk). We continue on, erasing PMD entries that point to page
1248 * tables - do note that they are accessible at this stage via __va.
1249 * For good measure we also round up to the PMD - which means that if
1250 * anybody is using __ka address to the initial boot-stack - and try
1251 * to use it - they are going to crash. The xen_start_info has been
1252 * taken care of already in xen_setup_kernel_pagetable. */
1253 addr = xen_start_info->pt_base;
1254 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1255
1256 xen_cleanhighmap(addr, addr + size);
1257 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1258 #ifdef DEBUG
1259 /* This is superfluous and is not necessary, but you know what
1260 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1261 * anything at this stage. */
1262 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1263 #endif
1264 }
1265 #endif
1266
1267 static void __init xen_pagetable_p2m_setup(void)
1268 {
1269 if (xen_feature(XENFEAT_auto_translated_physmap))
1270 return;
1271
1272 xen_vmalloc_p2m_tree();
1273
1274 #ifdef CONFIG_X86_64
1275 xen_pagetable_p2m_free();
1276
1277 xen_pagetable_cleanhighmap();
1278 #endif
1279 /* And revector! Bye bye old array */
1280 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1281 }
1282
1283 static void __init xen_pagetable_init(void)
1284 {
1285 paging_init();
1286 xen_post_allocator_init();
1287
1288 xen_pagetable_p2m_setup();
1289
1290 /* Allocate and initialize top and mid mfn levels for p2m structure */
1291 xen_build_mfn_list_list();
1292
1293 /* Remap memory freed due to conflicts with E820 map */
1294 if (!xen_feature(XENFEAT_auto_translated_physmap))
1295 xen_remap_memory();
1296
1297 xen_setup_shared_info();
1298 }
1299 static void xen_write_cr2(unsigned long cr2)
1300 {
1301 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1302 }
1303
1304 static unsigned long xen_read_cr2(void)
1305 {
1306 return this_cpu_read(xen_vcpu)->arch.cr2;
1307 }
1308
1309 unsigned long xen_read_cr2_direct(void)
1310 {
1311 return this_cpu_read(xen_vcpu_info.arch.cr2);
1312 }
1313
1314 void xen_flush_tlb_all(void)
1315 {
1316 struct mmuext_op *op;
1317 struct multicall_space mcs;
1318
1319 trace_xen_mmu_flush_tlb_all(0);
1320
1321 preempt_disable();
1322
1323 mcs = xen_mc_entry(sizeof(*op));
1324
1325 op = mcs.args;
1326 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1327 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1328
1329 xen_mc_issue(PARAVIRT_LAZY_MMU);
1330
1331 preempt_enable();
1332 }
1333 static void xen_flush_tlb(void)
1334 {
1335 struct mmuext_op *op;
1336 struct multicall_space mcs;
1337
1338 trace_xen_mmu_flush_tlb(0);
1339
1340 preempt_disable();
1341
1342 mcs = xen_mc_entry(sizeof(*op));
1343
1344 op = mcs.args;
1345 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1346 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1347
1348 xen_mc_issue(PARAVIRT_LAZY_MMU);
1349
1350 preempt_enable();
1351 }
1352
1353 static void xen_flush_tlb_single(unsigned long addr)
1354 {
1355 struct mmuext_op *op;
1356 struct multicall_space mcs;
1357
1358 trace_xen_mmu_flush_tlb_single(addr);
1359
1360 preempt_disable();
1361
1362 mcs = xen_mc_entry(sizeof(*op));
1363 op = mcs.args;
1364 op->cmd = MMUEXT_INVLPG_LOCAL;
1365 op->arg1.linear_addr = addr & PAGE_MASK;
1366 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1367
1368 xen_mc_issue(PARAVIRT_LAZY_MMU);
1369
1370 preempt_enable();
1371 }
1372
1373 static void xen_flush_tlb_others(const struct cpumask *cpus,
1374 struct mm_struct *mm, unsigned long start,
1375 unsigned long end)
1376 {
1377 struct {
1378 struct mmuext_op op;
1379 #ifdef CONFIG_SMP
1380 DECLARE_BITMAP(mask, num_processors);
1381 #else
1382 DECLARE_BITMAP(mask, NR_CPUS);
1383 #endif
1384 } *args;
1385 struct multicall_space mcs;
1386
1387 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1388
1389 if (cpumask_empty(cpus))
1390 return; /* nothing to do */
1391
1392 mcs = xen_mc_entry(sizeof(*args));
1393 args = mcs.args;
1394 args->op.arg2.vcpumask = to_cpumask(args->mask);
1395
1396 /* Remove us, and any offline CPUS. */
1397 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1398 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1399
1400 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1401 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1402 args->op.cmd = MMUEXT_INVLPG_MULTI;
1403 args->op.arg1.linear_addr = start;
1404 }
1405
1406 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1407
1408 xen_mc_issue(PARAVIRT_LAZY_MMU);
1409 }
1410
1411 static unsigned long xen_read_cr3(void)
1412 {
1413 return this_cpu_read(xen_cr3);
1414 }
1415
1416 static void set_current_cr3(void *v)
1417 {
1418 this_cpu_write(xen_current_cr3, (unsigned long)v);
1419 }
1420
1421 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1422 {
1423 struct mmuext_op op;
1424 unsigned long mfn;
1425
1426 trace_xen_mmu_write_cr3(kernel, cr3);
1427
1428 if (cr3)
1429 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1430 else
1431 mfn = 0;
1432
1433 WARN_ON(mfn == 0 && kernel);
1434
1435 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1436 op.arg1.mfn = mfn;
1437
1438 xen_extend_mmuext_op(&op);
1439
1440 if (kernel) {
1441 this_cpu_write(xen_cr3, cr3);
1442
1443 /* Update xen_current_cr3 once the batch has actually
1444 been submitted. */
1445 xen_mc_callback(set_current_cr3, (void *)cr3);
1446 }
1447 }
1448 static void xen_write_cr3(unsigned long cr3)
1449 {
1450 BUG_ON(preemptible());
1451
1452 xen_mc_batch(); /* disables interrupts */
1453
1454 /* Update while interrupts are disabled, so its atomic with
1455 respect to ipis */
1456 this_cpu_write(xen_cr3, cr3);
1457
1458 __xen_write_cr3(true, cr3);
1459
1460 #ifdef CONFIG_X86_64
1461 {
1462 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1463 if (user_pgd)
1464 __xen_write_cr3(false, __pa(user_pgd));
1465 else
1466 __xen_write_cr3(false, 0);
1467 }
1468 #endif
1469
1470 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1471 }
1472
1473 #ifdef CONFIG_X86_64
1474 /*
1475 * At the start of the day - when Xen launches a guest, it has already
1476 * built pagetables for the guest. We diligently look over them
1477 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1478 * init_level4_pgt and its friends. Then when we are happy we load
1479 * the new init_level4_pgt - and continue on.
1480 *
1481 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1482 * up the rest of the pagetables. When it has completed it loads the cr3.
1483 * N.B. that baremetal would start at 'start_kernel' (and the early
1484 * #PF handler would create bootstrap pagetables) - so we are running
1485 * with the same assumptions as what to do when write_cr3 is executed
1486 * at this point.
1487 *
1488 * Since there are no user-page tables at all, we have two variants
1489 * of xen_write_cr3 - the early bootup (this one), and the late one
1490 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1491 * the Linux kernel and user-space are both in ring 3 while the
1492 * hypervisor is in ring 0.
1493 */
1494 static void __init xen_write_cr3_init(unsigned long cr3)
1495 {
1496 BUG_ON(preemptible());
1497
1498 xen_mc_batch(); /* disables interrupts */
1499
1500 /* Update while interrupts are disabled, so its atomic with
1501 respect to ipis */
1502 this_cpu_write(xen_cr3, cr3);
1503
1504 __xen_write_cr3(true, cr3);
1505
1506 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1507 }
1508 #endif
1509
1510 static int xen_pgd_alloc(struct mm_struct *mm)
1511 {
1512 pgd_t *pgd = mm->pgd;
1513 int ret = 0;
1514
1515 BUG_ON(PagePinned(virt_to_page(pgd)));
1516
1517 #ifdef CONFIG_X86_64
1518 {
1519 struct page *page = virt_to_page(pgd);
1520 pgd_t *user_pgd;
1521
1522 BUG_ON(page->private != 0);
1523
1524 ret = -ENOMEM;
1525
1526 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1527 page->private = (unsigned long)user_pgd;
1528
1529 if (user_pgd != NULL) {
1530 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1531 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1532 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1533 #endif
1534 ret = 0;
1535 }
1536
1537 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1538 }
1539 #endif
1540
1541 return ret;
1542 }
1543
1544 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1545 {
1546 #ifdef CONFIG_X86_64
1547 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1548
1549 if (user_pgd)
1550 free_page((unsigned long)user_pgd);
1551 #endif
1552 }
1553
1554 /*
1555 * Init-time set_pte while constructing initial pagetables, which
1556 * doesn't allow RO page table pages to be remapped RW.
1557 *
1558 * If there is no MFN for this PFN then this page is initially
1559 * ballooned out so clear the PTE (as in decrease_reservation() in
1560 * drivers/xen/balloon.c).
1561 *
1562 * Many of these PTE updates are done on unpinned and writable pages
1563 * and doing a hypercall for these is unnecessary and expensive. At
1564 * this point it is not possible to tell if a page is pinned or not,
1565 * so always write the PTE directly and rely on Xen trapping and
1566 * emulating any updates as necessary.
1567 */
1568 __visible pte_t xen_make_pte_init(pteval_t pte)
1569 {
1570 #ifdef CONFIG_X86_64
1571 unsigned long pfn;
1572
1573 /*
1574 * Pages belonging to the initial p2m list mapped outside the default
1575 * address range must be mapped read-only. This region contains the
1576 * page tables for mapping the p2m list, too, and page tables MUST be
1577 * mapped read-only.
1578 */
1579 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1580 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1581 pfn >= xen_start_info->first_p2m_pfn &&
1582 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1583 pte &= ~_PAGE_RW;
1584 #endif
1585 pte = pte_pfn_to_mfn(pte);
1586 return native_make_pte(pte);
1587 }
1588 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1589
1590 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1591 {
1592 #ifdef CONFIG_X86_32
1593 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1594 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1595 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1596 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1597 pte_val_ma(pte));
1598 #endif
1599 native_set_pte(ptep, pte);
1600 }
1601
1602 /* Early in boot, while setting up the initial pagetable, assume
1603 everything is pinned. */
1604 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1605 {
1606 #ifdef CONFIG_FLATMEM
1607 BUG_ON(mem_map); /* should only be used early */
1608 #endif
1609 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1610 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1611 }
1612
1613 /* Used for pmd and pud */
1614 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1615 {
1616 #ifdef CONFIG_FLATMEM
1617 BUG_ON(mem_map); /* should only be used early */
1618 #endif
1619 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1620 }
1621
1622 /* Early release_pte assumes that all pts are pinned, since there's
1623 only init_mm and anything attached to that is pinned. */
1624 static void __init xen_release_pte_init(unsigned long pfn)
1625 {
1626 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1627 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1628 }
1629
1630 static void __init xen_release_pmd_init(unsigned long pfn)
1631 {
1632 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1633 }
1634
1635 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1636 {
1637 struct multicall_space mcs;
1638 struct mmuext_op *op;
1639
1640 mcs = __xen_mc_entry(sizeof(*op));
1641 op = mcs.args;
1642 op->cmd = cmd;
1643 op->arg1.mfn = pfn_to_mfn(pfn);
1644
1645 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1646 }
1647
1648 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1649 {
1650 struct multicall_space mcs;
1651 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1652
1653 mcs = __xen_mc_entry(0);
1654 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1655 pfn_pte(pfn, prot), 0);
1656 }
1657
1658 /* This needs to make sure the new pte page is pinned iff its being
1659 attached to a pinned pagetable. */
1660 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1661 unsigned level)
1662 {
1663 bool pinned = PagePinned(virt_to_page(mm->pgd));
1664
1665 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1666
1667 if (pinned) {
1668 struct page *page = pfn_to_page(pfn);
1669
1670 SetPagePinned(page);
1671
1672 if (!PageHighMem(page)) {
1673 xen_mc_batch();
1674
1675 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1676
1677 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1678 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1679
1680 xen_mc_issue(PARAVIRT_LAZY_MMU);
1681 } else {
1682 /* make sure there are no stray mappings of
1683 this page */
1684 kmap_flush_unused();
1685 }
1686 }
1687 }
1688
1689 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1690 {
1691 xen_alloc_ptpage(mm, pfn, PT_PTE);
1692 }
1693
1694 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1695 {
1696 xen_alloc_ptpage(mm, pfn, PT_PMD);
1697 }
1698
1699 /* This should never happen until we're OK to use struct page */
1700 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1701 {
1702 struct page *page = pfn_to_page(pfn);
1703 bool pinned = PagePinned(page);
1704
1705 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1706
1707 if (pinned) {
1708 if (!PageHighMem(page)) {
1709 xen_mc_batch();
1710
1711 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1712 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1713
1714 __set_pfn_prot(pfn, PAGE_KERNEL);
1715
1716 xen_mc_issue(PARAVIRT_LAZY_MMU);
1717 }
1718 ClearPagePinned(page);
1719 }
1720 }
1721
1722 static void xen_release_pte(unsigned long pfn)
1723 {
1724 xen_release_ptpage(pfn, PT_PTE);
1725 }
1726
1727 static void xen_release_pmd(unsigned long pfn)
1728 {
1729 xen_release_ptpage(pfn, PT_PMD);
1730 }
1731
1732 #if CONFIG_PGTABLE_LEVELS == 4
1733 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1734 {
1735 xen_alloc_ptpage(mm, pfn, PT_PUD);
1736 }
1737
1738 static void xen_release_pud(unsigned long pfn)
1739 {
1740 xen_release_ptpage(pfn, PT_PUD);
1741 }
1742 #endif
1743
1744 void __init xen_reserve_top(void)
1745 {
1746 #ifdef CONFIG_X86_32
1747 unsigned long top = HYPERVISOR_VIRT_START;
1748 struct xen_platform_parameters pp;
1749
1750 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1751 top = pp.virt_start;
1752
1753 reserve_top_address(-top);
1754 #endif /* CONFIG_X86_32 */
1755 }
1756
1757 /*
1758 * Like __va(), but returns address in the kernel mapping (which is
1759 * all we have until the physical memory mapping has been set up.
1760 */
1761 static void * __init __ka(phys_addr_t paddr)
1762 {
1763 #ifdef CONFIG_X86_64
1764 return (void *)(paddr + __START_KERNEL_map);
1765 #else
1766 return __va(paddr);
1767 #endif
1768 }
1769
1770 /* Convert a machine address to physical address */
1771 static unsigned long __init m2p(phys_addr_t maddr)
1772 {
1773 phys_addr_t paddr;
1774
1775 maddr &= PTE_PFN_MASK;
1776 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1777
1778 return paddr;
1779 }
1780
1781 /* Convert a machine address to kernel virtual */
1782 static void * __init m2v(phys_addr_t maddr)
1783 {
1784 return __ka(m2p(maddr));
1785 }
1786
1787 /* Set the page permissions on an identity-mapped pages */
1788 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1789 unsigned long flags)
1790 {
1791 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1792 pte_t pte = pfn_pte(pfn, prot);
1793
1794 /* For PVH no need to set R/O or R/W to pin them or unpin them. */
1795 if (xen_feature(XENFEAT_auto_translated_physmap))
1796 return;
1797
1798 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1799 BUG();
1800 }
1801 static void __init set_page_prot(void *addr, pgprot_t prot)
1802 {
1803 return set_page_prot_flags(addr, prot, UVMF_NONE);
1804 }
1805 #ifdef CONFIG_X86_32
1806 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1807 {
1808 unsigned pmdidx, pteidx;
1809 unsigned ident_pte;
1810 unsigned long pfn;
1811
1812 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1813 PAGE_SIZE);
1814
1815 ident_pte = 0;
1816 pfn = 0;
1817 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1818 pte_t *pte_page;
1819
1820 /* Reuse or allocate a page of ptes */
1821 if (pmd_present(pmd[pmdidx]))
1822 pte_page = m2v(pmd[pmdidx].pmd);
1823 else {
1824 /* Check for free pte pages */
1825 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1826 break;
1827
1828 pte_page = &level1_ident_pgt[ident_pte];
1829 ident_pte += PTRS_PER_PTE;
1830
1831 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1832 }
1833
1834 /* Install mappings */
1835 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1836 pte_t pte;
1837
1838 if (pfn > max_pfn_mapped)
1839 max_pfn_mapped = pfn;
1840
1841 if (!pte_none(pte_page[pteidx]))
1842 continue;
1843
1844 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1845 pte_page[pteidx] = pte;
1846 }
1847 }
1848
1849 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1850 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1851
1852 set_page_prot(pmd, PAGE_KERNEL_RO);
1853 }
1854 #endif
1855 void __init xen_setup_machphys_mapping(void)
1856 {
1857 struct xen_machphys_mapping mapping;
1858
1859 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1860 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1861 machine_to_phys_nr = mapping.max_mfn + 1;
1862 } else {
1863 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1864 }
1865 #ifdef CONFIG_X86_32
1866 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1867 < machine_to_phys_mapping);
1868 #endif
1869 }
1870
1871 #ifdef CONFIG_X86_64
1872 static void __init convert_pfn_mfn(void *v)
1873 {
1874 pte_t *pte = v;
1875 int i;
1876
1877 /* All levels are converted the same way, so just treat them
1878 as ptes. */
1879 for (i = 0; i < PTRS_PER_PTE; i++)
1880 pte[i] = xen_make_pte(pte[i].pte);
1881 }
1882 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1883 unsigned long addr)
1884 {
1885 if (*pt_base == PFN_DOWN(__pa(addr))) {
1886 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1887 clear_page((void *)addr);
1888 (*pt_base)++;
1889 }
1890 if (*pt_end == PFN_DOWN(__pa(addr))) {
1891 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1892 clear_page((void *)addr);
1893 (*pt_end)--;
1894 }
1895 }
1896 /*
1897 * Set up the initial kernel pagetable.
1898 *
1899 * We can construct this by grafting the Xen provided pagetable into
1900 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1901 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1902 * kernel has a physical mapping to start with - but that's enough to
1903 * get __va working. We need to fill in the rest of the physical
1904 * mapping once some sort of allocator has been set up. NOTE: for
1905 * PVH, the page tables are native.
1906 */
1907 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1908 {
1909 pud_t *l3;
1910 pmd_t *l2;
1911 unsigned long addr[3];
1912 unsigned long pt_base, pt_end;
1913 unsigned i;
1914
1915 /* max_pfn_mapped is the last pfn mapped in the initial memory
1916 * mappings. Considering that on Xen after the kernel mappings we
1917 * have the mappings of some pages that don't exist in pfn space, we
1918 * set max_pfn_mapped to the last real pfn mapped. */
1919 if (xen_start_info->mfn_list < __START_KERNEL_map)
1920 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1921 else
1922 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1923
1924 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1925 pt_end = pt_base + xen_start_info->nr_pt_frames;
1926
1927 /* Zap identity mapping */
1928 init_level4_pgt[0] = __pgd(0);
1929
1930 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1931 /* Pre-constructed entries are in pfn, so convert to mfn */
1932 /* L4[272] -> level3_ident_pgt
1933 * L4[511] -> level3_kernel_pgt */
1934 convert_pfn_mfn(init_level4_pgt);
1935
1936 /* L3_i[0] -> level2_ident_pgt */
1937 convert_pfn_mfn(level3_ident_pgt);
1938 /* L3_k[510] -> level2_kernel_pgt
1939 * L3_k[511] -> level2_fixmap_pgt */
1940 convert_pfn_mfn(level3_kernel_pgt);
1941
1942 /* L3_k[511][506] -> level1_fixmap_pgt */
1943 convert_pfn_mfn(level2_fixmap_pgt);
1944 }
1945 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1946 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1947 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1948
1949 addr[0] = (unsigned long)pgd;
1950 addr[1] = (unsigned long)l3;
1951 addr[2] = (unsigned long)l2;
1952 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1953 * Both L4[272][0] and L4[511][510] have entries that point to the same
1954 * L2 (PMD) tables. Meaning that if you modify it in __va space
1955 * it will be also modified in the __ka space! (But if you just
1956 * modify the PMD table to point to other PTE's or none, then you
1957 * are OK - which is what cleanup_highmap does) */
1958 copy_page(level2_ident_pgt, l2);
1959 /* Graft it onto L4[511][510] */
1960 copy_page(level2_kernel_pgt, l2);
1961
1962 /* Copy the initial P->M table mappings if necessary. */
1963 i = pgd_index(xen_start_info->mfn_list);
1964 if (i && i < pgd_index(__START_KERNEL_map))
1965 init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1966
1967 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1968 /* Make pagetable pieces RO */
1969 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1970 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1971 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1972 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1973 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1974 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1975 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1976 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1977
1978 /* Pin down new L4 */
1979 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1980 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1981
1982 /* Unpin Xen-provided one */
1983 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1984
1985 /*
1986 * At this stage there can be no user pgd, and no page
1987 * structure to attach it to, so make sure we just set kernel
1988 * pgd.
1989 */
1990 xen_mc_batch();
1991 __xen_write_cr3(true, __pa(init_level4_pgt));
1992 xen_mc_issue(PARAVIRT_LAZY_CPU);
1993 } else
1994 native_write_cr3(__pa(init_level4_pgt));
1995
1996 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1997 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1998 * the initial domain. For guests using the toolstack, they are in:
1999 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
2000 * rip out the [L4] (pgd), but for guests we shave off three pages.
2001 */
2002 for (i = 0; i < ARRAY_SIZE(addr); i++)
2003 check_pt_base(&pt_base, &pt_end, addr[i]);
2004
2005 /* Our (by three pages) smaller Xen pagetable that we are using */
2006 xen_pt_base = PFN_PHYS(pt_base);
2007 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2008 memblock_reserve(xen_pt_base, xen_pt_size);
2009
2010 /* Revector the xen_start_info */
2011 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2012 }
2013
2014 /*
2015 * Read a value from a physical address.
2016 */
2017 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2018 {
2019 unsigned long *vaddr;
2020 unsigned long val;
2021
2022 vaddr = early_memremap_ro(addr, sizeof(val));
2023 val = *vaddr;
2024 early_memunmap(vaddr, sizeof(val));
2025 return val;
2026 }
2027
2028 /*
2029 * Translate a virtual address to a physical one without relying on mapped
2030 * page tables.
2031 */
2032 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2033 {
2034 phys_addr_t pa;
2035 pgd_t pgd;
2036 pud_t pud;
2037 pmd_t pmd;
2038 pte_t pte;
2039
2040 pa = read_cr3();
2041 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2042 sizeof(pgd)));
2043 if (!pgd_present(pgd))
2044 return 0;
2045
2046 pa = pgd_val(pgd) & PTE_PFN_MASK;
2047 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2048 sizeof(pud)));
2049 if (!pud_present(pud))
2050 return 0;
2051 pa = pud_pfn(pud) << PAGE_SHIFT;
2052 if (pud_large(pud))
2053 return pa + (vaddr & ~PUD_MASK);
2054
2055 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2056 sizeof(pmd)));
2057 if (!pmd_present(pmd))
2058 return 0;
2059 pa = pmd_pfn(pmd) << PAGE_SHIFT;
2060 if (pmd_large(pmd))
2061 return pa + (vaddr & ~PMD_MASK);
2062
2063 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2064 sizeof(pte)));
2065 if (!pte_present(pte))
2066 return 0;
2067 pa = pte_pfn(pte) << PAGE_SHIFT;
2068
2069 return pa | (vaddr & ~PAGE_MASK);
2070 }
2071
2072 /*
2073 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2074 * this area.
2075 */
2076 void __init xen_relocate_p2m(void)
2077 {
2078 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2079 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2080 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2081 pte_t *pt;
2082 pmd_t *pmd;
2083 pud_t *pud;
2084 pgd_t *pgd;
2085 unsigned long *new_p2m;
2086
2087 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2088 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2089 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2090 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2091 n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2092 n_frames = n_pte + n_pt + n_pmd + n_pud;
2093
2094 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2095 if (!new_area) {
2096 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2097 BUG();
2098 }
2099
2100 /*
2101 * Setup the page tables for addressing the new p2m list.
2102 * We have asked the hypervisor to map the p2m list at the user address
2103 * PUD_SIZE. It may have done so, or it may have used a kernel space
2104 * address depending on the Xen version.
2105 * To avoid any possible virtual address collision, just use
2106 * 2 * PUD_SIZE for the new area.
2107 */
2108 pud_phys = new_area;
2109 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2110 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2111 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2112
2113 pgd = __va(read_cr3());
2114 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2115 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2116 pud = early_memremap(pud_phys, PAGE_SIZE);
2117 clear_page(pud);
2118 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2119 idx_pmd++) {
2120 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2121 clear_page(pmd);
2122 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2123 idx_pt++) {
2124 pt = early_memremap(pt_phys, PAGE_SIZE);
2125 clear_page(pt);
2126 for (idx_pte = 0;
2127 idx_pte < min(n_pte, PTRS_PER_PTE);
2128 idx_pte++) {
2129 set_pte(pt + idx_pte,
2130 pfn_pte(p2m_pfn, PAGE_KERNEL));
2131 p2m_pfn++;
2132 }
2133 n_pte -= PTRS_PER_PTE;
2134 early_memunmap(pt, PAGE_SIZE);
2135 make_lowmem_page_readonly(__va(pt_phys));
2136 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2137 PFN_DOWN(pt_phys));
2138 set_pmd(pmd + idx_pt,
2139 __pmd(_PAGE_TABLE | pt_phys));
2140 pt_phys += PAGE_SIZE;
2141 }
2142 n_pt -= PTRS_PER_PMD;
2143 early_memunmap(pmd, PAGE_SIZE);
2144 make_lowmem_page_readonly(__va(pmd_phys));
2145 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2146 PFN_DOWN(pmd_phys));
2147 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2148 pmd_phys += PAGE_SIZE;
2149 }
2150 n_pmd -= PTRS_PER_PUD;
2151 early_memunmap(pud, PAGE_SIZE);
2152 make_lowmem_page_readonly(__va(pud_phys));
2153 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2154 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2155 pud_phys += PAGE_SIZE;
2156 }
2157
2158 /* Now copy the old p2m info to the new area. */
2159 memcpy(new_p2m, xen_p2m_addr, size);
2160 xen_p2m_addr = new_p2m;
2161
2162 /* Release the old p2m list and set new list info. */
2163 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2164 BUG_ON(!p2m_pfn);
2165 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2166
2167 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2168 pfn = xen_start_info->first_p2m_pfn;
2169 pfn_end = xen_start_info->first_p2m_pfn +
2170 xen_start_info->nr_p2m_frames;
2171 set_pgd(pgd + 1, __pgd(0));
2172 } else {
2173 pfn = p2m_pfn;
2174 pfn_end = p2m_pfn_end;
2175 }
2176
2177 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2178 while (pfn < pfn_end) {
2179 if (pfn == p2m_pfn) {
2180 pfn = p2m_pfn_end;
2181 continue;
2182 }
2183 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2184 pfn++;
2185 }
2186
2187 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2188 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2189 xen_start_info->nr_p2m_frames = n_frames;
2190 }
2191
2192 #else /* !CONFIG_X86_64 */
2193 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2194 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2195
2196 static void __init xen_write_cr3_init(unsigned long cr3)
2197 {
2198 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2199
2200 BUG_ON(read_cr3() != __pa(initial_page_table));
2201 BUG_ON(cr3 != __pa(swapper_pg_dir));
2202
2203 /*
2204 * We are switching to swapper_pg_dir for the first time (from
2205 * initial_page_table) and therefore need to mark that page
2206 * read-only and then pin it.
2207 *
2208 * Xen disallows sharing of kernel PMDs for PAE
2209 * guests. Therefore we must copy the kernel PMD from
2210 * initial_page_table into a new kernel PMD to be used in
2211 * swapper_pg_dir.
2212 */
2213 swapper_kernel_pmd =
2214 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2215 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2216 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2217 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2218 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2219
2220 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2221 xen_write_cr3(cr3);
2222 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2223
2224 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2225 PFN_DOWN(__pa(initial_page_table)));
2226 set_page_prot(initial_page_table, PAGE_KERNEL);
2227 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2228
2229 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2230 }
2231
2232 /*
2233 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2234 * not the first page table in the page table pool.
2235 * Iterate through the initial page tables to find the real page table base.
2236 */
2237 static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2238 {
2239 phys_addr_t pt_base, paddr;
2240 unsigned pmdidx;
2241
2242 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2243
2244 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2245 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2246 paddr = m2p(pmd[pmdidx].pmd);
2247 pt_base = min(pt_base, paddr);
2248 }
2249
2250 return pt_base;
2251 }
2252
2253 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2254 {
2255 pmd_t *kernel_pmd;
2256
2257 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2258
2259 xen_pt_base = xen_find_pt_base(kernel_pmd);
2260 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2261
2262 initial_kernel_pmd =
2263 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2264
2265 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2266
2267 copy_page(initial_kernel_pmd, kernel_pmd);
2268
2269 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2270
2271 copy_page(initial_page_table, pgd);
2272 initial_page_table[KERNEL_PGD_BOUNDARY] =
2273 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2274
2275 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2276 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2277 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2278
2279 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2280
2281 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2282 PFN_DOWN(__pa(initial_page_table)));
2283 xen_write_cr3(__pa(initial_page_table));
2284
2285 memblock_reserve(xen_pt_base, xen_pt_size);
2286 }
2287 #endif /* CONFIG_X86_64 */
2288
2289 void __init xen_reserve_special_pages(void)
2290 {
2291 phys_addr_t paddr;
2292
2293 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2294 if (xen_start_info->store_mfn) {
2295 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2296 memblock_reserve(paddr, PAGE_SIZE);
2297 }
2298 if (!xen_initial_domain()) {
2299 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2300 memblock_reserve(paddr, PAGE_SIZE);
2301 }
2302 }
2303
2304 void __init xen_pt_check_e820(void)
2305 {
2306 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2307 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2308 BUG();
2309 }
2310 }
2311
2312 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2313
2314 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2315 {
2316 pte_t pte;
2317
2318 phys >>= PAGE_SHIFT;
2319
2320 switch (idx) {
2321 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2322 case FIX_RO_IDT:
2323 #ifdef CONFIG_X86_32
2324 case FIX_WP_TEST:
2325 # ifdef CONFIG_HIGHMEM
2326 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2327 # endif
2328 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2329 case VSYSCALL_PAGE:
2330 #endif
2331 case FIX_TEXT_POKE0:
2332 case FIX_TEXT_POKE1:
2333 /* All local page mappings */
2334 pte = pfn_pte(phys, prot);
2335 break;
2336
2337 #ifdef CONFIG_X86_LOCAL_APIC
2338 case FIX_APIC_BASE: /* maps dummy local APIC */
2339 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2340 break;
2341 #endif
2342
2343 #ifdef CONFIG_X86_IO_APIC
2344 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2345 /*
2346 * We just don't map the IO APIC - all access is via
2347 * hypercalls. Keep the address in the pte for reference.
2348 */
2349 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2350 break;
2351 #endif
2352
2353 case FIX_PARAVIRT_BOOTMAP:
2354 /* This is an MFN, but it isn't an IO mapping from the
2355 IO domain */
2356 pte = mfn_pte(phys, prot);
2357 break;
2358
2359 default:
2360 /* By default, set_fixmap is used for hardware mappings */
2361 pte = mfn_pte(phys, prot);
2362 break;
2363 }
2364
2365 __native_set_fixmap(idx, pte);
2366
2367 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2368 /* Replicate changes to map the vsyscall page into the user
2369 pagetable vsyscall mapping. */
2370 if (idx == VSYSCALL_PAGE) {
2371 unsigned long vaddr = __fix_to_virt(idx);
2372 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2373 }
2374 #endif
2375 }
2376
2377 static void __init xen_post_allocator_init(void)
2378 {
2379 if (xen_feature(XENFEAT_auto_translated_physmap))
2380 return;
2381
2382 pv_mmu_ops.set_pte = xen_set_pte;
2383 pv_mmu_ops.set_pmd = xen_set_pmd;
2384 pv_mmu_ops.set_pud = xen_set_pud;
2385 #if CONFIG_PGTABLE_LEVELS == 4
2386 pv_mmu_ops.set_pgd = xen_set_pgd;
2387 #endif
2388
2389 /* This will work as long as patching hasn't happened yet
2390 (which it hasn't) */
2391 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2392 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2393 pv_mmu_ops.release_pte = xen_release_pte;
2394 pv_mmu_ops.release_pmd = xen_release_pmd;
2395 #if CONFIG_PGTABLE_LEVELS == 4
2396 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2397 pv_mmu_ops.release_pud = xen_release_pud;
2398 #endif
2399 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2400
2401 #ifdef CONFIG_X86_64
2402 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2403 SetPagePinned(virt_to_page(level3_user_vsyscall));
2404 #endif
2405 xen_mark_init_mm_pinned();
2406 }
2407
2408 static void xen_leave_lazy_mmu(void)
2409 {
2410 preempt_disable();
2411 xen_mc_flush();
2412 paravirt_leave_lazy_mmu();
2413 preempt_enable();
2414 }
2415
2416 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2417 .read_cr2 = xen_read_cr2,
2418 .write_cr2 = xen_write_cr2,
2419
2420 .read_cr3 = xen_read_cr3,
2421 .write_cr3 = xen_write_cr3_init,
2422
2423 .flush_tlb_user = xen_flush_tlb,
2424 .flush_tlb_kernel = xen_flush_tlb,
2425 .flush_tlb_single = xen_flush_tlb_single,
2426 .flush_tlb_others = xen_flush_tlb_others,
2427
2428 .pte_update = paravirt_nop,
2429
2430 .pgd_alloc = xen_pgd_alloc,
2431 .pgd_free = xen_pgd_free,
2432
2433 .alloc_pte = xen_alloc_pte_init,
2434 .release_pte = xen_release_pte_init,
2435 .alloc_pmd = xen_alloc_pmd_init,
2436 .release_pmd = xen_release_pmd_init,
2437
2438 .set_pte = xen_set_pte_init,
2439 .set_pte_at = xen_set_pte_at,
2440 .set_pmd = xen_set_pmd_hyper,
2441
2442 .ptep_modify_prot_start = __ptep_modify_prot_start,
2443 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2444
2445 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2446 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2447
2448 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2449 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2450
2451 #ifdef CONFIG_X86_PAE
2452 .set_pte_atomic = xen_set_pte_atomic,
2453 .pte_clear = xen_pte_clear,
2454 .pmd_clear = xen_pmd_clear,
2455 #endif /* CONFIG_X86_PAE */
2456 .set_pud = xen_set_pud_hyper,
2457
2458 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2459 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2460
2461 #if CONFIG_PGTABLE_LEVELS == 4
2462 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2463 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2464 .set_pgd = xen_set_pgd_hyper,
2465
2466 .alloc_pud = xen_alloc_pmd_init,
2467 .release_pud = xen_release_pmd_init,
2468 #endif /* CONFIG_PGTABLE_LEVELS == 4 */
2469
2470 .activate_mm = xen_activate_mm,
2471 .dup_mmap = xen_dup_mmap,
2472 .exit_mmap = xen_exit_mmap,
2473
2474 .lazy_mode = {
2475 .enter = paravirt_enter_lazy_mmu,
2476 .leave = xen_leave_lazy_mmu,
2477 .flush = paravirt_flush_lazy_mmu,
2478 },
2479
2480 .set_fixmap = xen_set_fixmap,
2481 };
2482
2483 void __init xen_init_mmu_ops(void)
2484 {
2485 x86_init.paging.pagetable_init = xen_pagetable_init;
2486
2487 if (xen_feature(XENFEAT_auto_translated_physmap))
2488 return;
2489
2490 pv_mmu_ops = xen_mmu_ops;
2491
2492 memset(dummy_mapping, 0xff, PAGE_SIZE);
2493 }
2494
2495 /* Protected by xen_reservation_lock. */
2496 #define MAX_CONTIG_ORDER 9 /* 2MB */
2497 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2498
2499 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2500 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2501 unsigned long *in_frames,
2502 unsigned long *out_frames)
2503 {
2504 int i;
2505 struct multicall_space mcs;
2506
2507 xen_mc_batch();
2508 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2509 mcs = __xen_mc_entry(0);
2510
2511 if (in_frames)
2512 in_frames[i] = virt_to_mfn(vaddr);
2513
2514 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2515 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2516
2517 if (out_frames)
2518 out_frames[i] = virt_to_pfn(vaddr);
2519 }
2520 xen_mc_issue(0);
2521 }
2522
2523 /*
2524 * Update the pfn-to-mfn mappings for a virtual address range, either to
2525 * point to an array of mfns, or contiguously from a single starting
2526 * mfn.
2527 */
2528 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2529 unsigned long *mfns,
2530 unsigned long first_mfn)
2531 {
2532 unsigned i, limit;
2533 unsigned long mfn;
2534
2535 xen_mc_batch();
2536
2537 limit = 1u << order;
2538 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2539 struct multicall_space mcs;
2540 unsigned flags;
2541
2542 mcs = __xen_mc_entry(0);
2543 if (mfns)
2544 mfn = mfns[i];
2545 else
2546 mfn = first_mfn + i;
2547
2548 if (i < (limit - 1))
2549 flags = 0;
2550 else {
2551 if (order == 0)
2552 flags = UVMF_INVLPG | UVMF_ALL;
2553 else
2554 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2555 }
2556
2557 MULTI_update_va_mapping(mcs.mc, vaddr,
2558 mfn_pte(mfn, PAGE_KERNEL), flags);
2559
2560 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2561 }
2562
2563 xen_mc_issue(0);
2564 }
2565
2566 /*
2567 * Perform the hypercall to exchange a region of our pfns to point to
2568 * memory with the required contiguous alignment. Takes the pfns as
2569 * input, and populates mfns as output.
2570 *
2571 * Returns a success code indicating whether the hypervisor was able to
2572 * satisfy the request or not.
2573 */
2574 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2575 unsigned long *pfns_in,
2576 unsigned long extents_out,
2577 unsigned int order_out,
2578 unsigned long *mfns_out,
2579 unsigned int address_bits)
2580 {
2581 long rc;
2582 int success;
2583
2584 struct xen_memory_exchange exchange = {
2585 .in = {
2586 .nr_extents = extents_in,
2587 .extent_order = order_in,
2588 .extent_start = pfns_in,
2589 .domid = DOMID_SELF
2590 },
2591 .out = {
2592 .nr_extents = extents_out,
2593 .extent_order = order_out,
2594 .extent_start = mfns_out,
2595 .address_bits = address_bits,
2596 .domid = DOMID_SELF
2597 }
2598 };
2599
2600 BUG_ON(extents_in << order_in != extents_out << order_out);
2601
2602 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2603 success = (exchange.nr_exchanged == extents_in);
2604
2605 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2606 BUG_ON(success && (rc != 0));
2607
2608 return success;
2609 }
2610
2611 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2612 unsigned int address_bits,
2613 dma_addr_t *dma_handle)
2614 {
2615 unsigned long *in_frames = discontig_frames, out_frame;
2616 unsigned long flags;
2617 int success;
2618 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2619
2620 /*
2621 * Currently an auto-translated guest will not perform I/O, nor will
2622 * it require PAE page directories below 4GB. Therefore any calls to
2623 * this function are redundant and can be ignored.
2624 */
2625
2626 if (xen_feature(XENFEAT_auto_translated_physmap))
2627 return 0;
2628
2629 if (unlikely(order > MAX_CONTIG_ORDER))
2630 return -ENOMEM;
2631
2632 memset((void *) vstart, 0, PAGE_SIZE << order);
2633
2634 spin_lock_irqsave(&xen_reservation_lock, flags);
2635
2636 /* 1. Zap current PTEs, remembering MFNs. */
2637 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2638
2639 /* 2. Get a new contiguous memory extent. */
2640 out_frame = virt_to_pfn(vstart);
2641 success = xen_exchange_memory(1UL << order, 0, in_frames,
2642 1, order, &out_frame,
2643 address_bits);
2644
2645 /* 3. Map the new extent in place of old pages. */
2646 if (success)
2647 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2648 else
2649 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2650
2651 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2652
2653 *dma_handle = virt_to_machine(vstart).maddr;
2654 return success ? 0 : -ENOMEM;
2655 }
2656 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2657
2658 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2659 {
2660 unsigned long *out_frames = discontig_frames, in_frame;
2661 unsigned long flags;
2662 int success;
2663 unsigned long vstart;
2664
2665 if (xen_feature(XENFEAT_auto_translated_physmap))
2666 return;
2667
2668 if (unlikely(order > MAX_CONTIG_ORDER))
2669 return;
2670
2671 vstart = (unsigned long)phys_to_virt(pstart);
2672 memset((void *) vstart, 0, PAGE_SIZE << order);
2673
2674 spin_lock_irqsave(&xen_reservation_lock, flags);
2675
2676 /* 1. Find start MFN of contiguous extent. */
2677 in_frame = virt_to_mfn(vstart);
2678
2679 /* 2. Zap current PTEs. */
2680 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2681
2682 /* 3. Do the exchange for non-contiguous MFNs. */
2683 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2684 0, out_frames, 0);
2685
2686 /* 4. Map new pages in place of old pages. */
2687 if (success)
2688 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2689 else
2690 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2691
2692 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2693 }
2694 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2695
2696 #ifdef CONFIG_XEN_PVHVM
2697 #ifdef CONFIG_PROC_VMCORE
2698 /*
2699 * This function is used in two contexts:
2700 * - the kdump kernel has to check whether a pfn of the crashed kernel
2701 * was a ballooned page. vmcore is using this function to decide
2702 * whether to access a pfn of the crashed kernel.
2703 * - the kexec kernel has to check whether a pfn was ballooned by the
2704 * previous kernel. If the pfn is ballooned, handle it properly.
2705 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2706 * handle the pfn special in this case.
2707 */
2708 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2709 {
2710 struct xen_hvm_get_mem_type a = {
2711 .domid = DOMID_SELF,
2712 .pfn = pfn,
2713 };
2714 int ram;
2715
2716 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2717 return -ENXIO;
2718
2719 switch (a.mem_type) {
2720 case HVMMEM_mmio_dm:
2721 ram = 0;
2722 break;
2723 case HVMMEM_ram_rw:
2724 case HVMMEM_ram_ro:
2725 default:
2726 ram = 1;
2727 break;
2728 }
2729
2730 return ram;
2731 }
2732 #endif
2733
2734 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2735 {
2736 struct xen_hvm_pagetable_dying a;
2737 int rc;
2738
2739 a.domid = DOMID_SELF;
2740 a.gpa = __pa(mm->pgd);
2741 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2742 WARN_ON_ONCE(rc < 0);
2743 }
2744
2745 static int is_pagetable_dying_supported(void)
2746 {
2747 struct xen_hvm_pagetable_dying a;
2748 int rc = 0;
2749
2750 a.domid = DOMID_SELF;
2751 a.gpa = 0x00;
2752 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2753 if (rc < 0) {
2754 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2755 return 0;
2756 }
2757 return 1;
2758 }
2759
2760 void __init xen_hvm_init_mmu_ops(void)
2761 {
2762 if (is_pagetable_dying_supported())
2763 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2764 #ifdef CONFIG_PROC_VMCORE
2765 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2766 #endif
2767 }
2768 #endif
2769
2770 #define REMAP_BATCH_SIZE 16
2771
2772 struct remap_data {
2773 xen_pfn_t *mfn;
2774 bool contiguous;
2775 pgprot_t prot;
2776 struct mmu_update *mmu_update;
2777 };
2778
2779 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2780 unsigned long addr, void *data)
2781 {
2782 struct remap_data *rmd = data;
2783 pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2784
2785 /* If we have a contiguous range, just update the mfn itself,
2786 else update pointer to be "next mfn". */
2787 if (rmd->contiguous)
2788 (*rmd->mfn)++;
2789 else
2790 rmd->mfn++;
2791
2792 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2793 rmd->mmu_update->val = pte_val_ma(pte);
2794 rmd->mmu_update++;
2795
2796 return 0;
2797 }
2798
2799 static int do_remap_gfn(struct vm_area_struct *vma,
2800 unsigned long addr,
2801 xen_pfn_t *gfn, int nr,
2802 int *err_ptr, pgprot_t prot,
2803 unsigned domid,
2804 struct page **pages)
2805 {
2806 int err = 0;
2807 struct remap_data rmd;
2808 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2809 unsigned long range;
2810 int mapped = 0;
2811
2812 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2813
2814 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2815 #ifdef CONFIG_XEN_PVH
2816 /* We need to update the local page tables and the xen HAP */
2817 return xen_xlate_remap_gfn_array(vma, addr, gfn, nr, err_ptr,
2818 prot, domid, pages);
2819 #else
2820 return -EINVAL;
2821 #endif
2822 }
2823
2824 rmd.mfn = gfn;
2825 rmd.prot = prot;
2826 /* We use the err_ptr to indicate if there we are doing a contiguous
2827 * mapping or a discontigious mapping. */
2828 rmd.contiguous = !err_ptr;
2829
2830 while (nr) {
2831 int index = 0;
2832 int done = 0;
2833 int batch = min(REMAP_BATCH_SIZE, nr);
2834 int batch_left = batch;
2835 range = (unsigned long)batch << PAGE_SHIFT;
2836
2837 rmd.mmu_update = mmu_update;
2838 err = apply_to_page_range(vma->vm_mm, addr, range,
2839 remap_area_mfn_pte_fn, &rmd);
2840 if (err)
2841 goto out;
2842
2843 /* We record the error for each page that gives an error, but
2844 * continue mapping until the whole set is done */
2845 do {
2846 int i;
2847
2848 err = HYPERVISOR_mmu_update(&mmu_update[index],
2849 batch_left, &done, domid);
2850
2851 /*
2852 * @err_ptr may be the same buffer as @gfn, so
2853 * only clear it after each chunk of @gfn is
2854 * used.
2855 */
2856 if (err_ptr) {
2857 for (i = index; i < index + done; i++)
2858 err_ptr[i] = 0;
2859 }
2860 if (err < 0) {
2861 if (!err_ptr)
2862 goto out;
2863 err_ptr[i] = err;
2864 done++; /* Skip failed frame. */
2865 } else
2866 mapped += done;
2867 batch_left -= done;
2868 index += done;
2869 } while (batch_left);
2870
2871 nr -= batch;
2872 addr += range;
2873 if (err_ptr)
2874 err_ptr += batch;
2875 cond_resched();
2876 }
2877 out:
2878
2879 xen_flush_tlb_all();
2880
2881 return err < 0 ? err : mapped;
2882 }
2883
2884 int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2885 unsigned long addr,
2886 xen_pfn_t gfn, int nr,
2887 pgprot_t prot, unsigned domid,
2888 struct page **pages)
2889 {
2890 return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2891 }
2892 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2893
2894 int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2895 unsigned long addr,
2896 xen_pfn_t *gfn, int nr,
2897 int *err_ptr, pgprot_t prot,
2898 unsigned domid, struct page **pages)
2899 {
2900 /* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2901 * and the consequences later is quite hard to detect what the actual
2902 * cause of "wrong memory was mapped in".
2903 */
2904 BUG_ON(err_ptr == NULL);
2905 return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2906 }
2907 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2908
2909
2910 /* Returns: 0 success */
2911 int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2912 int numpgs, struct page **pages)
2913 {
2914 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2915 return 0;
2916
2917 #ifdef CONFIG_XEN_PVH
2918 return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
2919 #else
2920 return -EINVAL;
2921 #endif
2922 }
2923 EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
This page took 0.147812 seconds and 5 git commands to generate.