xen: set vma flag VM_PFNMAP in the privcmd mmap file_op
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48
49 #include <asm/pgtable.h>
50 #include <asm/tlbflush.h>
51 #include <asm/fixmap.h>
52 #include <asm/mmu_context.h>
53 #include <asm/setup.h>
54 #include <asm/paravirt.h>
55 #include <asm/e820.h>
56 #include <asm/linkage.h>
57 #include <asm/page.h>
58
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61
62 #include <xen/xen.h>
63 #include <xen/page.h>
64 #include <xen/interface/xen.h>
65 #include <xen/interface/hvm/hvm_op.h>
66 #include <xen/interface/version.h>
67 #include <xen/interface/memory.h>
68 #include <xen/hvc-console.h>
69
70 #include "multicalls.h"
71 #include "mmu.h"
72 #include "debugfs.h"
73
74 #define MMU_UPDATE_HISTO 30
75
76 /*
77 * Protects atomic reservation decrease/increase against concurrent increases.
78 * Also protects non-atomic updates of current_pages and driver_pages, and
79 * balloon lists.
80 */
81 DEFINE_SPINLOCK(xen_reservation_lock);
82
83 #ifdef CONFIG_XEN_DEBUG_FS
84
85 static struct {
86 u32 pgd_update;
87 u32 pgd_update_pinned;
88 u32 pgd_update_batched;
89
90 u32 pud_update;
91 u32 pud_update_pinned;
92 u32 pud_update_batched;
93
94 u32 pmd_update;
95 u32 pmd_update_pinned;
96 u32 pmd_update_batched;
97
98 u32 pte_update;
99 u32 pte_update_pinned;
100 u32 pte_update_batched;
101
102 u32 mmu_update;
103 u32 mmu_update_extended;
104 u32 mmu_update_histo[MMU_UPDATE_HISTO];
105
106 u32 prot_commit;
107 u32 prot_commit_batched;
108
109 u32 set_pte_at;
110 u32 set_pte_at_batched;
111 u32 set_pte_at_pinned;
112 u32 set_pte_at_current;
113 u32 set_pte_at_kernel;
114 } mmu_stats;
115
116 static u8 zero_stats;
117
118 static inline void check_zero(void)
119 {
120 if (unlikely(zero_stats)) {
121 memset(&mmu_stats, 0, sizeof(mmu_stats));
122 zero_stats = 0;
123 }
124 }
125
126 #define ADD_STATS(elem, val) \
127 do { check_zero(); mmu_stats.elem += (val); } while(0)
128
129 #else /* !CONFIG_XEN_DEBUG_FS */
130
131 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
132
133 #endif /* CONFIG_XEN_DEBUG_FS */
134
135
136 /*
137 * Identity map, in addition to plain kernel map. This needs to be
138 * large enough to allocate page table pages to allocate the rest.
139 * Each page can map 2MB.
140 */
141 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
142
143 #ifdef CONFIG_X86_64
144 /* l3 pud for userspace vsyscall mapping */
145 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
146 #endif /* CONFIG_X86_64 */
147
148 /*
149 * Note about cr3 (pagetable base) values:
150 *
151 * xen_cr3 contains the current logical cr3 value; it contains the
152 * last set cr3. This may not be the current effective cr3, because
153 * its update may be being lazily deferred. However, a vcpu looking
154 * at its own cr3 can use this value knowing that it everything will
155 * be self-consistent.
156 *
157 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
158 * hypercall to set the vcpu cr3 is complete (so it may be a little
159 * out of date, but it will never be set early). If one vcpu is
160 * looking at another vcpu's cr3 value, it should use this variable.
161 */
162 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
163 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
164
165
166 /*
167 * Just beyond the highest usermode address. STACK_TOP_MAX has a
168 * redzone above it, so round it up to a PGD boundary.
169 */
170 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
171
172
173 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
174 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
175
176 /* Placeholder for holes in the address space */
177 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
178 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
179
180 /* Array of pointers to pages containing p2m entries */
181 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
182 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
183
184 /* Arrays of p2m arrays expressed in mfns used for save/restore */
185 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
186
187 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
188 __page_aligned_bss;
189
190 static inline unsigned p2m_top_index(unsigned long pfn)
191 {
192 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
193 return pfn / P2M_ENTRIES_PER_PAGE;
194 }
195
196 static inline unsigned p2m_index(unsigned long pfn)
197 {
198 return pfn % P2M_ENTRIES_PER_PAGE;
199 }
200
201 /* Build the parallel p2m_top_mfn structures */
202 void xen_build_mfn_list_list(void)
203 {
204 unsigned pfn, idx;
205
206 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
207 unsigned topidx = p2m_top_index(pfn);
208
209 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
210 }
211
212 for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
213 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
214 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
215 }
216 }
217
218 void xen_setup_mfn_list_list(void)
219 {
220 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
221
222 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
223 virt_to_mfn(p2m_top_mfn_list);
224 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
225 }
226
227 /* Set up p2m_top to point to the domain-builder provided p2m pages */
228 void __init xen_build_dynamic_phys_to_machine(void)
229 {
230 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
231 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
232 unsigned pfn;
233
234 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
235 unsigned topidx = p2m_top_index(pfn);
236
237 p2m_top[topidx] = &mfn_list[pfn];
238 }
239
240 xen_build_mfn_list_list();
241 }
242
243 unsigned long get_phys_to_machine(unsigned long pfn)
244 {
245 unsigned topidx, idx;
246
247 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
248 return INVALID_P2M_ENTRY;
249
250 topidx = p2m_top_index(pfn);
251 idx = p2m_index(pfn);
252 return p2m_top[topidx][idx];
253 }
254 EXPORT_SYMBOL_GPL(get_phys_to_machine);
255
256 /* install a new p2m_top page */
257 bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
258 {
259 unsigned topidx = p2m_top_index(pfn);
260 unsigned long **pfnp, *mfnp;
261 unsigned i;
262
263 pfnp = &p2m_top[topidx];
264 mfnp = &p2m_top_mfn[topidx];
265
266 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
267 p[i] = INVALID_P2M_ENTRY;
268
269 if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
270 *mfnp = virt_to_mfn(p);
271 return true;
272 }
273
274 return false;
275 }
276
277 static void alloc_p2m(unsigned long pfn)
278 {
279 unsigned long *p;
280
281 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
282 BUG_ON(p == NULL);
283
284 if (!install_p2mtop_page(pfn, p))
285 free_page((unsigned long)p);
286 }
287
288 /* Try to install p2m mapping; fail if intermediate bits missing */
289 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
290 {
291 unsigned topidx, idx;
292
293 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
294 BUG_ON(mfn != INVALID_P2M_ENTRY);
295 return true;
296 }
297
298 topidx = p2m_top_index(pfn);
299 if (p2m_top[topidx] == p2m_missing) {
300 if (mfn == INVALID_P2M_ENTRY)
301 return true;
302 return false;
303 }
304
305 idx = p2m_index(pfn);
306 p2m_top[topidx][idx] = mfn;
307
308 return true;
309 }
310
311 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
312 {
313 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
314 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
315 return;
316 }
317
318 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
319 alloc_p2m(pfn);
320
321 if (!__set_phys_to_machine(pfn, mfn))
322 BUG();
323 }
324 }
325
326 unsigned long arbitrary_virt_to_mfn(void *vaddr)
327 {
328 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
329
330 return PFN_DOWN(maddr.maddr);
331 }
332
333 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
334 {
335 unsigned long address = (unsigned long)vaddr;
336 unsigned int level;
337 pte_t *pte;
338 unsigned offset;
339
340 /*
341 * if the PFN is in the linear mapped vaddr range, we can just use
342 * the (quick) virt_to_machine() p2m lookup
343 */
344 if (virt_addr_valid(vaddr))
345 return virt_to_machine(vaddr);
346
347 /* otherwise we have to do a (slower) full page-table walk */
348
349 pte = lookup_address(address, &level);
350 BUG_ON(pte == NULL);
351 offset = address & ~PAGE_MASK;
352 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
353 }
354
355 void make_lowmem_page_readonly(void *vaddr)
356 {
357 pte_t *pte, ptev;
358 unsigned long address = (unsigned long)vaddr;
359 unsigned int level;
360
361 pte = lookup_address(address, &level);
362 BUG_ON(pte == NULL);
363
364 ptev = pte_wrprotect(*pte);
365
366 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
367 BUG();
368 }
369
370 void make_lowmem_page_readwrite(void *vaddr)
371 {
372 pte_t *pte, ptev;
373 unsigned long address = (unsigned long)vaddr;
374 unsigned int level;
375
376 pte = lookup_address(address, &level);
377 BUG_ON(pte == NULL);
378
379 ptev = pte_mkwrite(*pte);
380
381 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
382 BUG();
383 }
384
385
386 static bool xen_page_pinned(void *ptr)
387 {
388 struct page *page = virt_to_page(ptr);
389
390 return PagePinned(page);
391 }
392
393 static bool xen_iomap_pte(pte_t pte)
394 {
395 return pte_flags(pte) & _PAGE_IOMAP;
396 }
397
398 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
399 {
400 struct multicall_space mcs;
401 struct mmu_update *u;
402
403 mcs = xen_mc_entry(sizeof(*u));
404 u = mcs.args;
405
406 /* ptep might be kmapped when using 32-bit HIGHPTE */
407 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
408 u->val = pte_val_ma(pteval);
409
410 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
411
412 xen_mc_issue(PARAVIRT_LAZY_MMU);
413 }
414 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
415
416 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
417 {
418 xen_set_domain_pte(ptep, pteval, DOMID_IO);
419 }
420
421 static void xen_extend_mmu_update(const struct mmu_update *update)
422 {
423 struct multicall_space mcs;
424 struct mmu_update *u;
425
426 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
427
428 if (mcs.mc != NULL) {
429 ADD_STATS(mmu_update_extended, 1);
430 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
431
432 mcs.mc->args[1]++;
433
434 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
435 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
436 else
437 ADD_STATS(mmu_update_histo[0], 1);
438 } else {
439 ADD_STATS(mmu_update, 1);
440 mcs = __xen_mc_entry(sizeof(*u));
441 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
442 ADD_STATS(mmu_update_histo[1], 1);
443 }
444
445 u = mcs.args;
446 *u = *update;
447 }
448
449 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
450 {
451 struct mmu_update u;
452
453 preempt_disable();
454
455 xen_mc_batch();
456
457 /* ptr may be ioremapped for 64-bit pagetable setup */
458 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
459 u.val = pmd_val_ma(val);
460 xen_extend_mmu_update(&u);
461
462 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
463
464 xen_mc_issue(PARAVIRT_LAZY_MMU);
465
466 preempt_enable();
467 }
468
469 void xen_set_pmd(pmd_t *ptr, pmd_t val)
470 {
471 ADD_STATS(pmd_update, 1);
472
473 /* If page is not pinned, we can just update the entry
474 directly */
475 if (!xen_page_pinned(ptr)) {
476 *ptr = val;
477 return;
478 }
479
480 ADD_STATS(pmd_update_pinned, 1);
481
482 xen_set_pmd_hyper(ptr, val);
483 }
484
485 /*
486 * Associate a virtual page frame with a given physical page frame
487 * and protection flags for that frame.
488 */
489 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
490 {
491 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
492 }
493
494 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
495 pte_t *ptep, pte_t pteval)
496 {
497 if (xen_iomap_pte(pteval)) {
498 xen_set_iomap_pte(ptep, pteval);
499 goto out;
500 }
501
502 ADD_STATS(set_pte_at, 1);
503 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
504 ADD_STATS(set_pte_at_current, mm == current->mm);
505 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
506
507 if (mm == current->mm || mm == &init_mm) {
508 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
509 struct multicall_space mcs;
510 mcs = xen_mc_entry(0);
511
512 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
513 ADD_STATS(set_pte_at_batched, 1);
514 xen_mc_issue(PARAVIRT_LAZY_MMU);
515 goto out;
516 } else
517 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
518 goto out;
519 }
520 xen_set_pte(ptep, pteval);
521
522 out: return;
523 }
524
525 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
526 unsigned long addr, pte_t *ptep)
527 {
528 /* Just return the pte as-is. We preserve the bits on commit */
529 return *ptep;
530 }
531
532 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
533 pte_t *ptep, pte_t pte)
534 {
535 struct mmu_update u;
536
537 xen_mc_batch();
538
539 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
540 u.val = pte_val_ma(pte);
541 xen_extend_mmu_update(&u);
542
543 ADD_STATS(prot_commit, 1);
544 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
545
546 xen_mc_issue(PARAVIRT_LAZY_MMU);
547 }
548
549 /* Assume pteval_t is equivalent to all the other *val_t types. */
550 static pteval_t pte_mfn_to_pfn(pteval_t val)
551 {
552 if (val & _PAGE_PRESENT) {
553 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
554 pteval_t flags = val & PTE_FLAGS_MASK;
555 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
556 }
557
558 return val;
559 }
560
561 static pteval_t pte_pfn_to_mfn(pteval_t val)
562 {
563 if (val & _PAGE_PRESENT) {
564 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
565 pteval_t flags = val & PTE_FLAGS_MASK;
566 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
567 }
568
569 return val;
570 }
571
572 static pteval_t iomap_pte(pteval_t val)
573 {
574 if (val & _PAGE_PRESENT) {
575 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
576 pteval_t flags = val & PTE_FLAGS_MASK;
577
578 /* We assume the pte frame number is a MFN, so
579 just use it as-is. */
580 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
581 }
582
583 return val;
584 }
585
586 pteval_t xen_pte_val(pte_t pte)
587 {
588 if (xen_initial_domain() && (pte.pte & _PAGE_IOMAP))
589 return pte.pte;
590
591 return pte_mfn_to_pfn(pte.pte);
592 }
593 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
594
595 pgdval_t xen_pgd_val(pgd_t pgd)
596 {
597 return pte_mfn_to_pfn(pgd.pgd);
598 }
599 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
600
601 pte_t xen_make_pte(pteval_t pte)
602 {
603 phys_addr_t addr = (pte & PTE_PFN_MASK);
604
605 /*
606 * Unprivileged domains are allowed to do IOMAPpings for
607 * PCI passthrough, but not map ISA space. The ISA
608 * mappings are just dummy local mappings to keep other
609 * parts of the kernel happy.
610 */
611 if (unlikely(pte & _PAGE_IOMAP) &&
612 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
613 pte = iomap_pte(pte);
614 } else {
615 pte &= ~_PAGE_IOMAP;
616 pte = pte_pfn_to_mfn(pte);
617 }
618
619 return native_make_pte(pte);
620 }
621 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
622
623 pgd_t xen_make_pgd(pgdval_t pgd)
624 {
625 pgd = pte_pfn_to_mfn(pgd);
626 return native_make_pgd(pgd);
627 }
628 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
629
630 pmdval_t xen_pmd_val(pmd_t pmd)
631 {
632 return pte_mfn_to_pfn(pmd.pmd);
633 }
634 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
635
636 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
637 {
638 struct mmu_update u;
639
640 preempt_disable();
641
642 xen_mc_batch();
643
644 /* ptr may be ioremapped for 64-bit pagetable setup */
645 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
646 u.val = pud_val_ma(val);
647 xen_extend_mmu_update(&u);
648
649 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
650
651 xen_mc_issue(PARAVIRT_LAZY_MMU);
652
653 preempt_enable();
654 }
655
656 void xen_set_pud(pud_t *ptr, pud_t val)
657 {
658 ADD_STATS(pud_update, 1);
659
660 /* If page is not pinned, we can just update the entry
661 directly */
662 if (!xen_page_pinned(ptr)) {
663 *ptr = val;
664 return;
665 }
666
667 ADD_STATS(pud_update_pinned, 1);
668
669 xen_set_pud_hyper(ptr, val);
670 }
671
672 void xen_set_pte(pte_t *ptep, pte_t pte)
673 {
674 if (xen_iomap_pte(pte)) {
675 xen_set_iomap_pte(ptep, pte);
676 return;
677 }
678
679 ADD_STATS(pte_update, 1);
680 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
681 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
682
683 #ifdef CONFIG_X86_PAE
684 ptep->pte_high = pte.pte_high;
685 smp_wmb();
686 ptep->pte_low = pte.pte_low;
687 #else
688 *ptep = pte;
689 #endif
690 }
691
692 #ifdef CONFIG_X86_PAE
693 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
694 {
695 if (xen_iomap_pte(pte)) {
696 xen_set_iomap_pte(ptep, pte);
697 return;
698 }
699
700 set_64bit((u64 *)ptep, native_pte_val(pte));
701 }
702
703 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
704 {
705 ptep->pte_low = 0;
706 smp_wmb(); /* make sure low gets written first */
707 ptep->pte_high = 0;
708 }
709
710 void xen_pmd_clear(pmd_t *pmdp)
711 {
712 set_pmd(pmdp, __pmd(0));
713 }
714 #endif /* CONFIG_X86_PAE */
715
716 pmd_t xen_make_pmd(pmdval_t pmd)
717 {
718 pmd = pte_pfn_to_mfn(pmd);
719 return native_make_pmd(pmd);
720 }
721 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
722
723 #if PAGETABLE_LEVELS == 4
724 pudval_t xen_pud_val(pud_t pud)
725 {
726 return pte_mfn_to_pfn(pud.pud);
727 }
728 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
729
730 pud_t xen_make_pud(pudval_t pud)
731 {
732 pud = pte_pfn_to_mfn(pud);
733
734 return native_make_pud(pud);
735 }
736 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
737
738 pgd_t *xen_get_user_pgd(pgd_t *pgd)
739 {
740 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
741 unsigned offset = pgd - pgd_page;
742 pgd_t *user_ptr = NULL;
743
744 if (offset < pgd_index(USER_LIMIT)) {
745 struct page *page = virt_to_page(pgd_page);
746 user_ptr = (pgd_t *)page->private;
747 if (user_ptr)
748 user_ptr += offset;
749 }
750
751 return user_ptr;
752 }
753
754 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
755 {
756 struct mmu_update u;
757
758 u.ptr = virt_to_machine(ptr).maddr;
759 u.val = pgd_val_ma(val);
760 xen_extend_mmu_update(&u);
761 }
762
763 /*
764 * Raw hypercall-based set_pgd, intended for in early boot before
765 * there's a page structure. This implies:
766 * 1. The only existing pagetable is the kernel's
767 * 2. It is always pinned
768 * 3. It has no user pagetable attached to it
769 */
770 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
771 {
772 preempt_disable();
773
774 xen_mc_batch();
775
776 __xen_set_pgd_hyper(ptr, val);
777
778 xen_mc_issue(PARAVIRT_LAZY_MMU);
779
780 preempt_enable();
781 }
782
783 void xen_set_pgd(pgd_t *ptr, pgd_t val)
784 {
785 pgd_t *user_ptr = xen_get_user_pgd(ptr);
786
787 ADD_STATS(pgd_update, 1);
788
789 /* If page is not pinned, we can just update the entry
790 directly */
791 if (!xen_page_pinned(ptr)) {
792 *ptr = val;
793 if (user_ptr) {
794 WARN_ON(xen_page_pinned(user_ptr));
795 *user_ptr = val;
796 }
797 return;
798 }
799
800 ADD_STATS(pgd_update_pinned, 1);
801 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
802
803 /* If it's pinned, then we can at least batch the kernel and
804 user updates together. */
805 xen_mc_batch();
806
807 __xen_set_pgd_hyper(ptr, val);
808 if (user_ptr)
809 __xen_set_pgd_hyper(user_ptr, val);
810
811 xen_mc_issue(PARAVIRT_LAZY_MMU);
812 }
813 #endif /* PAGETABLE_LEVELS == 4 */
814
815 /*
816 * (Yet another) pagetable walker. This one is intended for pinning a
817 * pagetable. This means that it walks a pagetable and calls the
818 * callback function on each page it finds making up the page table,
819 * at every level. It walks the entire pagetable, but it only bothers
820 * pinning pte pages which are below limit. In the normal case this
821 * will be STACK_TOP_MAX, but at boot we need to pin up to
822 * FIXADDR_TOP.
823 *
824 * For 32-bit the important bit is that we don't pin beyond there,
825 * because then we start getting into Xen's ptes.
826 *
827 * For 64-bit, we must skip the Xen hole in the middle of the address
828 * space, just after the big x86-64 virtual hole.
829 */
830 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
831 int (*func)(struct mm_struct *mm, struct page *,
832 enum pt_level),
833 unsigned long limit)
834 {
835 int flush = 0;
836 unsigned hole_low, hole_high;
837 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
838 unsigned pgdidx, pudidx, pmdidx;
839
840 /* The limit is the last byte to be touched */
841 limit--;
842 BUG_ON(limit >= FIXADDR_TOP);
843
844 if (xen_feature(XENFEAT_auto_translated_physmap))
845 return 0;
846
847 /*
848 * 64-bit has a great big hole in the middle of the address
849 * space, which contains the Xen mappings. On 32-bit these
850 * will end up making a zero-sized hole and so is a no-op.
851 */
852 hole_low = pgd_index(USER_LIMIT);
853 hole_high = pgd_index(PAGE_OFFSET);
854
855 pgdidx_limit = pgd_index(limit);
856 #if PTRS_PER_PUD > 1
857 pudidx_limit = pud_index(limit);
858 #else
859 pudidx_limit = 0;
860 #endif
861 #if PTRS_PER_PMD > 1
862 pmdidx_limit = pmd_index(limit);
863 #else
864 pmdidx_limit = 0;
865 #endif
866
867 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
868 pud_t *pud;
869
870 if (pgdidx >= hole_low && pgdidx < hole_high)
871 continue;
872
873 if (!pgd_val(pgd[pgdidx]))
874 continue;
875
876 pud = pud_offset(&pgd[pgdidx], 0);
877
878 if (PTRS_PER_PUD > 1) /* not folded */
879 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
880
881 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
882 pmd_t *pmd;
883
884 if (pgdidx == pgdidx_limit &&
885 pudidx > pudidx_limit)
886 goto out;
887
888 if (pud_none(pud[pudidx]))
889 continue;
890
891 pmd = pmd_offset(&pud[pudidx], 0);
892
893 if (PTRS_PER_PMD > 1) /* not folded */
894 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
895
896 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
897 struct page *pte;
898
899 if (pgdidx == pgdidx_limit &&
900 pudidx == pudidx_limit &&
901 pmdidx > pmdidx_limit)
902 goto out;
903
904 if (pmd_none(pmd[pmdidx]))
905 continue;
906
907 pte = pmd_page(pmd[pmdidx]);
908 flush |= (*func)(mm, pte, PT_PTE);
909 }
910 }
911 }
912
913 out:
914 /* Do the top level last, so that the callbacks can use it as
915 a cue to do final things like tlb flushes. */
916 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
917
918 return flush;
919 }
920
921 static int xen_pgd_walk(struct mm_struct *mm,
922 int (*func)(struct mm_struct *mm, struct page *,
923 enum pt_level),
924 unsigned long limit)
925 {
926 return __xen_pgd_walk(mm, mm->pgd, func, limit);
927 }
928
929 /* If we're using split pte locks, then take the page's lock and
930 return a pointer to it. Otherwise return NULL. */
931 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
932 {
933 spinlock_t *ptl = NULL;
934
935 #if USE_SPLIT_PTLOCKS
936 ptl = __pte_lockptr(page);
937 spin_lock_nest_lock(ptl, &mm->page_table_lock);
938 #endif
939
940 return ptl;
941 }
942
943 static void xen_pte_unlock(void *v)
944 {
945 spinlock_t *ptl = v;
946 spin_unlock(ptl);
947 }
948
949 static void xen_do_pin(unsigned level, unsigned long pfn)
950 {
951 struct mmuext_op *op;
952 struct multicall_space mcs;
953
954 mcs = __xen_mc_entry(sizeof(*op));
955 op = mcs.args;
956 op->cmd = level;
957 op->arg1.mfn = pfn_to_mfn(pfn);
958 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
959 }
960
961 static int xen_pin_page(struct mm_struct *mm, struct page *page,
962 enum pt_level level)
963 {
964 unsigned pgfl = TestSetPagePinned(page);
965 int flush;
966
967 if (pgfl)
968 flush = 0; /* already pinned */
969 else if (PageHighMem(page))
970 /* kmaps need flushing if we found an unpinned
971 highpage */
972 flush = 1;
973 else {
974 void *pt = lowmem_page_address(page);
975 unsigned long pfn = page_to_pfn(page);
976 struct multicall_space mcs = __xen_mc_entry(0);
977 spinlock_t *ptl;
978
979 flush = 0;
980
981 /*
982 * We need to hold the pagetable lock between the time
983 * we make the pagetable RO and when we actually pin
984 * it. If we don't, then other users may come in and
985 * attempt to update the pagetable by writing it,
986 * which will fail because the memory is RO but not
987 * pinned, so Xen won't do the trap'n'emulate.
988 *
989 * If we're using split pte locks, we can't hold the
990 * entire pagetable's worth of locks during the
991 * traverse, because we may wrap the preempt count (8
992 * bits). The solution is to mark RO and pin each PTE
993 * page while holding the lock. This means the number
994 * of locks we end up holding is never more than a
995 * batch size (~32 entries, at present).
996 *
997 * If we're not using split pte locks, we needn't pin
998 * the PTE pages independently, because we're
999 * protected by the overall pagetable lock.
1000 */
1001 ptl = NULL;
1002 if (level == PT_PTE)
1003 ptl = xen_pte_lock(page, mm);
1004
1005 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1006 pfn_pte(pfn, PAGE_KERNEL_RO),
1007 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1008
1009 if (ptl) {
1010 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
1011
1012 /* Queue a deferred unlock for when this batch
1013 is completed. */
1014 xen_mc_callback(xen_pte_unlock, ptl);
1015 }
1016 }
1017
1018 return flush;
1019 }
1020
1021 /* This is called just after a mm has been created, but it has not
1022 been used yet. We need to make sure that its pagetable is all
1023 read-only, and can be pinned. */
1024 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
1025 {
1026 xen_mc_batch();
1027
1028 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
1029 /* re-enable interrupts for flushing */
1030 xen_mc_issue(0);
1031
1032 kmap_flush_unused();
1033
1034 xen_mc_batch();
1035 }
1036
1037 #ifdef CONFIG_X86_64
1038 {
1039 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1040
1041 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1042
1043 if (user_pgd) {
1044 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1045 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1046 PFN_DOWN(__pa(user_pgd)));
1047 }
1048 }
1049 #else /* CONFIG_X86_32 */
1050 #ifdef CONFIG_X86_PAE
1051 /* Need to make sure unshared kernel PMD is pinnable */
1052 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1053 PT_PMD);
1054 #endif
1055 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1056 #endif /* CONFIG_X86_64 */
1057 xen_mc_issue(0);
1058 }
1059
1060 static void xen_pgd_pin(struct mm_struct *mm)
1061 {
1062 __xen_pgd_pin(mm, mm->pgd);
1063 }
1064
1065 /*
1066 * On save, we need to pin all pagetables to make sure they get their
1067 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1068 * them (unpinned pgds are not currently in use, probably because the
1069 * process is under construction or destruction).
1070 *
1071 * Expected to be called in stop_machine() ("equivalent to taking
1072 * every spinlock in the system"), so the locking doesn't really
1073 * matter all that much.
1074 */
1075 void xen_mm_pin_all(void)
1076 {
1077 unsigned long flags;
1078 struct page *page;
1079
1080 spin_lock_irqsave(&pgd_lock, flags);
1081
1082 list_for_each_entry(page, &pgd_list, lru) {
1083 if (!PagePinned(page)) {
1084 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1085 SetPageSavePinned(page);
1086 }
1087 }
1088
1089 spin_unlock_irqrestore(&pgd_lock, flags);
1090 }
1091
1092 /*
1093 * The init_mm pagetable is really pinned as soon as its created, but
1094 * that's before we have page structures to store the bits. So do all
1095 * the book-keeping now.
1096 */
1097 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1098 enum pt_level level)
1099 {
1100 SetPagePinned(page);
1101 return 0;
1102 }
1103
1104 static void __init xen_mark_init_mm_pinned(void)
1105 {
1106 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1107 }
1108
1109 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1110 enum pt_level level)
1111 {
1112 unsigned pgfl = TestClearPagePinned(page);
1113
1114 if (pgfl && !PageHighMem(page)) {
1115 void *pt = lowmem_page_address(page);
1116 unsigned long pfn = page_to_pfn(page);
1117 spinlock_t *ptl = NULL;
1118 struct multicall_space mcs;
1119
1120 /*
1121 * Do the converse to pin_page. If we're using split
1122 * pte locks, we must be holding the lock for while
1123 * the pte page is unpinned but still RO to prevent
1124 * concurrent updates from seeing it in this
1125 * partially-pinned state.
1126 */
1127 if (level == PT_PTE) {
1128 ptl = xen_pte_lock(page, mm);
1129
1130 if (ptl)
1131 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1132 }
1133
1134 mcs = __xen_mc_entry(0);
1135
1136 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1137 pfn_pte(pfn, PAGE_KERNEL),
1138 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1139
1140 if (ptl) {
1141 /* unlock when batch completed */
1142 xen_mc_callback(xen_pte_unlock, ptl);
1143 }
1144 }
1145
1146 return 0; /* never need to flush on unpin */
1147 }
1148
1149 /* Release a pagetables pages back as normal RW */
1150 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1151 {
1152 xen_mc_batch();
1153
1154 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1155
1156 #ifdef CONFIG_X86_64
1157 {
1158 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1159
1160 if (user_pgd) {
1161 xen_do_pin(MMUEXT_UNPIN_TABLE,
1162 PFN_DOWN(__pa(user_pgd)));
1163 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1164 }
1165 }
1166 #endif
1167
1168 #ifdef CONFIG_X86_PAE
1169 /* Need to make sure unshared kernel PMD is unpinned */
1170 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1171 PT_PMD);
1172 #endif
1173
1174 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1175
1176 xen_mc_issue(0);
1177 }
1178
1179 static void xen_pgd_unpin(struct mm_struct *mm)
1180 {
1181 __xen_pgd_unpin(mm, mm->pgd);
1182 }
1183
1184 /*
1185 * On resume, undo any pinning done at save, so that the rest of the
1186 * kernel doesn't see any unexpected pinned pagetables.
1187 */
1188 void xen_mm_unpin_all(void)
1189 {
1190 unsigned long flags;
1191 struct page *page;
1192
1193 spin_lock_irqsave(&pgd_lock, flags);
1194
1195 list_for_each_entry(page, &pgd_list, lru) {
1196 if (PageSavePinned(page)) {
1197 BUG_ON(!PagePinned(page));
1198 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1199 ClearPageSavePinned(page);
1200 }
1201 }
1202
1203 spin_unlock_irqrestore(&pgd_lock, flags);
1204 }
1205
1206 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1207 {
1208 spin_lock(&next->page_table_lock);
1209 xen_pgd_pin(next);
1210 spin_unlock(&next->page_table_lock);
1211 }
1212
1213 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1214 {
1215 spin_lock(&mm->page_table_lock);
1216 xen_pgd_pin(mm);
1217 spin_unlock(&mm->page_table_lock);
1218 }
1219
1220
1221 #ifdef CONFIG_SMP
1222 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1223 we need to repoint it somewhere else before we can unpin it. */
1224 static void drop_other_mm_ref(void *info)
1225 {
1226 struct mm_struct *mm = info;
1227 struct mm_struct *active_mm;
1228
1229 active_mm = percpu_read(cpu_tlbstate.active_mm);
1230
1231 if (active_mm == mm)
1232 leave_mm(smp_processor_id());
1233
1234 /* If this cpu still has a stale cr3 reference, then make sure
1235 it has been flushed. */
1236 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1237 load_cr3(swapper_pg_dir);
1238 }
1239
1240 static void xen_drop_mm_ref(struct mm_struct *mm)
1241 {
1242 cpumask_var_t mask;
1243 unsigned cpu;
1244
1245 if (current->active_mm == mm) {
1246 if (current->mm == mm)
1247 load_cr3(swapper_pg_dir);
1248 else
1249 leave_mm(smp_processor_id());
1250 }
1251
1252 /* Get the "official" set of cpus referring to our pagetable. */
1253 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1254 for_each_online_cpu(cpu) {
1255 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1256 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1257 continue;
1258 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1259 }
1260 return;
1261 }
1262 cpumask_copy(mask, mm_cpumask(mm));
1263
1264 /* It's possible that a vcpu may have a stale reference to our
1265 cr3, because its in lazy mode, and it hasn't yet flushed
1266 its set of pending hypercalls yet. In this case, we can
1267 look at its actual current cr3 value, and force it to flush
1268 if needed. */
1269 for_each_online_cpu(cpu) {
1270 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1271 cpumask_set_cpu(cpu, mask);
1272 }
1273
1274 if (!cpumask_empty(mask))
1275 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1276 free_cpumask_var(mask);
1277 }
1278 #else
1279 static void xen_drop_mm_ref(struct mm_struct *mm)
1280 {
1281 if (current->active_mm == mm)
1282 load_cr3(swapper_pg_dir);
1283 }
1284 #endif
1285
1286 /*
1287 * While a process runs, Xen pins its pagetables, which means that the
1288 * hypervisor forces it to be read-only, and it controls all updates
1289 * to it. This means that all pagetable updates have to go via the
1290 * hypervisor, which is moderately expensive.
1291 *
1292 * Since we're pulling the pagetable down, we switch to use init_mm,
1293 * unpin old process pagetable and mark it all read-write, which
1294 * allows further operations on it to be simple memory accesses.
1295 *
1296 * The only subtle point is that another CPU may be still using the
1297 * pagetable because of lazy tlb flushing. This means we need need to
1298 * switch all CPUs off this pagetable before we can unpin it.
1299 */
1300 void xen_exit_mmap(struct mm_struct *mm)
1301 {
1302 get_cpu(); /* make sure we don't move around */
1303 xen_drop_mm_ref(mm);
1304 put_cpu();
1305
1306 spin_lock(&mm->page_table_lock);
1307
1308 /* pgd may not be pinned in the error exit path of execve */
1309 if (xen_page_pinned(mm->pgd))
1310 xen_pgd_unpin(mm);
1311
1312 spin_unlock(&mm->page_table_lock);
1313 }
1314
1315 static __init void xen_pagetable_setup_start(pgd_t *base)
1316 {
1317 }
1318
1319 static void xen_post_allocator_init(void);
1320
1321 static __init void xen_pagetable_setup_done(pgd_t *base)
1322 {
1323 xen_setup_shared_info();
1324 xen_post_allocator_init();
1325 }
1326
1327 static void xen_write_cr2(unsigned long cr2)
1328 {
1329 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1330 }
1331
1332 static unsigned long xen_read_cr2(void)
1333 {
1334 return percpu_read(xen_vcpu)->arch.cr2;
1335 }
1336
1337 unsigned long xen_read_cr2_direct(void)
1338 {
1339 return percpu_read(xen_vcpu_info.arch.cr2);
1340 }
1341
1342 static void xen_flush_tlb(void)
1343 {
1344 struct mmuext_op *op;
1345 struct multicall_space mcs;
1346
1347 preempt_disable();
1348
1349 mcs = xen_mc_entry(sizeof(*op));
1350
1351 op = mcs.args;
1352 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1353 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1354
1355 xen_mc_issue(PARAVIRT_LAZY_MMU);
1356
1357 preempt_enable();
1358 }
1359
1360 static void xen_flush_tlb_single(unsigned long addr)
1361 {
1362 struct mmuext_op *op;
1363 struct multicall_space mcs;
1364
1365 preempt_disable();
1366
1367 mcs = xen_mc_entry(sizeof(*op));
1368 op = mcs.args;
1369 op->cmd = MMUEXT_INVLPG_LOCAL;
1370 op->arg1.linear_addr = addr & PAGE_MASK;
1371 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1372
1373 xen_mc_issue(PARAVIRT_LAZY_MMU);
1374
1375 preempt_enable();
1376 }
1377
1378 static void xen_flush_tlb_others(const struct cpumask *cpus,
1379 struct mm_struct *mm, unsigned long va)
1380 {
1381 struct {
1382 struct mmuext_op op;
1383 DECLARE_BITMAP(mask, NR_CPUS);
1384 } *args;
1385 struct multicall_space mcs;
1386
1387 if (cpumask_empty(cpus))
1388 return; /* nothing to do */
1389
1390 mcs = xen_mc_entry(sizeof(*args));
1391 args = mcs.args;
1392 args->op.arg2.vcpumask = to_cpumask(args->mask);
1393
1394 /* Remove us, and any offline CPUS. */
1395 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1396 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1397
1398 if (va == TLB_FLUSH_ALL) {
1399 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1400 } else {
1401 args->op.cmd = MMUEXT_INVLPG_MULTI;
1402 args->op.arg1.linear_addr = va;
1403 }
1404
1405 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1406
1407 xen_mc_issue(PARAVIRT_LAZY_MMU);
1408 }
1409
1410 static unsigned long xen_read_cr3(void)
1411 {
1412 return percpu_read(xen_cr3);
1413 }
1414
1415 static void set_current_cr3(void *v)
1416 {
1417 percpu_write(xen_current_cr3, (unsigned long)v);
1418 }
1419
1420 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1421 {
1422 struct mmuext_op *op;
1423 struct multicall_space mcs;
1424 unsigned long mfn;
1425
1426 if (cr3)
1427 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1428 else
1429 mfn = 0;
1430
1431 WARN_ON(mfn == 0 && kernel);
1432
1433 mcs = __xen_mc_entry(sizeof(*op));
1434
1435 op = mcs.args;
1436 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1437 op->arg1.mfn = mfn;
1438
1439 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1440
1441 if (kernel) {
1442 percpu_write(xen_cr3, cr3);
1443
1444 /* Update xen_current_cr3 once the batch has actually
1445 been submitted. */
1446 xen_mc_callback(set_current_cr3, (void *)cr3);
1447 }
1448 }
1449
1450 static void xen_write_cr3(unsigned long cr3)
1451 {
1452 BUG_ON(preemptible());
1453
1454 xen_mc_batch(); /* disables interrupts */
1455
1456 /* Update while interrupts are disabled, so its atomic with
1457 respect to ipis */
1458 percpu_write(xen_cr3, cr3);
1459
1460 __xen_write_cr3(true, cr3);
1461
1462 #ifdef CONFIG_X86_64
1463 {
1464 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1465 if (user_pgd)
1466 __xen_write_cr3(false, __pa(user_pgd));
1467 else
1468 __xen_write_cr3(false, 0);
1469 }
1470 #endif
1471
1472 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1473 }
1474
1475 static int xen_pgd_alloc(struct mm_struct *mm)
1476 {
1477 pgd_t *pgd = mm->pgd;
1478 int ret = 0;
1479
1480 BUG_ON(PagePinned(virt_to_page(pgd)));
1481
1482 #ifdef CONFIG_X86_64
1483 {
1484 struct page *page = virt_to_page(pgd);
1485 pgd_t *user_pgd;
1486
1487 BUG_ON(page->private != 0);
1488
1489 ret = -ENOMEM;
1490
1491 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1492 page->private = (unsigned long)user_pgd;
1493
1494 if (user_pgd != NULL) {
1495 user_pgd[pgd_index(VSYSCALL_START)] =
1496 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1497 ret = 0;
1498 }
1499
1500 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1501 }
1502 #endif
1503
1504 return ret;
1505 }
1506
1507 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1508 {
1509 #ifdef CONFIG_X86_64
1510 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1511
1512 if (user_pgd)
1513 free_page((unsigned long)user_pgd);
1514 #endif
1515 }
1516
1517 #ifdef CONFIG_X86_32
1518 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1519 {
1520 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1521 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1522 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1523 pte_val_ma(pte));
1524
1525 return pte;
1526 }
1527
1528 /* Init-time set_pte while constructing initial pagetables, which
1529 doesn't allow RO pagetable pages to be remapped RW */
1530 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1531 {
1532 pte = mask_rw_pte(ptep, pte);
1533
1534 xen_set_pte(ptep, pte);
1535 }
1536 #endif
1537
1538 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1539 {
1540 struct mmuext_op op;
1541 op.cmd = cmd;
1542 op.arg1.mfn = pfn_to_mfn(pfn);
1543 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1544 BUG();
1545 }
1546
1547 /* Early in boot, while setting up the initial pagetable, assume
1548 everything is pinned. */
1549 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1550 {
1551 #ifdef CONFIG_FLATMEM
1552 BUG_ON(mem_map); /* should only be used early */
1553 #endif
1554 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1555 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1556 }
1557
1558 /* Used for pmd and pud */
1559 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1560 {
1561 #ifdef CONFIG_FLATMEM
1562 BUG_ON(mem_map); /* should only be used early */
1563 #endif
1564 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1565 }
1566
1567 /* Early release_pte assumes that all pts are pinned, since there's
1568 only init_mm and anything attached to that is pinned. */
1569 static __init void xen_release_pte_init(unsigned long pfn)
1570 {
1571 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1572 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1573 }
1574
1575 static __init void xen_release_pmd_init(unsigned long pfn)
1576 {
1577 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1578 }
1579
1580 /* This needs to make sure the new pte page is pinned iff its being
1581 attached to a pinned pagetable. */
1582 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1583 {
1584 struct page *page = pfn_to_page(pfn);
1585
1586 if (PagePinned(virt_to_page(mm->pgd))) {
1587 SetPagePinned(page);
1588
1589 if (!PageHighMem(page)) {
1590 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1591 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1592 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1593 } else {
1594 /* make sure there are no stray mappings of
1595 this page */
1596 kmap_flush_unused();
1597 }
1598 }
1599 }
1600
1601 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1602 {
1603 xen_alloc_ptpage(mm, pfn, PT_PTE);
1604 }
1605
1606 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1607 {
1608 xen_alloc_ptpage(mm, pfn, PT_PMD);
1609 }
1610
1611 /* This should never happen until we're OK to use struct page */
1612 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1613 {
1614 struct page *page = pfn_to_page(pfn);
1615
1616 if (PagePinned(page)) {
1617 if (!PageHighMem(page)) {
1618 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1619 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1620 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1621 }
1622 ClearPagePinned(page);
1623 }
1624 }
1625
1626 static void xen_release_pte(unsigned long pfn)
1627 {
1628 xen_release_ptpage(pfn, PT_PTE);
1629 }
1630
1631 static void xen_release_pmd(unsigned long pfn)
1632 {
1633 xen_release_ptpage(pfn, PT_PMD);
1634 }
1635
1636 #if PAGETABLE_LEVELS == 4
1637 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1638 {
1639 xen_alloc_ptpage(mm, pfn, PT_PUD);
1640 }
1641
1642 static void xen_release_pud(unsigned long pfn)
1643 {
1644 xen_release_ptpage(pfn, PT_PUD);
1645 }
1646 #endif
1647
1648 void __init xen_reserve_top(void)
1649 {
1650 #ifdef CONFIG_X86_32
1651 unsigned long top = HYPERVISOR_VIRT_START;
1652 struct xen_platform_parameters pp;
1653
1654 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1655 top = pp.virt_start;
1656
1657 reserve_top_address(-top);
1658 #endif /* CONFIG_X86_32 */
1659 }
1660
1661 /*
1662 * Like __va(), but returns address in the kernel mapping (which is
1663 * all we have until the physical memory mapping has been set up.
1664 */
1665 static void *__ka(phys_addr_t paddr)
1666 {
1667 #ifdef CONFIG_X86_64
1668 return (void *)(paddr + __START_KERNEL_map);
1669 #else
1670 return __va(paddr);
1671 #endif
1672 }
1673
1674 /* Convert a machine address to physical address */
1675 static unsigned long m2p(phys_addr_t maddr)
1676 {
1677 phys_addr_t paddr;
1678
1679 maddr &= PTE_PFN_MASK;
1680 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1681
1682 return paddr;
1683 }
1684
1685 /* Convert a machine address to kernel virtual */
1686 static void *m2v(phys_addr_t maddr)
1687 {
1688 return __ka(m2p(maddr));
1689 }
1690
1691 static void set_page_prot(void *addr, pgprot_t prot)
1692 {
1693 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1694 pte_t pte = pfn_pte(pfn, prot);
1695
1696 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1697 BUG();
1698 }
1699
1700 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1701 {
1702 unsigned pmdidx, pteidx;
1703 unsigned ident_pte;
1704 unsigned long pfn;
1705
1706 ident_pte = 0;
1707 pfn = 0;
1708 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1709 pte_t *pte_page;
1710
1711 /* Reuse or allocate a page of ptes */
1712 if (pmd_present(pmd[pmdidx]))
1713 pte_page = m2v(pmd[pmdidx].pmd);
1714 else {
1715 /* Check for free pte pages */
1716 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1717 break;
1718
1719 pte_page = &level1_ident_pgt[ident_pte];
1720 ident_pte += PTRS_PER_PTE;
1721
1722 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1723 }
1724
1725 /* Install mappings */
1726 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1727 pte_t pte;
1728
1729 if (pfn > max_pfn_mapped)
1730 max_pfn_mapped = pfn;
1731
1732 if (!pte_none(pte_page[pteidx]))
1733 continue;
1734
1735 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1736 pte_page[pteidx] = pte;
1737 }
1738 }
1739
1740 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1741 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1742
1743 set_page_prot(pmd, PAGE_KERNEL_RO);
1744 }
1745
1746 #ifdef CONFIG_X86_64
1747 static void convert_pfn_mfn(void *v)
1748 {
1749 pte_t *pte = v;
1750 int i;
1751
1752 /* All levels are converted the same way, so just treat them
1753 as ptes. */
1754 for (i = 0; i < PTRS_PER_PTE; i++)
1755 pte[i] = xen_make_pte(pte[i].pte);
1756 }
1757
1758 /*
1759 * Set up the inital kernel pagetable.
1760 *
1761 * We can construct this by grafting the Xen provided pagetable into
1762 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1763 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1764 * means that only the kernel has a physical mapping to start with -
1765 * but that's enough to get __va working. We need to fill in the rest
1766 * of the physical mapping once some sort of allocator has been set
1767 * up.
1768 */
1769 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1770 unsigned long max_pfn)
1771 {
1772 pud_t *l3;
1773 pmd_t *l2;
1774
1775 /* Zap identity mapping */
1776 init_level4_pgt[0] = __pgd(0);
1777
1778 /* Pre-constructed entries are in pfn, so convert to mfn */
1779 convert_pfn_mfn(init_level4_pgt);
1780 convert_pfn_mfn(level3_ident_pgt);
1781 convert_pfn_mfn(level3_kernel_pgt);
1782
1783 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1784 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1785
1786 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1787 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1788
1789 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1790 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1791 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1792
1793 /* Set up identity map */
1794 xen_map_identity_early(level2_ident_pgt, max_pfn);
1795
1796 /* Make pagetable pieces RO */
1797 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1798 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1799 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1800 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1801 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1802 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1803
1804 /* Pin down new L4 */
1805 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1806 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1807
1808 /* Unpin Xen-provided one */
1809 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1810
1811 /* Switch over */
1812 pgd = init_level4_pgt;
1813
1814 /*
1815 * At this stage there can be no user pgd, and no page
1816 * structure to attach it to, so make sure we just set kernel
1817 * pgd.
1818 */
1819 xen_mc_batch();
1820 __xen_write_cr3(true, __pa(pgd));
1821 xen_mc_issue(PARAVIRT_LAZY_CPU);
1822
1823 reserve_early(__pa(xen_start_info->pt_base),
1824 __pa(xen_start_info->pt_base +
1825 xen_start_info->nr_pt_frames * PAGE_SIZE),
1826 "XEN PAGETABLES");
1827
1828 return pgd;
1829 }
1830 #else /* !CONFIG_X86_64 */
1831 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1832
1833 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1834 unsigned long max_pfn)
1835 {
1836 pmd_t *kernel_pmd;
1837
1838 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1839 xen_start_info->nr_pt_frames * PAGE_SIZE +
1840 512*1024);
1841
1842 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1843 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1844
1845 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1846
1847 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1848 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1849 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1850
1851 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1852 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1853 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1854
1855 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1856
1857 xen_write_cr3(__pa(swapper_pg_dir));
1858
1859 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1860
1861 reserve_early(__pa(xen_start_info->pt_base),
1862 __pa(xen_start_info->pt_base +
1863 xen_start_info->nr_pt_frames * PAGE_SIZE),
1864 "XEN PAGETABLES");
1865
1866 return swapper_pg_dir;
1867 }
1868 #endif /* CONFIG_X86_64 */
1869
1870 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1871 {
1872 pte_t pte;
1873
1874 phys >>= PAGE_SHIFT;
1875
1876 switch (idx) {
1877 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1878 #ifdef CONFIG_X86_F00F_BUG
1879 case FIX_F00F_IDT:
1880 #endif
1881 #ifdef CONFIG_X86_32
1882 case FIX_WP_TEST:
1883 case FIX_VDSO:
1884 # ifdef CONFIG_HIGHMEM
1885 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1886 # endif
1887 #else
1888 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1889 #endif
1890 #ifdef CONFIG_X86_LOCAL_APIC
1891 case FIX_APIC_BASE: /* maps dummy local APIC */
1892 #endif
1893 case FIX_TEXT_POKE0:
1894 case FIX_TEXT_POKE1:
1895 /* All local page mappings */
1896 pte = pfn_pte(phys, prot);
1897 break;
1898
1899 case FIX_PARAVIRT_BOOTMAP:
1900 /* This is an MFN, but it isn't an IO mapping from the
1901 IO domain */
1902 pte = mfn_pte(phys, prot);
1903 break;
1904
1905 default:
1906 /* By default, set_fixmap is used for hardware mappings */
1907 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1908 break;
1909 }
1910
1911 __native_set_fixmap(idx, pte);
1912
1913 #ifdef CONFIG_X86_64
1914 /* Replicate changes to map the vsyscall page into the user
1915 pagetable vsyscall mapping. */
1916 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1917 unsigned long vaddr = __fix_to_virt(idx);
1918 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1919 }
1920 #endif
1921 }
1922
1923 static __init void xen_post_allocator_init(void)
1924 {
1925 pv_mmu_ops.set_pte = xen_set_pte;
1926 pv_mmu_ops.set_pmd = xen_set_pmd;
1927 pv_mmu_ops.set_pud = xen_set_pud;
1928 #if PAGETABLE_LEVELS == 4
1929 pv_mmu_ops.set_pgd = xen_set_pgd;
1930 #endif
1931
1932 /* This will work as long as patching hasn't happened yet
1933 (which it hasn't) */
1934 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1935 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1936 pv_mmu_ops.release_pte = xen_release_pte;
1937 pv_mmu_ops.release_pmd = xen_release_pmd;
1938 #if PAGETABLE_LEVELS == 4
1939 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1940 pv_mmu_ops.release_pud = xen_release_pud;
1941 #endif
1942
1943 #ifdef CONFIG_X86_64
1944 SetPagePinned(virt_to_page(level3_user_vsyscall));
1945 #endif
1946 xen_mark_init_mm_pinned();
1947 }
1948
1949 static void xen_leave_lazy_mmu(void)
1950 {
1951 preempt_disable();
1952 xen_mc_flush();
1953 paravirt_leave_lazy_mmu();
1954 preempt_enable();
1955 }
1956
1957 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1958 .read_cr2 = xen_read_cr2,
1959 .write_cr2 = xen_write_cr2,
1960
1961 .read_cr3 = xen_read_cr3,
1962 .write_cr3 = xen_write_cr3,
1963
1964 .flush_tlb_user = xen_flush_tlb,
1965 .flush_tlb_kernel = xen_flush_tlb,
1966 .flush_tlb_single = xen_flush_tlb_single,
1967 .flush_tlb_others = xen_flush_tlb_others,
1968
1969 .pte_update = paravirt_nop,
1970 .pte_update_defer = paravirt_nop,
1971
1972 .pgd_alloc = xen_pgd_alloc,
1973 .pgd_free = xen_pgd_free,
1974
1975 .alloc_pte = xen_alloc_pte_init,
1976 .release_pte = xen_release_pte_init,
1977 .alloc_pmd = xen_alloc_pmd_init,
1978 .alloc_pmd_clone = paravirt_nop,
1979 .release_pmd = xen_release_pmd_init,
1980
1981 #ifdef CONFIG_X86_64
1982 .set_pte = xen_set_pte,
1983 #else
1984 .set_pte = xen_set_pte_init,
1985 #endif
1986 .set_pte_at = xen_set_pte_at,
1987 .set_pmd = xen_set_pmd_hyper,
1988
1989 .ptep_modify_prot_start = __ptep_modify_prot_start,
1990 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1991
1992 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
1993 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1994
1995 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
1996 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1997
1998 #ifdef CONFIG_X86_PAE
1999 .set_pte_atomic = xen_set_pte_atomic,
2000 .pte_clear = xen_pte_clear,
2001 .pmd_clear = xen_pmd_clear,
2002 #endif /* CONFIG_X86_PAE */
2003 .set_pud = xen_set_pud_hyper,
2004
2005 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2006 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2007
2008 #if PAGETABLE_LEVELS == 4
2009 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2010 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2011 .set_pgd = xen_set_pgd_hyper,
2012
2013 .alloc_pud = xen_alloc_pmd_init,
2014 .release_pud = xen_release_pmd_init,
2015 #endif /* PAGETABLE_LEVELS == 4 */
2016
2017 .activate_mm = xen_activate_mm,
2018 .dup_mmap = xen_dup_mmap,
2019 .exit_mmap = xen_exit_mmap,
2020
2021 .lazy_mode = {
2022 .enter = paravirt_enter_lazy_mmu,
2023 .leave = xen_leave_lazy_mmu,
2024 },
2025
2026 .set_fixmap = xen_set_fixmap,
2027 };
2028
2029 void __init xen_init_mmu_ops(void)
2030 {
2031 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2032 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2033 pv_mmu_ops = xen_mmu_ops;
2034
2035 vmap_lazy_unmap = false;
2036 }
2037
2038 /* Protected by xen_reservation_lock. */
2039 #define MAX_CONTIG_ORDER 9 /* 2MB */
2040 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2041
2042 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2043 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2044 unsigned long *in_frames,
2045 unsigned long *out_frames)
2046 {
2047 int i;
2048 struct multicall_space mcs;
2049
2050 xen_mc_batch();
2051 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2052 mcs = __xen_mc_entry(0);
2053
2054 if (in_frames)
2055 in_frames[i] = virt_to_mfn(vaddr);
2056
2057 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2058 set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2059
2060 if (out_frames)
2061 out_frames[i] = virt_to_pfn(vaddr);
2062 }
2063 xen_mc_issue(0);
2064 }
2065
2066 /*
2067 * Update the pfn-to-mfn mappings for a virtual address range, either to
2068 * point to an array of mfns, or contiguously from a single starting
2069 * mfn.
2070 */
2071 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2072 unsigned long *mfns,
2073 unsigned long first_mfn)
2074 {
2075 unsigned i, limit;
2076 unsigned long mfn;
2077
2078 xen_mc_batch();
2079
2080 limit = 1u << order;
2081 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2082 struct multicall_space mcs;
2083 unsigned flags;
2084
2085 mcs = __xen_mc_entry(0);
2086 if (mfns)
2087 mfn = mfns[i];
2088 else
2089 mfn = first_mfn + i;
2090
2091 if (i < (limit - 1))
2092 flags = 0;
2093 else {
2094 if (order == 0)
2095 flags = UVMF_INVLPG | UVMF_ALL;
2096 else
2097 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2098 }
2099
2100 MULTI_update_va_mapping(mcs.mc, vaddr,
2101 mfn_pte(mfn, PAGE_KERNEL), flags);
2102
2103 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2104 }
2105
2106 xen_mc_issue(0);
2107 }
2108
2109 /*
2110 * Perform the hypercall to exchange a region of our pfns to point to
2111 * memory with the required contiguous alignment. Takes the pfns as
2112 * input, and populates mfns as output.
2113 *
2114 * Returns a success code indicating whether the hypervisor was able to
2115 * satisfy the request or not.
2116 */
2117 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2118 unsigned long *pfns_in,
2119 unsigned long extents_out,
2120 unsigned int order_out,
2121 unsigned long *mfns_out,
2122 unsigned int address_bits)
2123 {
2124 long rc;
2125 int success;
2126
2127 struct xen_memory_exchange exchange = {
2128 .in = {
2129 .nr_extents = extents_in,
2130 .extent_order = order_in,
2131 .extent_start = pfns_in,
2132 .domid = DOMID_SELF
2133 },
2134 .out = {
2135 .nr_extents = extents_out,
2136 .extent_order = order_out,
2137 .extent_start = mfns_out,
2138 .address_bits = address_bits,
2139 .domid = DOMID_SELF
2140 }
2141 };
2142
2143 BUG_ON(extents_in << order_in != extents_out << order_out);
2144
2145 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2146 success = (exchange.nr_exchanged == extents_in);
2147
2148 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2149 BUG_ON(success && (rc != 0));
2150
2151 return success;
2152 }
2153
2154 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2155 unsigned int address_bits)
2156 {
2157 unsigned long *in_frames = discontig_frames, out_frame;
2158 unsigned long flags;
2159 int success;
2160
2161 /*
2162 * Currently an auto-translated guest will not perform I/O, nor will
2163 * it require PAE page directories below 4GB. Therefore any calls to
2164 * this function are redundant and can be ignored.
2165 */
2166
2167 if (xen_feature(XENFEAT_auto_translated_physmap))
2168 return 0;
2169
2170 if (unlikely(order > MAX_CONTIG_ORDER))
2171 return -ENOMEM;
2172
2173 memset((void *) vstart, 0, PAGE_SIZE << order);
2174
2175 spin_lock_irqsave(&xen_reservation_lock, flags);
2176
2177 /* 1. Zap current PTEs, remembering MFNs. */
2178 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2179
2180 /* 2. Get a new contiguous memory extent. */
2181 out_frame = virt_to_pfn(vstart);
2182 success = xen_exchange_memory(1UL << order, 0, in_frames,
2183 1, order, &out_frame,
2184 address_bits);
2185
2186 /* 3. Map the new extent in place of old pages. */
2187 if (success)
2188 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2189 else
2190 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2191
2192 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2193
2194 return success ? 0 : -ENOMEM;
2195 }
2196 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2197
2198 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2199 {
2200 unsigned long *out_frames = discontig_frames, in_frame;
2201 unsigned long flags;
2202 int success;
2203
2204 if (xen_feature(XENFEAT_auto_translated_physmap))
2205 return;
2206
2207 if (unlikely(order > MAX_CONTIG_ORDER))
2208 return;
2209
2210 memset((void *) vstart, 0, PAGE_SIZE << order);
2211
2212 spin_lock_irqsave(&xen_reservation_lock, flags);
2213
2214 /* 1. Find start MFN of contiguous extent. */
2215 in_frame = virt_to_mfn(vstart);
2216
2217 /* 2. Zap current PTEs. */
2218 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2219
2220 /* 3. Do the exchange for non-contiguous MFNs. */
2221 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2222 0, out_frames, 0);
2223
2224 /* 4. Map new pages in place of old pages. */
2225 if (success)
2226 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2227 else
2228 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2229
2230 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2231 }
2232 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2233
2234 #ifdef CONFIG_XEN_PVHVM
2235 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2236 {
2237 struct xen_hvm_pagetable_dying a;
2238 int rc;
2239
2240 a.domid = DOMID_SELF;
2241 a.gpa = __pa(mm->pgd);
2242 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2243 WARN_ON_ONCE(rc < 0);
2244 }
2245
2246 static int is_pagetable_dying_supported(void)
2247 {
2248 struct xen_hvm_pagetable_dying a;
2249 int rc = 0;
2250
2251 a.domid = DOMID_SELF;
2252 a.gpa = 0x00;
2253 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2254 if (rc < 0) {
2255 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2256 return 0;
2257 }
2258 return 1;
2259 }
2260
2261 void __init xen_hvm_init_mmu_ops(void)
2262 {
2263 if (is_pagetable_dying_supported())
2264 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2265 }
2266 #endif
2267
2268 #define REMAP_BATCH_SIZE 16
2269
2270 struct remap_data {
2271 unsigned long mfn;
2272 pgprot_t prot;
2273 struct mmu_update *mmu_update;
2274 };
2275
2276 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2277 unsigned long addr, void *data)
2278 {
2279 struct remap_data *rmd = data;
2280 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2281
2282 rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2283 rmd->mmu_update->val = pte_val_ma(pte);
2284 rmd->mmu_update++;
2285
2286 return 0;
2287 }
2288
2289 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2290 unsigned long addr,
2291 unsigned long mfn, int nr,
2292 pgprot_t prot, unsigned domid)
2293 {
2294 struct remap_data rmd;
2295 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2296 int batch;
2297 unsigned long range;
2298 int err = 0;
2299
2300 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2301
2302 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2303 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2304
2305 rmd.mfn = mfn;
2306 rmd.prot = prot;
2307
2308 while (nr) {
2309 batch = min(REMAP_BATCH_SIZE, nr);
2310 range = (unsigned long)batch << PAGE_SHIFT;
2311
2312 rmd.mmu_update = mmu_update;
2313 err = apply_to_page_range(vma->vm_mm, addr, range,
2314 remap_area_mfn_pte_fn, &rmd);
2315 if (err)
2316 goto out;
2317
2318 err = -EFAULT;
2319 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2320 goto out;
2321
2322 nr -= batch;
2323 addr += range;
2324 }
2325
2326 err = 0;
2327 out:
2328
2329 flush_tlb_all();
2330
2331 return err;
2332 }
2333 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2334
2335 #ifdef CONFIG_XEN_DEBUG_FS
2336
2337 static struct dentry *d_mmu_debug;
2338
2339 static int __init xen_mmu_debugfs(void)
2340 {
2341 struct dentry *d_xen = xen_init_debugfs();
2342
2343 if (d_xen == NULL)
2344 return -ENOMEM;
2345
2346 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2347
2348 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2349
2350 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2351 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2352 &mmu_stats.pgd_update_pinned);
2353 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2354 &mmu_stats.pgd_update_pinned);
2355
2356 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2357 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2358 &mmu_stats.pud_update_pinned);
2359 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2360 &mmu_stats.pud_update_pinned);
2361
2362 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2363 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2364 &mmu_stats.pmd_update_pinned);
2365 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2366 &mmu_stats.pmd_update_pinned);
2367
2368 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2369 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2370 // &mmu_stats.pte_update_pinned);
2371 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2372 &mmu_stats.pte_update_pinned);
2373
2374 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2375 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2376 &mmu_stats.mmu_update_extended);
2377 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2378 mmu_stats.mmu_update_histo, 20);
2379
2380 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2381 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2382 &mmu_stats.set_pte_at_batched);
2383 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2384 &mmu_stats.set_pte_at_current);
2385 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2386 &mmu_stats.set_pte_at_kernel);
2387
2388 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2389 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2390 &mmu_stats.prot_commit_batched);
2391
2392 return 0;
2393 }
2394 fs_initcall(xen_mmu_debugfs);
2395
2396 #endif /* CONFIG_XEN_DEBUG_FS */
This page took 0.081562 seconds and 5 git commands to generate.