Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52
53 #include <trace/events/xen.h>
54
55 #include <asm/pgtable.h>
56 #include <asm/tlbflush.h>
57 #include <asm/fixmap.h>
58 #include <asm/mmu_context.h>
59 #include <asm/setup.h>
60 #include <asm/paravirt.h>
61 #include <asm/e820.h>
62 #include <asm/linkage.h>
63 #include <asm/page.h>
64 #include <asm/init.h>
65 #include <asm/pat.h>
66 #include <asm/smp.h>
67
68 #include <asm/xen/hypercall.h>
69 #include <asm/xen/hypervisor.h>
70
71 #include <xen/xen.h>
72 #include <xen/page.h>
73 #include <xen/interface/xen.h>
74 #include <xen/interface/hvm/hvm_op.h>
75 #include <xen/interface/version.h>
76 #include <xen/interface/memory.h>
77 #include <xen/hvc-console.h>
78
79 #include "multicalls.h"
80 #include "mmu.h"
81 #include "debugfs.h"
82
83 /*
84 * Protects atomic reservation decrease/increase against concurrent increases.
85 * Also protects non-atomic updates of current_pages and balloon lists.
86 */
87 DEFINE_SPINLOCK(xen_reservation_lock);
88
89 #ifdef CONFIG_X86_32
90 /*
91 * Identity map, in addition to plain kernel map. This needs to be
92 * large enough to allocate page table pages to allocate the rest.
93 * Each page can map 2MB.
94 */
95 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
96 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
97 #endif
98 #ifdef CONFIG_X86_64
99 /* l3 pud for userspace vsyscall mapping */
100 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
101 #endif /* CONFIG_X86_64 */
102
103 /*
104 * Note about cr3 (pagetable base) values:
105 *
106 * xen_cr3 contains the current logical cr3 value; it contains the
107 * last set cr3. This may not be the current effective cr3, because
108 * its update may be being lazily deferred. However, a vcpu looking
109 * at its own cr3 can use this value knowing that it everything will
110 * be self-consistent.
111 *
112 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
113 * hypercall to set the vcpu cr3 is complete (so it may be a little
114 * out of date, but it will never be set early). If one vcpu is
115 * looking at another vcpu's cr3 value, it should use this variable.
116 */
117 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
118 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
119
120 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
121
122 /*
123 * Just beyond the highest usermode address. STACK_TOP_MAX has a
124 * redzone above it, so round it up to a PGD boundary.
125 */
126 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
127
128 unsigned long arbitrary_virt_to_mfn(void *vaddr)
129 {
130 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
131
132 return PFN_DOWN(maddr.maddr);
133 }
134
135 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
136 {
137 unsigned long address = (unsigned long)vaddr;
138 unsigned int level;
139 pte_t *pte;
140 unsigned offset;
141
142 /*
143 * if the PFN is in the linear mapped vaddr range, we can just use
144 * the (quick) virt_to_machine() p2m lookup
145 */
146 if (virt_addr_valid(vaddr))
147 return virt_to_machine(vaddr);
148
149 /* otherwise we have to do a (slower) full page-table walk */
150
151 pte = lookup_address(address, &level);
152 BUG_ON(pte == NULL);
153 offset = address & ~PAGE_MASK;
154 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
155 }
156 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
157
158 void make_lowmem_page_readonly(void *vaddr)
159 {
160 pte_t *pte, ptev;
161 unsigned long address = (unsigned long)vaddr;
162 unsigned int level;
163
164 pte = lookup_address(address, &level);
165 if (pte == NULL)
166 return; /* vaddr missing */
167
168 ptev = pte_wrprotect(*pte);
169
170 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
171 BUG();
172 }
173
174 void make_lowmem_page_readwrite(void *vaddr)
175 {
176 pte_t *pte, ptev;
177 unsigned long address = (unsigned long)vaddr;
178 unsigned int level;
179
180 pte = lookup_address(address, &level);
181 if (pte == NULL)
182 return; /* vaddr missing */
183
184 ptev = pte_mkwrite(*pte);
185
186 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
187 BUG();
188 }
189
190
191 static bool xen_page_pinned(void *ptr)
192 {
193 struct page *page = virt_to_page(ptr);
194
195 return PagePinned(page);
196 }
197
198 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
199 {
200 struct multicall_space mcs;
201 struct mmu_update *u;
202
203 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
204
205 mcs = xen_mc_entry(sizeof(*u));
206 u = mcs.args;
207
208 /* ptep might be kmapped when using 32-bit HIGHPTE */
209 u->ptr = virt_to_machine(ptep).maddr;
210 u->val = pte_val_ma(pteval);
211
212 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
213
214 xen_mc_issue(PARAVIRT_LAZY_MMU);
215 }
216 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
217
218 static void xen_extend_mmu_update(const struct mmu_update *update)
219 {
220 struct multicall_space mcs;
221 struct mmu_update *u;
222
223 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
224
225 if (mcs.mc != NULL) {
226 mcs.mc->args[1]++;
227 } else {
228 mcs = __xen_mc_entry(sizeof(*u));
229 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
230 }
231
232 u = mcs.args;
233 *u = *update;
234 }
235
236 static void xen_extend_mmuext_op(const struct mmuext_op *op)
237 {
238 struct multicall_space mcs;
239 struct mmuext_op *u;
240
241 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
242
243 if (mcs.mc != NULL) {
244 mcs.mc->args[1]++;
245 } else {
246 mcs = __xen_mc_entry(sizeof(*u));
247 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
248 }
249
250 u = mcs.args;
251 *u = *op;
252 }
253
254 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
255 {
256 struct mmu_update u;
257
258 preempt_disable();
259
260 xen_mc_batch();
261
262 /* ptr may be ioremapped for 64-bit pagetable setup */
263 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
264 u.val = pmd_val_ma(val);
265 xen_extend_mmu_update(&u);
266
267 xen_mc_issue(PARAVIRT_LAZY_MMU);
268
269 preempt_enable();
270 }
271
272 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
273 {
274 trace_xen_mmu_set_pmd(ptr, val);
275
276 /* If page is not pinned, we can just update the entry
277 directly */
278 if (!xen_page_pinned(ptr)) {
279 *ptr = val;
280 return;
281 }
282
283 xen_set_pmd_hyper(ptr, val);
284 }
285
286 /*
287 * Associate a virtual page frame with a given physical page frame
288 * and protection flags for that frame.
289 */
290 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
291 {
292 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
293 }
294
295 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
296 {
297 struct mmu_update u;
298
299 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
300 return false;
301
302 xen_mc_batch();
303
304 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
305 u.val = pte_val_ma(pteval);
306 xen_extend_mmu_update(&u);
307
308 xen_mc_issue(PARAVIRT_LAZY_MMU);
309
310 return true;
311 }
312
313 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
314 {
315 if (!xen_batched_set_pte(ptep, pteval)) {
316 /*
317 * Could call native_set_pte() here and trap and
318 * emulate the PTE write but with 32-bit guests this
319 * needs two traps (one for each of the two 32-bit
320 * words in the PTE) so do one hypercall directly
321 * instead.
322 */
323 struct mmu_update u;
324
325 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
326 u.val = pte_val_ma(pteval);
327 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
328 }
329 }
330
331 static void xen_set_pte(pte_t *ptep, pte_t pteval)
332 {
333 trace_xen_mmu_set_pte(ptep, pteval);
334 __xen_set_pte(ptep, pteval);
335 }
336
337 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
338 pte_t *ptep, pte_t pteval)
339 {
340 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
341 __xen_set_pte(ptep, pteval);
342 }
343
344 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
345 unsigned long addr, pte_t *ptep)
346 {
347 /* Just return the pte as-is. We preserve the bits on commit */
348 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
349 return *ptep;
350 }
351
352 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
353 pte_t *ptep, pte_t pte)
354 {
355 struct mmu_update u;
356
357 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
358 xen_mc_batch();
359
360 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
361 u.val = pte_val_ma(pte);
362 xen_extend_mmu_update(&u);
363
364 xen_mc_issue(PARAVIRT_LAZY_MMU);
365 }
366
367 /* Assume pteval_t is equivalent to all the other *val_t types. */
368 static pteval_t pte_mfn_to_pfn(pteval_t val)
369 {
370 if (val & _PAGE_PRESENT) {
371 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
372 unsigned long pfn = mfn_to_pfn(mfn);
373
374 pteval_t flags = val & PTE_FLAGS_MASK;
375 if (unlikely(pfn == ~0))
376 val = flags & ~_PAGE_PRESENT;
377 else
378 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
379 }
380
381 return val;
382 }
383
384 static pteval_t pte_pfn_to_mfn(pteval_t val)
385 {
386 if (val & _PAGE_PRESENT) {
387 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
388 pteval_t flags = val & PTE_FLAGS_MASK;
389 unsigned long mfn;
390
391 if (!xen_feature(XENFEAT_auto_translated_physmap))
392 mfn = __pfn_to_mfn(pfn);
393 else
394 mfn = pfn;
395 /*
396 * If there's no mfn for the pfn, then just create an
397 * empty non-present pte. Unfortunately this loses
398 * information about the original pfn, so
399 * pte_mfn_to_pfn is asymmetric.
400 */
401 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
402 mfn = 0;
403 flags = 0;
404 } else
405 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
406 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
407 }
408
409 return val;
410 }
411
412 __visible pteval_t xen_pte_val(pte_t pte)
413 {
414 pteval_t pteval = pte.pte;
415
416 return pte_mfn_to_pfn(pteval);
417 }
418 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
419
420 __visible pgdval_t xen_pgd_val(pgd_t pgd)
421 {
422 return pte_mfn_to_pfn(pgd.pgd);
423 }
424 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
425
426 __visible pte_t xen_make_pte(pteval_t pte)
427 {
428 pte = pte_pfn_to_mfn(pte);
429
430 return native_make_pte(pte);
431 }
432 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
433
434 __visible pgd_t xen_make_pgd(pgdval_t pgd)
435 {
436 pgd = pte_pfn_to_mfn(pgd);
437 return native_make_pgd(pgd);
438 }
439 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
440
441 __visible pmdval_t xen_pmd_val(pmd_t pmd)
442 {
443 return pte_mfn_to_pfn(pmd.pmd);
444 }
445 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
446
447 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
448 {
449 struct mmu_update u;
450
451 preempt_disable();
452
453 xen_mc_batch();
454
455 /* ptr may be ioremapped for 64-bit pagetable setup */
456 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
457 u.val = pud_val_ma(val);
458 xen_extend_mmu_update(&u);
459
460 xen_mc_issue(PARAVIRT_LAZY_MMU);
461
462 preempt_enable();
463 }
464
465 static void xen_set_pud(pud_t *ptr, pud_t val)
466 {
467 trace_xen_mmu_set_pud(ptr, val);
468
469 /* If page is not pinned, we can just update the entry
470 directly */
471 if (!xen_page_pinned(ptr)) {
472 *ptr = val;
473 return;
474 }
475
476 xen_set_pud_hyper(ptr, val);
477 }
478
479 #ifdef CONFIG_X86_PAE
480 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
481 {
482 trace_xen_mmu_set_pte_atomic(ptep, pte);
483 set_64bit((u64 *)ptep, native_pte_val(pte));
484 }
485
486 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
487 {
488 trace_xen_mmu_pte_clear(mm, addr, ptep);
489 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
490 native_pte_clear(mm, addr, ptep);
491 }
492
493 static void xen_pmd_clear(pmd_t *pmdp)
494 {
495 trace_xen_mmu_pmd_clear(pmdp);
496 set_pmd(pmdp, __pmd(0));
497 }
498 #endif /* CONFIG_X86_PAE */
499
500 __visible pmd_t xen_make_pmd(pmdval_t pmd)
501 {
502 pmd = pte_pfn_to_mfn(pmd);
503 return native_make_pmd(pmd);
504 }
505 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
506
507 #if CONFIG_PGTABLE_LEVELS == 4
508 __visible pudval_t xen_pud_val(pud_t pud)
509 {
510 return pte_mfn_to_pfn(pud.pud);
511 }
512 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
513
514 __visible pud_t xen_make_pud(pudval_t pud)
515 {
516 pud = pte_pfn_to_mfn(pud);
517
518 return native_make_pud(pud);
519 }
520 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
521
522 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
523 {
524 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
525 unsigned offset = pgd - pgd_page;
526 pgd_t *user_ptr = NULL;
527
528 if (offset < pgd_index(USER_LIMIT)) {
529 struct page *page = virt_to_page(pgd_page);
530 user_ptr = (pgd_t *)page->private;
531 if (user_ptr)
532 user_ptr += offset;
533 }
534
535 return user_ptr;
536 }
537
538 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
539 {
540 struct mmu_update u;
541
542 u.ptr = virt_to_machine(ptr).maddr;
543 u.val = pgd_val_ma(val);
544 xen_extend_mmu_update(&u);
545 }
546
547 /*
548 * Raw hypercall-based set_pgd, intended for in early boot before
549 * there's a page structure. This implies:
550 * 1. The only existing pagetable is the kernel's
551 * 2. It is always pinned
552 * 3. It has no user pagetable attached to it
553 */
554 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
555 {
556 preempt_disable();
557
558 xen_mc_batch();
559
560 __xen_set_pgd_hyper(ptr, val);
561
562 xen_mc_issue(PARAVIRT_LAZY_MMU);
563
564 preempt_enable();
565 }
566
567 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
568 {
569 pgd_t *user_ptr = xen_get_user_pgd(ptr);
570
571 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
572
573 /* If page is not pinned, we can just update the entry
574 directly */
575 if (!xen_page_pinned(ptr)) {
576 *ptr = val;
577 if (user_ptr) {
578 WARN_ON(xen_page_pinned(user_ptr));
579 *user_ptr = val;
580 }
581 return;
582 }
583
584 /* If it's pinned, then we can at least batch the kernel and
585 user updates together. */
586 xen_mc_batch();
587
588 __xen_set_pgd_hyper(ptr, val);
589 if (user_ptr)
590 __xen_set_pgd_hyper(user_ptr, val);
591
592 xen_mc_issue(PARAVIRT_LAZY_MMU);
593 }
594 #endif /* CONFIG_PGTABLE_LEVELS == 4 */
595
596 /*
597 * (Yet another) pagetable walker. This one is intended for pinning a
598 * pagetable. This means that it walks a pagetable and calls the
599 * callback function on each page it finds making up the page table,
600 * at every level. It walks the entire pagetable, but it only bothers
601 * pinning pte pages which are below limit. In the normal case this
602 * will be STACK_TOP_MAX, but at boot we need to pin up to
603 * FIXADDR_TOP.
604 *
605 * For 32-bit the important bit is that we don't pin beyond there,
606 * because then we start getting into Xen's ptes.
607 *
608 * For 64-bit, we must skip the Xen hole in the middle of the address
609 * space, just after the big x86-64 virtual hole.
610 */
611 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
612 int (*func)(struct mm_struct *mm, struct page *,
613 enum pt_level),
614 unsigned long limit)
615 {
616 int flush = 0;
617 unsigned hole_low, hole_high;
618 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
619 unsigned pgdidx, pudidx, pmdidx;
620
621 /* The limit is the last byte to be touched */
622 limit--;
623 BUG_ON(limit >= FIXADDR_TOP);
624
625 if (xen_feature(XENFEAT_auto_translated_physmap))
626 return 0;
627
628 /*
629 * 64-bit has a great big hole in the middle of the address
630 * space, which contains the Xen mappings. On 32-bit these
631 * will end up making a zero-sized hole and so is a no-op.
632 */
633 hole_low = pgd_index(USER_LIMIT);
634 hole_high = pgd_index(PAGE_OFFSET);
635
636 pgdidx_limit = pgd_index(limit);
637 #if PTRS_PER_PUD > 1
638 pudidx_limit = pud_index(limit);
639 #else
640 pudidx_limit = 0;
641 #endif
642 #if PTRS_PER_PMD > 1
643 pmdidx_limit = pmd_index(limit);
644 #else
645 pmdidx_limit = 0;
646 #endif
647
648 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
649 pud_t *pud;
650
651 if (pgdidx >= hole_low && pgdidx < hole_high)
652 continue;
653
654 if (!pgd_val(pgd[pgdidx]))
655 continue;
656
657 pud = pud_offset(&pgd[pgdidx], 0);
658
659 if (PTRS_PER_PUD > 1) /* not folded */
660 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
661
662 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
663 pmd_t *pmd;
664
665 if (pgdidx == pgdidx_limit &&
666 pudidx > pudidx_limit)
667 goto out;
668
669 if (pud_none(pud[pudidx]))
670 continue;
671
672 pmd = pmd_offset(&pud[pudidx], 0);
673
674 if (PTRS_PER_PMD > 1) /* not folded */
675 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
676
677 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
678 struct page *pte;
679
680 if (pgdidx == pgdidx_limit &&
681 pudidx == pudidx_limit &&
682 pmdidx > pmdidx_limit)
683 goto out;
684
685 if (pmd_none(pmd[pmdidx]))
686 continue;
687
688 pte = pmd_page(pmd[pmdidx]);
689 flush |= (*func)(mm, pte, PT_PTE);
690 }
691 }
692 }
693
694 out:
695 /* Do the top level last, so that the callbacks can use it as
696 a cue to do final things like tlb flushes. */
697 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
698
699 return flush;
700 }
701
702 static int xen_pgd_walk(struct mm_struct *mm,
703 int (*func)(struct mm_struct *mm, struct page *,
704 enum pt_level),
705 unsigned long limit)
706 {
707 return __xen_pgd_walk(mm, mm->pgd, func, limit);
708 }
709
710 /* If we're using split pte locks, then take the page's lock and
711 return a pointer to it. Otherwise return NULL. */
712 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
713 {
714 spinlock_t *ptl = NULL;
715
716 #if USE_SPLIT_PTE_PTLOCKS
717 ptl = ptlock_ptr(page);
718 spin_lock_nest_lock(ptl, &mm->page_table_lock);
719 #endif
720
721 return ptl;
722 }
723
724 static void xen_pte_unlock(void *v)
725 {
726 spinlock_t *ptl = v;
727 spin_unlock(ptl);
728 }
729
730 static void xen_do_pin(unsigned level, unsigned long pfn)
731 {
732 struct mmuext_op op;
733
734 op.cmd = level;
735 op.arg1.mfn = pfn_to_mfn(pfn);
736
737 xen_extend_mmuext_op(&op);
738 }
739
740 static int xen_pin_page(struct mm_struct *mm, struct page *page,
741 enum pt_level level)
742 {
743 unsigned pgfl = TestSetPagePinned(page);
744 int flush;
745
746 if (pgfl)
747 flush = 0; /* already pinned */
748 else if (PageHighMem(page))
749 /* kmaps need flushing if we found an unpinned
750 highpage */
751 flush = 1;
752 else {
753 void *pt = lowmem_page_address(page);
754 unsigned long pfn = page_to_pfn(page);
755 struct multicall_space mcs = __xen_mc_entry(0);
756 spinlock_t *ptl;
757
758 flush = 0;
759
760 /*
761 * We need to hold the pagetable lock between the time
762 * we make the pagetable RO and when we actually pin
763 * it. If we don't, then other users may come in and
764 * attempt to update the pagetable by writing it,
765 * which will fail because the memory is RO but not
766 * pinned, so Xen won't do the trap'n'emulate.
767 *
768 * If we're using split pte locks, we can't hold the
769 * entire pagetable's worth of locks during the
770 * traverse, because we may wrap the preempt count (8
771 * bits). The solution is to mark RO and pin each PTE
772 * page while holding the lock. This means the number
773 * of locks we end up holding is never more than a
774 * batch size (~32 entries, at present).
775 *
776 * If we're not using split pte locks, we needn't pin
777 * the PTE pages independently, because we're
778 * protected by the overall pagetable lock.
779 */
780 ptl = NULL;
781 if (level == PT_PTE)
782 ptl = xen_pte_lock(page, mm);
783
784 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
785 pfn_pte(pfn, PAGE_KERNEL_RO),
786 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
787
788 if (ptl) {
789 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
790
791 /* Queue a deferred unlock for when this batch
792 is completed. */
793 xen_mc_callback(xen_pte_unlock, ptl);
794 }
795 }
796
797 return flush;
798 }
799
800 /* This is called just after a mm has been created, but it has not
801 been used yet. We need to make sure that its pagetable is all
802 read-only, and can be pinned. */
803 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
804 {
805 trace_xen_mmu_pgd_pin(mm, pgd);
806
807 xen_mc_batch();
808
809 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
810 /* re-enable interrupts for flushing */
811 xen_mc_issue(0);
812
813 kmap_flush_unused();
814
815 xen_mc_batch();
816 }
817
818 #ifdef CONFIG_X86_64
819 {
820 pgd_t *user_pgd = xen_get_user_pgd(pgd);
821
822 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
823
824 if (user_pgd) {
825 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
826 xen_do_pin(MMUEXT_PIN_L4_TABLE,
827 PFN_DOWN(__pa(user_pgd)));
828 }
829 }
830 #else /* CONFIG_X86_32 */
831 #ifdef CONFIG_X86_PAE
832 /* Need to make sure unshared kernel PMD is pinnable */
833 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
834 PT_PMD);
835 #endif
836 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
837 #endif /* CONFIG_X86_64 */
838 xen_mc_issue(0);
839 }
840
841 static void xen_pgd_pin(struct mm_struct *mm)
842 {
843 __xen_pgd_pin(mm, mm->pgd);
844 }
845
846 /*
847 * On save, we need to pin all pagetables to make sure they get their
848 * mfns turned into pfns. Search the list for any unpinned pgds and pin
849 * them (unpinned pgds are not currently in use, probably because the
850 * process is under construction or destruction).
851 *
852 * Expected to be called in stop_machine() ("equivalent to taking
853 * every spinlock in the system"), so the locking doesn't really
854 * matter all that much.
855 */
856 void xen_mm_pin_all(void)
857 {
858 struct page *page;
859
860 spin_lock(&pgd_lock);
861
862 list_for_each_entry(page, &pgd_list, lru) {
863 if (!PagePinned(page)) {
864 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
865 SetPageSavePinned(page);
866 }
867 }
868
869 spin_unlock(&pgd_lock);
870 }
871
872 /*
873 * The init_mm pagetable is really pinned as soon as its created, but
874 * that's before we have page structures to store the bits. So do all
875 * the book-keeping now.
876 */
877 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
878 enum pt_level level)
879 {
880 SetPagePinned(page);
881 return 0;
882 }
883
884 static void __init xen_mark_init_mm_pinned(void)
885 {
886 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
887 }
888
889 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
890 enum pt_level level)
891 {
892 unsigned pgfl = TestClearPagePinned(page);
893
894 if (pgfl && !PageHighMem(page)) {
895 void *pt = lowmem_page_address(page);
896 unsigned long pfn = page_to_pfn(page);
897 spinlock_t *ptl = NULL;
898 struct multicall_space mcs;
899
900 /*
901 * Do the converse to pin_page. If we're using split
902 * pte locks, we must be holding the lock for while
903 * the pte page is unpinned but still RO to prevent
904 * concurrent updates from seeing it in this
905 * partially-pinned state.
906 */
907 if (level == PT_PTE) {
908 ptl = xen_pte_lock(page, mm);
909
910 if (ptl)
911 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
912 }
913
914 mcs = __xen_mc_entry(0);
915
916 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
917 pfn_pte(pfn, PAGE_KERNEL),
918 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
919
920 if (ptl) {
921 /* unlock when batch completed */
922 xen_mc_callback(xen_pte_unlock, ptl);
923 }
924 }
925
926 return 0; /* never need to flush on unpin */
927 }
928
929 /* Release a pagetables pages back as normal RW */
930 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
931 {
932 trace_xen_mmu_pgd_unpin(mm, pgd);
933
934 xen_mc_batch();
935
936 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
937
938 #ifdef CONFIG_X86_64
939 {
940 pgd_t *user_pgd = xen_get_user_pgd(pgd);
941
942 if (user_pgd) {
943 xen_do_pin(MMUEXT_UNPIN_TABLE,
944 PFN_DOWN(__pa(user_pgd)));
945 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
946 }
947 }
948 #endif
949
950 #ifdef CONFIG_X86_PAE
951 /* Need to make sure unshared kernel PMD is unpinned */
952 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
953 PT_PMD);
954 #endif
955
956 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
957
958 xen_mc_issue(0);
959 }
960
961 static void xen_pgd_unpin(struct mm_struct *mm)
962 {
963 __xen_pgd_unpin(mm, mm->pgd);
964 }
965
966 /*
967 * On resume, undo any pinning done at save, so that the rest of the
968 * kernel doesn't see any unexpected pinned pagetables.
969 */
970 void xen_mm_unpin_all(void)
971 {
972 struct page *page;
973
974 spin_lock(&pgd_lock);
975
976 list_for_each_entry(page, &pgd_list, lru) {
977 if (PageSavePinned(page)) {
978 BUG_ON(!PagePinned(page));
979 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
980 ClearPageSavePinned(page);
981 }
982 }
983
984 spin_unlock(&pgd_lock);
985 }
986
987 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
988 {
989 spin_lock(&next->page_table_lock);
990 xen_pgd_pin(next);
991 spin_unlock(&next->page_table_lock);
992 }
993
994 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
995 {
996 spin_lock(&mm->page_table_lock);
997 xen_pgd_pin(mm);
998 spin_unlock(&mm->page_table_lock);
999 }
1000
1001
1002 #ifdef CONFIG_SMP
1003 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1004 we need to repoint it somewhere else before we can unpin it. */
1005 static void drop_other_mm_ref(void *info)
1006 {
1007 struct mm_struct *mm = info;
1008 struct mm_struct *active_mm;
1009
1010 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1011
1012 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1013 leave_mm(smp_processor_id());
1014
1015 /* If this cpu still has a stale cr3 reference, then make sure
1016 it has been flushed. */
1017 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1018 load_cr3(swapper_pg_dir);
1019 }
1020
1021 static void xen_drop_mm_ref(struct mm_struct *mm)
1022 {
1023 cpumask_var_t mask;
1024 unsigned cpu;
1025
1026 if (current->active_mm == mm) {
1027 if (current->mm == mm)
1028 load_cr3(swapper_pg_dir);
1029 else
1030 leave_mm(smp_processor_id());
1031 }
1032
1033 /* Get the "official" set of cpus referring to our pagetable. */
1034 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1035 for_each_online_cpu(cpu) {
1036 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1037 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1038 continue;
1039 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1040 }
1041 return;
1042 }
1043 cpumask_copy(mask, mm_cpumask(mm));
1044
1045 /* It's possible that a vcpu may have a stale reference to our
1046 cr3, because its in lazy mode, and it hasn't yet flushed
1047 its set of pending hypercalls yet. In this case, we can
1048 look at its actual current cr3 value, and force it to flush
1049 if needed. */
1050 for_each_online_cpu(cpu) {
1051 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1052 cpumask_set_cpu(cpu, mask);
1053 }
1054
1055 if (!cpumask_empty(mask))
1056 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1057 free_cpumask_var(mask);
1058 }
1059 #else
1060 static void xen_drop_mm_ref(struct mm_struct *mm)
1061 {
1062 if (current->active_mm == mm)
1063 load_cr3(swapper_pg_dir);
1064 }
1065 #endif
1066
1067 /*
1068 * While a process runs, Xen pins its pagetables, which means that the
1069 * hypervisor forces it to be read-only, and it controls all updates
1070 * to it. This means that all pagetable updates have to go via the
1071 * hypervisor, which is moderately expensive.
1072 *
1073 * Since we're pulling the pagetable down, we switch to use init_mm,
1074 * unpin old process pagetable and mark it all read-write, which
1075 * allows further operations on it to be simple memory accesses.
1076 *
1077 * The only subtle point is that another CPU may be still using the
1078 * pagetable because of lazy tlb flushing. This means we need need to
1079 * switch all CPUs off this pagetable before we can unpin it.
1080 */
1081 static void xen_exit_mmap(struct mm_struct *mm)
1082 {
1083 get_cpu(); /* make sure we don't move around */
1084 xen_drop_mm_ref(mm);
1085 put_cpu();
1086
1087 spin_lock(&mm->page_table_lock);
1088
1089 /* pgd may not be pinned in the error exit path of execve */
1090 if (xen_page_pinned(mm->pgd))
1091 xen_pgd_unpin(mm);
1092
1093 spin_unlock(&mm->page_table_lock);
1094 }
1095
1096 static void xen_post_allocator_init(void);
1097
1098 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1099 {
1100 struct mmuext_op op;
1101
1102 op.cmd = cmd;
1103 op.arg1.mfn = pfn_to_mfn(pfn);
1104 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1105 BUG();
1106 }
1107
1108 #ifdef CONFIG_X86_64
1109 static void __init xen_cleanhighmap(unsigned long vaddr,
1110 unsigned long vaddr_end)
1111 {
1112 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1113 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1114
1115 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1116 * We include the PMD passed in on _both_ boundaries. */
1117 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1118 pmd++, vaddr += PMD_SIZE) {
1119 if (pmd_none(*pmd))
1120 continue;
1121 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1122 set_pmd(pmd, __pmd(0));
1123 }
1124 /* In case we did something silly, we should crash in this function
1125 * instead of somewhere later and be confusing. */
1126 xen_mc_flush();
1127 }
1128
1129 /*
1130 * Make a page range writeable and free it.
1131 */
1132 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1133 {
1134 void *vaddr = __va(paddr);
1135 void *vaddr_end = vaddr + size;
1136
1137 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1138 make_lowmem_page_readwrite(vaddr);
1139
1140 memblock_free(paddr, size);
1141 }
1142
1143 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1144 {
1145 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1146
1147 if (unpin)
1148 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1149 ClearPagePinned(virt_to_page(__va(pa)));
1150 xen_free_ro_pages(pa, PAGE_SIZE);
1151 }
1152
1153 /*
1154 * Since it is well isolated we can (and since it is perhaps large we should)
1155 * also free the page tables mapping the initial P->M table.
1156 */
1157 static void __init xen_cleanmfnmap(unsigned long vaddr)
1158 {
1159 unsigned long va = vaddr & PMD_MASK;
1160 unsigned long pa;
1161 pgd_t *pgd = pgd_offset_k(va);
1162 pud_t *pud_page = pud_offset(pgd, 0);
1163 pud_t *pud;
1164 pmd_t *pmd;
1165 pte_t *pte;
1166 unsigned int i;
1167 bool unpin;
1168
1169 unpin = (vaddr == 2 * PGDIR_SIZE);
1170 set_pgd(pgd, __pgd(0));
1171 do {
1172 pud = pud_page + pud_index(va);
1173 if (pud_none(*pud)) {
1174 va += PUD_SIZE;
1175 } else if (pud_large(*pud)) {
1176 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1177 xen_free_ro_pages(pa, PUD_SIZE);
1178 va += PUD_SIZE;
1179 } else {
1180 pmd = pmd_offset(pud, va);
1181 if (pmd_large(*pmd)) {
1182 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1183 xen_free_ro_pages(pa, PMD_SIZE);
1184 } else if (!pmd_none(*pmd)) {
1185 pte = pte_offset_kernel(pmd, va);
1186 set_pmd(pmd, __pmd(0));
1187 for (i = 0; i < PTRS_PER_PTE; ++i) {
1188 if (pte_none(pte[i]))
1189 break;
1190 pa = pte_pfn(pte[i]) << PAGE_SHIFT;
1191 xen_free_ro_pages(pa, PAGE_SIZE);
1192 }
1193 xen_cleanmfnmap_free_pgtbl(pte, unpin);
1194 }
1195 va += PMD_SIZE;
1196 if (pmd_index(va))
1197 continue;
1198 set_pud(pud, __pud(0));
1199 xen_cleanmfnmap_free_pgtbl(pmd, unpin);
1200 }
1201
1202 } while (pud_index(va) || pmd_index(va));
1203 xen_cleanmfnmap_free_pgtbl(pud_page, unpin);
1204 }
1205
1206 static void __init xen_pagetable_p2m_free(void)
1207 {
1208 unsigned long size;
1209 unsigned long addr;
1210
1211 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1212
1213 /* No memory or already called. */
1214 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1215 return;
1216
1217 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1218 memset((void *)xen_start_info->mfn_list, 0xff, size);
1219
1220 addr = xen_start_info->mfn_list;
1221 /*
1222 * We could be in __ka space.
1223 * We roundup to the PMD, which means that if anybody at this stage is
1224 * using the __ka address of xen_start_info or
1225 * xen_start_info->shared_info they are in going to crash. Fortunatly
1226 * we have already revectored in xen_setup_kernel_pagetable and in
1227 * xen_setup_shared_info.
1228 */
1229 size = roundup(size, PMD_SIZE);
1230
1231 if (addr >= __START_KERNEL_map) {
1232 xen_cleanhighmap(addr, addr + size);
1233 size = PAGE_ALIGN(xen_start_info->nr_pages *
1234 sizeof(unsigned long));
1235 memblock_free(__pa(addr), size);
1236 } else {
1237 xen_cleanmfnmap(addr);
1238 }
1239 }
1240
1241 static void __init xen_pagetable_cleanhighmap(void)
1242 {
1243 unsigned long size;
1244 unsigned long addr;
1245
1246 /* At this stage, cleanup_highmap has already cleaned __ka space
1247 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1248 * the ramdisk). We continue on, erasing PMD entries that point to page
1249 * tables - do note that they are accessible at this stage via __va.
1250 * For good measure we also round up to the PMD - which means that if
1251 * anybody is using __ka address to the initial boot-stack - and try
1252 * to use it - they are going to crash. The xen_start_info has been
1253 * taken care of already in xen_setup_kernel_pagetable. */
1254 addr = xen_start_info->pt_base;
1255 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1256
1257 xen_cleanhighmap(addr, addr + size);
1258 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1259 #ifdef DEBUG
1260 /* This is superfluous and is not necessary, but you know what
1261 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1262 * anything at this stage. */
1263 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1264 #endif
1265 }
1266 #endif
1267
1268 static void __init xen_pagetable_p2m_setup(void)
1269 {
1270 if (xen_feature(XENFEAT_auto_translated_physmap))
1271 return;
1272
1273 xen_vmalloc_p2m_tree();
1274
1275 #ifdef CONFIG_X86_64
1276 xen_pagetable_p2m_free();
1277
1278 xen_pagetable_cleanhighmap();
1279 #endif
1280 /* And revector! Bye bye old array */
1281 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1282 }
1283
1284 static void __init xen_pagetable_init(void)
1285 {
1286 paging_init();
1287 xen_post_allocator_init();
1288
1289 xen_pagetable_p2m_setup();
1290
1291 /* Allocate and initialize top and mid mfn levels for p2m structure */
1292 xen_build_mfn_list_list();
1293
1294 /* Remap memory freed due to conflicts with E820 map */
1295 if (!xen_feature(XENFEAT_auto_translated_physmap))
1296 xen_remap_memory();
1297
1298 xen_setup_shared_info();
1299 }
1300 static void xen_write_cr2(unsigned long cr2)
1301 {
1302 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1303 }
1304
1305 static unsigned long xen_read_cr2(void)
1306 {
1307 return this_cpu_read(xen_vcpu)->arch.cr2;
1308 }
1309
1310 unsigned long xen_read_cr2_direct(void)
1311 {
1312 return this_cpu_read(xen_vcpu_info.arch.cr2);
1313 }
1314
1315 void xen_flush_tlb_all(void)
1316 {
1317 struct mmuext_op *op;
1318 struct multicall_space mcs;
1319
1320 trace_xen_mmu_flush_tlb_all(0);
1321
1322 preempt_disable();
1323
1324 mcs = xen_mc_entry(sizeof(*op));
1325
1326 op = mcs.args;
1327 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1328 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1329
1330 xen_mc_issue(PARAVIRT_LAZY_MMU);
1331
1332 preempt_enable();
1333 }
1334 static void xen_flush_tlb(void)
1335 {
1336 struct mmuext_op *op;
1337 struct multicall_space mcs;
1338
1339 trace_xen_mmu_flush_tlb(0);
1340
1341 preempt_disable();
1342
1343 mcs = xen_mc_entry(sizeof(*op));
1344
1345 op = mcs.args;
1346 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1347 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1348
1349 xen_mc_issue(PARAVIRT_LAZY_MMU);
1350
1351 preempt_enable();
1352 }
1353
1354 static void xen_flush_tlb_single(unsigned long addr)
1355 {
1356 struct mmuext_op *op;
1357 struct multicall_space mcs;
1358
1359 trace_xen_mmu_flush_tlb_single(addr);
1360
1361 preempt_disable();
1362
1363 mcs = xen_mc_entry(sizeof(*op));
1364 op = mcs.args;
1365 op->cmd = MMUEXT_INVLPG_LOCAL;
1366 op->arg1.linear_addr = addr & PAGE_MASK;
1367 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1368
1369 xen_mc_issue(PARAVIRT_LAZY_MMU);
1370
1371 preempt_enable();
1372 }
1373
1374 static void xen_flush_tlb_others(const struct cpumask *cpus,
1375 struct mm_struct *mm, unsigned long start,
1376 unsigned long end)
1377 {
1378 struct {
1379 struct mmuext_op op;
1380 #ifdef CONFIG_SMP
1381 DECLARE_BITMAP(mask, num_processors);
1382 #else
1383 DECLARE_BITMAP(mask, NR_CPUS);
1384 #endif
1385 } *args;
1386 struct multicall_space mcs;
1387
1388 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1389
1390 if (cpumask_empty(cpus))
1391 return; /* nothing to do */
1392
1393 mcs = xen_mc_entry(sizeof(*args));
1394 args = mcs.args;
1395 args->op.arg2.vcpumask = to_cpumask(args->mask);
1396
1397 /* Remove us, and any offline CPUS. */
1398 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1399 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1400
1401 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1402 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1403 args->op.cmd = MMUEXT_INVLPG_MULTI;
1404 args->op.arg1.linear_addr = start;
1405 }
1406
1407 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1408
1409 xen_mc_issue(PARAVIRT_LAZY_MMU);
1410 }
1411
1412 static unsigned long xen_read_cr3(void)
1413 {
1414 return this_cpu_read(xen_cr3);
1415 }
1416
1417 static void set_current_cr3(void *v)
1418 {
1419 this_cpu_write(xen_current_cr3, (unsigned long)v);
1420 }
1421
1422 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1423 {
1424 struct mmuext_op op;
1425 unsigned long mfn;
1426
1427 trace_xen_mmu_write_cr3(kernel, cr3);
1428
1429 if (cr3)
1430 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1431 else
1432 mfn = 0;
1433
1434 WARN_ON(mfn == 0 && kernel);
1435
1436 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1437 op.arg1.mfn = mfn;
1438
1439 xen_extend_mmuext_op(&op);
1440
1441 if (kernel) {
1442 this_cpu_write(xen_cr3, cr3);
1443
1444 /* Update xen_current_cr3 once the batch has actually
1445 been submitted. */
1446 xen_mc_callback(set_current_cr3, (void *)cr3);
1447 }
1448 }
1449 static void xen_write_cr3(unsigned long cr3)
1450 {
1451 BUG_ON(preemptible());
1452
1453 xen_mc_batch(); /* disables interrupts */
1454
1455 /* Update while interrupts are disabled, so its atomic with
1456 respect to ipis */
1457 this_cpu_write(xen_cr3, cr3);
1458
1459 __xen_write_cr3(true, cr3);
1460
1461 #ifdef CONFIG_X86_64
1462 {
1463 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1464 if (user_pgd)
1465 __xen_write_cr3(false, __pa(user_pgd));
1466 else
1467 __xen_write_cr3(false, 0);
1468 }
1469 #endif
1470
1471 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1472 }
1473
1474 #ifdef CONFIG_X86_64
1475 /*
1476 * At the start of the day - when Xen launches a guest, it has already
1477 * built pagetables for the guest. We diligently look over them
1478 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1479 * init_level4_pgt and its friends. Then when we are happy we load
1480 * the new init_level4_pgt - and continue on.
1481 *
1482 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1483 * up the rest of the pagetables. When it has completed it loads the cr3.
1484 * N.B. that baremetal would start at 'start_kernel' (and the early
1485 * #PF handler would create bootstrap pagetables) - so we are running
1486 * with the same assumptions as what to do when write_cr3 is executed
1487 * at this point.
1488 *
1489 * Since there are no user-page tables at all, we have two variants
1490 * of xen_write_cr3 - the early bootup (this one), and the late one
1491 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1492 * the Linux kernel and user-space are both in ring 3 while the
1493 * hypervisor is in ring 0.
1494 */
1495 static void __init xen_write_cr3_init(unsigned long cr3)
1496 {
1497 BUG_ON(preemptible());
1498
1499 xen_mc_batch(); /* disables interrupts */
1500
1501 /* Update while interrupts are disabled, so its atomic with
1502 respect to ipis */
1503 this_cpu_write(xen_cr3, cr3);
1504
1505 __xen_write_cr3(true, cr3);
1506
1507 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1508 }
1509 #endif
1510
1511 static int xen_pgd_alloc(struct mm_struct *mm)
1512 {
1513 pgd_t *pgd = mm->pgd;
1514 int ret = 0;
1515
1516 BUG_ON(PagePinned(virt_to_page(pgd)));
1517
1518 #ifdef CONFIG_X86_64
1519 {
1520 struct page *page = virt_to_page(pgd);
1521 pgd_t *user_pgd;
1522
1523 BUG_ON(page->private != 0);
1524
1525 ret = -ENOMEM;
1526
1527 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1528 page->private = (unsigned long)user_pgd;
1529
1530 if (user_pgd != NULL) {
1531 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1532 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1533 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1534 #endif
1535 ret = 0;
1536 }
1537
1538 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1539 }
1540 #endif
1541
1542 return ret;
1543 }
1544
1545 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1546 {
1547 #ifdef CONFIG_X86_64
1548 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1549
1550 if (user_pgd)
1551 free_page((unsigned long)user_pgd);
1552 #endif
1553 }
1554
1555 /*
1556 * Init-time set_pte while constructing initial pagetables, which
1557 * doesn't allow RO page table pages to be remapped RW.
1558 *
1559 * If there is no MFN for this PFN then this page is initially
1560 * ballooned out so clear the PTE (as in decrease_reservation() in
1561 * drivers/xen/balloon.c).
1562 *
1563 * Many of these PTE updates are done on unpinned and writable pages
1564 * and doing a hypercall for these is unnecessary and expensive. At
1565 * this point it is not possible to tell if a page is pinned or not,
1566 * so always write the PTE directly and rely on Xen trapping and
1567 * emulating any updates as necessary.
1568 */
1569 __visible pte_t xen_make_pte_init(pteval_t pte)
1570 {
1571 #ifdef CONFIG_X86_64
1572 unsigned long pfn;
1573
1574 /*
1575 * Pages belonging to the initial p2m list mapped outside the default
1576 * address range must be mapped read-only. This region contains the
1577 * page tables for mapping the p2m list, too, and page tables MUST be
1578 * mapped read-only.
1579 */
1580 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1581 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1582 pfn >= xen_start_info->first_p2m_pfn &&
1583 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1584 pte &= ~_PAGE_RW;
1585 #endif
1586 pte = pte_pfn_to_mfn(pte);
1587 return native_make_pte(pte);
1588 }
1589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1590
1591 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1592 {
1593 #ifdef CONFIG_X86_32
1594 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1595 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1596 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1597 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1598 pte_val_ma(pte));
1599 #endif
1600 native_set_pte(ptep, pte);
1601 }
1602
1603 /* Early in boot, while setting up the initial pagetable, assume
1604 everything is pinned. */
1605 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1606 {
1607 #ifdef CONFIG_FLATMEM
1608 BUG_ON(mem_map); /* should only be used early */
1609 #endif
1610 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1611 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1612 }
1613
1614 /* Used for pmd and pud */
1615 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1616 {
1617 #ifdef CONFIG_FLATMEM
1618 BUG_ON(mem_map); /* should only be used early */
1619 #endif
1620 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1621 }
1622
1623 /* Early release_pte assumes that all pts are pinned, since there's
1624 only init_mm and anything attached to that is pinned. */
1625 static void __init xen_release_pte_init(unsigned long pfn)
1626 {
1627 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1628 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1629 }
1630
1631 static void __init xen_release_pmd_init(unsigned long pfn)
1632 {
1633 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1634 }
1635
1636 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1637 {
1638 struct multicall_space mcs;
1639 struct mmuext_op *op;
1640
1641 mcs = __xen_mc_entry(sizeof(*op));
1642 op = mcs.args;
1643 op->cmd = cmd;
1644 op->arg1.mfn = pfn_to_mfn(pfn);
1645
1646 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1647 }
1648
1649 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1650 {
1651 struct multicall_space mcs;
1652 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1653
1654 mcs = __xen_mc_entry(0);
1655 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1656 pfn_pte(pfn, prot), 0);
1657 }
1658
1659 /* This needs to make sure the new pte page is pinned iff its being
1660 attached to a pinned pagetable. */
1661 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1662 unsigned level)
1663 {
1664 bool pinned = PagePinned(virt_to_page(mm->pgd));
1665
1666 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1667
1668 if (pinned) {
1669 struct page *page = pfn_to_page(pfn);
1670
1671 SetPagePinned(page);
1672
1673 if (!PageHighMem(page)) {
1674 xen_mc_batch();
1675
1676 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1677
1678 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1679 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1680
1681 xen_mc_issue(PARAVIRT_LAZY_MMU);
1682 } else {
1683 /* make sure there are no stray mappings of
1684 this page */
1685 kmap_flush_unused();
1686 }
1687 }
1688 }
1689
1690 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1691 {
1692 xen_alloc_ptpage(mm, pfn, PT_PTE);
1693 }
1694
1695 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1696 {
1697 xen_alloc_ptpage(mm, pfn, PT_PMD);
1698 }
1699
1700 /* This should never happen until we're OK to use struct page */
1701 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1702 {
1703 struct page *page = pfn_to_page(pfn);
1704 bool pinned = PagePinned(page);
1705
1706 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1707
1708 if (pinned) {
1709 if (!PageHighMem(page)) {
1710 xen_mc_batch();
1711
1712 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1713 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1714
1715 __set_pfn_prot(pfn, PAGE_KERNEL);
1716
1717 xen_mc_issue(PARAVIRT_LAZY_MMU);
1718 }
1719 ClearPagePinned(page);
1720 }
1721 }
1722
1723 static void xen_release_pte(unsigned long pfn)
1724 {
1725 xen_release_ptpage(pfn, PT_PTE);
1726 }
1727
1728 static void xen_release_pmd(unsigned long pfn)
1729 {
1730 xen_release_ptpage(pfn, PT_PMD);
1731 }
1732
1733 #if CONFIG_PGTABLE_LEVELS == 4
1734 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1735 {
1736 xen_alloc_ptpage(mm, pfn, PT_PUD);
1737 }
1738
1739 static void xen_release_pud(unsigned long pfn)
1740 {
1741 xen_release_ptpage(pfn, PT_PUD);
1742 }
1743 #endif
1744
1745 void __init xen_reserve_top(void)
1746 {
1747 #ifdef CONFIG_X86_32
1748 unsigned long top = HYPERVISOR_VIRT_START;
1749 struct xen_platform_parameters pp;
1750
1751 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1752 top = pp.virt_start;
1753
1754 reserve_top_address(-top);
1755 #endif /* CONFIG_X86_32 */
1756 }
1757
1758 /*
1759 * Like __va(), but returns address in the kernel mapping (which is
1760 * all we have until the physical memory mapping has been set up.
1761 */
1762 static void * __init __ka(phys_addr_t paddr)
1763 {
1764 #ifdef CONFIG_X86_64
1765 return (void *)(paddr + __START_KERNEL_map);
1766 #else
1767 return __va(paddr);
1768 #endif
1769 }
1770
1771 /* Convert a machine address to physical address */
1772 static unsigned long __init m2p(phys_addr_t maddr)
1773 {
1774 phys_addr_t paddr;
1775
1776 maddr &= PTE_PFN_MASK;
1777 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1778
1779 return paddr;
1780 }
1781
1782 /* Convert a machine address to kernel virtual */
1783 static void * __init m2v(phys_addr_t maddr)
1784 {
1785 return __ka(m2p(maddr));
1786 }
1787
1788 /* Set the page permissions on an identity-mapped pages */
1789 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1790 unsigned long flags)
1791 {
1792 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1793 pte_t pte = pfn_pte(pfn, prot);
1794
1795 /* For PVH no need to set R/O or R/W to pin them or unpin them. */
1796 if (xen_feature(XENFEAT_auto_translated_physmap))
1797 return;
1798
1799 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1800 BUG();
1801 }
1802 static void __init set_page_prot(void *addr, pgprot_t prot)
1803 {
1804 return set_page_prot_flags(addr, prot, UVMF_NONE);
1805 }
1806 #ifdef CONFIG_X86_32
1807 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1808 {
1809 unsigned pmdidx, pteidx;
1810 unsigned ident_pte;
1811 unsigned long pfn;
1812
1813 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1814 PAGE_SIZE);
1815
1816 ident_pte = 0;
1817 pfn = 0;
1818 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1819 pte_t *pte_page;
1820
1821 /* Reuse or allocate a page of ptes */
1822 if (pmd_present(pmd[pmdidx]))
1823 pte_page = m2v(pmd[pmdidx].pmd);
1824 else {
1825 /* Check for free pte pages */
1826 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1827 break;
1828
1829 pte_page = &level1_ident_pgt[ident_pte];
1830 ident_pte += PTRS_PER_PTE;
1831
1832 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1833 }
1834
1835 /* Install mappings */
1836 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1837 pte_t pte;
1838
1839 if (pfn > max_pfn_mapped)
1840 max_pfn_mapped = pfn;
1841
1842 if (!pte_none(pte_page[pteidx]))
1843 continue;
1844
1845 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1846 pte_page[pteidx] = pte;
1847 }
1848 }
1849
1850 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1851 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1852
1853 set_page_prot(pmd, PAGE_KERNEL_RO);
1854 }
1855 #endif
1856 void __init xen_setup_machphys_mapping(void)
1857 {
1858 struct xen_machphys_mapping mapping;
1859
1860 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1861 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1862 machine_to_phys_nr = mapping.max_mfn + 1;
1863 } else {
1864 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1865 }
1866 #ifdef CONFIG_X86_32
1867 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1868 < machine_to_phys_mapping);
1869 #endif
1870 }
1871
1872 #ifdef CONFIG_X86_64
1873 static void __init convert_pfn_mfn(void *v)
1874 {
1875 pte_t *pte = v;
1876 int i;
1877
1878 /* All levels are converted the same way, so just treat them
1879 as ptes. */
1880 for (i = 0; i < PTRS_PER_PTE; i++)
1881 pte[i] = xen_make_pte(pte[i].pte);
1882 }
1883 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1884 unsigned long addr)
1885 {
1886 if (*pt_base == PFN_DOWN(__pa(addr))) {
1887 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1888 clear_page((void *)addr);
1889 (*pt_base)++;
1890 }
1891 if (*pt_end == PFN_DOWN(__pa(addr))) {
1892 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1893 clear_page((void *)addr);
1894 (*pt_end)--;
1895 }
1896 }
1897 /*
1898 * Set up the initial kernel pagetable.
1899 *
1900 * We can construct this by grafting the Xen provided pagetable into
1901 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1902 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1903 * kernel has a physical mapping to start with - but that's enough to
1904 * get __va working. We need to fill in the rest of the physical
1905 * mapping once some sort of allocator has been set up. NOTE: for
1906 * PVH, the page tables are native.
1907 */
1908 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1909 {
1910 pud_t *l3;
1911 pmd_t *l2;
1912 unsigned long addr[3];
1913 unsigned long pt_base, pt_end;
1914 unsigned i;
1915
1916 /* max_pfn_mapped is the last pfn mapped in the initial memory
1917 * mappings. Considering that on Xen after the kernel mappings we
1918 * have the mappings of some pages that don't exist in pfn space, we
1919 * set max_pfn_mapped to the last real pfn mapped. */
1920 if (xen_start_info->mfn_list < __START_KERNEL_map)
1921 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1922 else
1923 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1924
1925 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1926 pt_end = pt_base + xen_start_info->nr_pt_frames;
1927
1928 /* Zap identity mapping */
1929 init_level4_pgt[0] = __pgd(0);
1930
1931 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1932 /* Pre-constructed entries are in pfn, so convert to mfn */
1933 /* L4[272] -> level3_ident_pgt
1934 * L4[511] -> level3_kernel_pgt */
1935 convert_pfn_mfn(init_level4_pgt);
1936
1937 /* L3_i[0] -> level2_ident_pgt */
1938 convert_pfn_mfn(level3_ident_pgt);
1939 /* L3_k[510] -> level2_kernel_pgt
1940 * L3_k[511] -> level2_fixmap_pgt */
1941 convert_pfn_mfn(level3_kernel_pgt);
1942
1943 /* L3_k[511][506] -> level1_fixmap_pgt */
1944 convert_pfn_mfn(level2_fixmap_pgt);
1945 }
1946 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1947 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1948 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1949
1950 addr[0] = (unsigned long)pgd;
1951 addr[1] = (unsigned long)l3;
1952 addr[2] = (unsigned long)l2;
1953 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1954 * Both L4[272][0] and L4[511][510] have entries that point to the same
1955 * L2 (PMD) tables. Meaning that if you modify it in __va space
1956 * it will be also modified in the __ka space! (But if you just
1957 * modify the PMD table to point to other PTE's or none, then you
1958 * are OK - which is what cleanup_highmap does) */
1959 copy_page(level2_ident_pgt, l2);
1960 /* Graft it onto L4[511][510] */
1961 copy_page(level2_kernel_pgt, l2);
1962
1963 /* Copy the initial P->M table mappings if necessary. */
1964 i = pgd_index(xen_start_info->mfn_list);
1965 if (i && i < pgd_index(__START_KERNEL_map))
1966 init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1967
1968 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1969 /* Make pagetable pieces RO */
1970 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1971 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1972 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1973 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1974 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1975 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1976 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1977 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1978
1979 /* Pin down new L4 */
1980 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1981 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1982
1983 /* Unpin Xen-provided one */
1984 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1985
1986 /*
1987 * At this stage there can be no user pgd, and no page
1988 * structure to attach it to, so make sure we just set kernel
1989 * pgd.
1990 */
1991 xen_mc_batch();
1992 __xen_write_cr3(true, __pa(init_level4_pgt));
1993 xen_mc_issue(PARAVIRT_LAZY_CPU);
1994 } else
1995 native_write_cr3(__pa(init_level4_pgt));
1996
1997 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1998 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1999 * the initial domain. For guests using the toolstack, they are in:
2000 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
2001 * rip out the [L4] (pgd), but for guests we shave off three pages.
2002 */
2003 for (i = 0; i < ARRAY_SIZE(addr); i++)
2004 check_pt_base(&pt_base, &pt_end, addr[i]);
2005
2006 /* Our (by three pages) smaller Xen pagetable that we are using */
2007 xen_pt_base = PFN_PHYS(pt_base);
2008 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2009 memblock_reserve(xen_pt_base, xen_pt_size);
2010
2011 /* Revector the xen_start_info */
2012 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2013 }
2014
2015 /*
2016 * Read a value from a physical address.
2017 */
2018 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2019 {
2020 unsigned long *vaddr;
2021 unsigned long val;
2022
2023 vaddr = early_memremap_ro(addr, sizeof(val));
2024 val = *vaddr;
2025 early_memunmap(vaddr, sizeof(val));
2026 return val;
2027 }
2028
2029 /*
2030 * Translate a virtual address to a physical one without relying on mapped
2031 * page tables.
2032 */
2033 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2034 {
2035 phys_addr_t pa;
2036 pgd_t pgd;
2037 pud_t pud;
2038 pmd_t pmd;
2039 pte_t pte;
2040
2041 pa = read_cr3();
2042 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2043 sizeof(pgd)));
2044 if (!pgd_present(pgd))
2045 return 0;
2046
2047 pa = pgd_val(pgd) & PTE_PFN_MASK;
2048 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2049 sizeof(pud)));
2050 if (!pud_present(pud))
2051 return 0;
2052 pa = pud_pfn(pud) << PAGE_SHIFT;
2053 if (pud_large(pud))
2054 return pa + (vaddr & ~PUD_MASK);
2055
2056 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2057 sizeof(pmd)));
2058 if (!pmd_present(pmd))
2059 return 0;
2060 pa = pmd_pfn(pmd) << PAGE_SHIFT;
2061 if (pmd_large(pmd))
2062 return pa + (vaddr & ~PMD_MASK);
2063
2064 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2065 sizeof(pte)));
2066 if (!pte_present(pte))
2067 return 0;
2068 pa = pte_pfn(pte) << PAGE_SHIFT;
2069
2070 return pa | (vaddr & ~PAGE_MASK);
2071 }
2072
2073 /*
2074 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2075 * this area.
2076 */
2077 void __init xen_relocate_p2m(void)
2078 {
2079 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2080 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2081 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2082 pte_t *pt;
2083 pmd_t *pmd;
2084 pud_t *pud;
2085 pgd_t *pgd;
2086 unsigned long *new_p2m;
2087
2088 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2089 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2090 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2091 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2092 n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2093 n_frames = n_pte + n_pt + n_pmd + n_pud;
2094
2095 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2096 if (!new_area) {
2097 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2098 BUG();
2099 }
2100
2101 /*
2102 * Setup the page tables for addressing the new p2m list.
2103 * We have asked the hypervisor to map the p2m list at the user address
2104 * PUD_SIZE. It may have done so, or it may have used a kernel space
2105 * address depending on the Xen version.
2106 * To avoid any possible virtual address collision, just use
2107 * 2 * PUD_SIZE for the new area.
2108 */
2109 pud_phys = new_area;
2110 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2111 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2112 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2113
2114 pgd = __va(read_cr3());
2115 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2116 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2117 pud = early_memremap(pud_phys, PAGE_SIZE);
2118 clear_page(pud);
2119 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2120 idx_pmd++) {
2121 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2122 clear_page(pmd);
2123 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2124 idx_pt++) {
2125 pt = early_memremap(pt_phys, PAGE_SIZE);
2126 clear_page(pt);
2127 for (idx_pte = 0;
2128 idx_pte < min(n_pte, PTRS_PER_PTE);
2129 idx_pte++) {
2130 set_pte(pt + idx_pte,
2131 pfn_pte(p2m_pfn, PAGE_KERNEL));
2132 p2m_pfn++;
2133 }
2134 n_pte -= PTRS_PER_PTE;
2135 early_memunmap(pt, PAGE_SIZE);
2136 make_lowmem_page_readonly(__va(pt_phys));
2137 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2138 PFN_DOWN(pt_phys));
2139 set_pmd(pmd + idx_pt,
2140 __pmd(_PAGE_TABLE | pt_phys));
2141 pt_phys += PAGE_SIZE;
2142 }
2143 n_pt -= PTRS_PER_PMD;
2144 early_memunmap(pmd, PAGE_SIZE);
2145 make_lowmem_page_readonly(__va(pmd_phys));
2146 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2147 PFN_DOWN(pmd_phys));
2148 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2149 pmd_phys += PAGE_SIZE;
2150 }
2151 n_pmd -= PTRS_PER_PUD;
2152 early_memunmap(pud, PAGE_SIZE);
2153 make_lowmem_page_readonly(__va(pud_phys));
2154 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2155 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2156 pud_phys += PAGE_SIZE;
2157 }
2158
2159 /* Now copy the old p2m info to the new area. */
2160 memcpy(new_p2m, xen_p2m_addr, size);
2161 xen_p2m_addr = new_p2m;
2162
2163 /* Release the old p2m list and set new list info. */
2164 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2165 BUG_ON(!p2m_pfn);
2166 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2167
2168 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2169 pfn = xen_start_info->first_p2m_pfn;
2170 pfn_end = xen_start_info->first_p2m_pfn +
2171 xen_start_info->nr_p2m_frames;
2172 set_pgd(pgd + 1, __pgd(0));
2173 } else {
2174 pfn = p2m_pfn;
2175 pfn_end = p2m_pfn_end;
2176 }
2177
2178 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2179 while (pfn < pfn_end) {
2180 if (pfn == p2m_pfn) {
2181 pfn = p2m_pfn_end;
2182 continue;
2183 }
2184 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2185 pfn++;
2186 }
2187
2188 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2189 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2190 xen_start_info->nr_p2m_frames = n_frames;
2191 }
2192
2193 #else /* !CONFIG_X86_64 */
2194 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2195 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2196
2197 static void __init xen_write_cr3_init(unsigned long cr3)
2198 {
2199 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2200
2201 BUG_ON(read_cr3() != __pa(initial_page_table));
2202 BUG_ON(cr3 != __pa(swapper_pg_dir));
2203
2204 /*
2205 * We are switching to swapper_pg_dir for the first time (from
2206 * initial_page_table) and therefore need to mark that page
2207 * read-only and then pin it.
2208 *
2209 * Xen disallows sharing of kernel PMDs for PAE
2210 * guests. Therefore we must copy the kernel PMD from
2211 * initial_page_table into a new kernel PMD to be used in
2212 * swapper_pg_dir.
2213 */
2214 swapper_kernel_pmd =
2215 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2216 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2217 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2218 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2219 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2220
2221 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2222 xen_write_cr3(cr3);
2223 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2224
2225 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2226 PFN_DOWN(__pa(initial_page_table)));
2227 set_page_prot(initial_page_table, PAGE_KERNEL);
2228 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2229
2230 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2231 }
2232
2233 /*
2234 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2235 * not the first page table in the page table pool.
2236 * Iterate through the initial page tables to find the real page table base.
2237 */
2238 static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2239 {
2240 phys_addr_t pt_base, paddr;
2241 unsigned pmdidx;
2242
2243 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2244
2245 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2246 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2247 paddr = m2p(pmd[pmdidx].pmd);
2248 pt_base = min(pt_base, paddr);
2249 }
2250
2251 return pt_base;
2252 }
2253
2254 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2255 {
2256 pmd_t *kernel_pmd;
2257
2258 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2259
2260 xen_pt_base = xen_find_pt_base(kernel_pmd);
2261 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2262
2263 initial_kernel_pmd =
2264 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2265
2266 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2267
2268 copy_page(initial_kernel_pmd, kernel_pmd);
2269
2270 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2271
2272 copy_page(initial_page_table, pgd);
2273 initial_page_table[KERNEL_PGD_BOUNDARY] =
2274 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2275
2276 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2277 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2278 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2279
2280 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2281
2282 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2283 PFN_DOWN(__pa(initial_page_table)));
2284 xen_write_cr3(__pa(initial_page_table));
2285
2286 memblock_reserve(xen_pt_base, xen_pt_size);
2287 }
2288 #endif /* CONFIG_X86_64 */
2289
2290 void __init xen_reserve_special_pages(void)
2291 {
2292 phys_addr_t paddr;
2293
2294 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2295 if (xen_start_info->store_mfn) {
2296 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2297 memblock_reserve(paddr, PAGE_SIZE);
2298 }
2299 if (!xen_initial_domain()) {
2300 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2301 memblock_reserve(paddr, PAGE_SIZE);
2302 }
2303 }
2304
2305 void __init xen_pt_check_e820(void)
2306 {
2307 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2308 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2309 BUG();
2310 }
2311 }
2312
2313 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2314
2315 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2316 {
2317 pte_t pte;
2318
2319 phys >>= PAGE_SHIFT;
2320
2321 switch (idx) {
2322 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2323 case FIX_RO_IDT:
2324 #ifdef CONFIG_X86_32
2325 case FIX_WP_TEST:
2326 # ifdef CONFIG_HIGHMEM
2327 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2328 # endif
2329 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2330 case VSYSCALL_PAGE:
2331 #endif
2332 case FIX_TEXT_POKE0:
2333 case FIX_TEXT_POKE1:
2334 /* All local page mappings */
2335 pte = pfn_pte(phys, prot);
2336 break;
2337
2338 #ifdef CONFIG_X86_LOCAL_APIC
2339 case FIX_APIC_BASE: /* maps dummy local APIC */
2340 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2341 break;
2342 #endif
2343
2344 #ifdef CONFIG_X86_IO_APIC
2345 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2346 /*
2347 * We just don't map the IO APIC - all access is via
2348 * hypercalls. Keep the address in the pte for reference.
2349 */
2350 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2351 break;
2352 #endif
2353
2354 case FIX_PARAVIRT_BOOTMAP:
2355 /* This is an MFN, but it isn't an IO mapping from the
2356 IO domain */
2357 pte = mfn_pte(phys, prot);
2358 break;
2359
2360 default:
2361 /* By default, set_fixmap is used for hardware mappings */
2362 pte = mfn_pte(phys, prot);
2363 break;
2364 }
2365
2366 __native_set_fixmap(idx, pte);
2367
2368 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2369 /* Replicate changes to map the vsyscall page into the user
2370 pagetable vsyscall mapping. */
2371 if (idx == VSYSCALL_PAGE) {
2372 unsigned long vaddr = __fix_to_virt(idx);
2373 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2374 }
2375 #endif
2376 }
2377
2378 static void __init xen_post_allocator_init(void)
2379 {
2380 if (xen_feature(XENFEAT_auto_translated_physmap))
2381 return;
2382
2383 pv_mmu_ops.set_pte = xen_set_pte;
2384 pv_mmu_ops.set_pmd = xen_set_pmd;
2385 pv_mmu_ops.set_pud = xen_set_pud;
2386 #if CONFIG_PGTABLE_LEVELS == 4
2387 pv_mmu_ops.set_pgd = xen_set_pgd;
2388 #endif
2389
2390 /* This will work as long as patching hasn't happened yet
2391 (which it hasn't) */
2392 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2393 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2394 pv_mmu_ops.release_pte = xen_release_pte;
2395 pv_mmu_ops.release_pmd = xen_release_pmd;
2396 #if CONFIG_PGTABLE_LEVELS == 4
2397 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2398 pv_mmu_ops.release_pud = xen_release_pud;
2399 #endif
2400 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2401
2402 #ifdef CONFIG_X86_64
2403 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2404 SetPagePinned(virt_to_page(level3_user_vsyscall));
2405 #endif
2406 xen_mark_init_mm_pinned();
2407 }
2408
2409 static void xen_leave_lazy_mmu(void)
2410 {
2411 preempt_disable();
2412 xen_mc_flush();
2413 paravirt_leave_lazy_mmu();
2414 preempt_enable();
2415 }
2416
2417 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2418 .read_cr2 = xen_read_cr2,
2419 .write_cr2 = xen_write_cr2,
2420
2421 .read_cr3 = xen_read_cr3,
2422 .write_cr3 = xen_write_cr3_init,
2423
2424 .flush_tlb_user = xen_flush_tlb,
2425 .flush_tlb_kernel = xen_flush_tlb,
2426 .flush_tlb_single = xen_flush_tlb_single,
2427 .flush_tlb_others = xen_flush_tlb_others,
2428
2429 .pte_update = paravirt_nop,
2430
2431 .pgd_alloc = xen_pgd_alloc,
2432 .pgd_free = xen_pgd_free,
2433
2434 .alloc_pte = xen_alloc_pte_init,
2435 .release_pte = xen_release_pte_init,
2436 .alloc_pmd = xen_alloc_pmd_init,
2437 .release_pmd = xen_release_pmd_init,
2438
2439 .set_pte = xen_set_pte_init,
2440 .set_pte_at = xen_set_pte_at,
2441 .set_pmd = xen_set_pmd_hyper,
2442
2443 .ptep_modify_prot_start = __ptep_modify_prot_start,
2444 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2445
2446 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2447 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2448
2449 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2450 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2451
2452 #ifdef CONFIG_X86_PAE
2453 .set_pte_atomic = xen_set_pte_atomic,
2454 .pte_clear = xen_pte_clear,
2455 .pmd_clear = xen_pmd_clear,
2456 #endif /* CONFIG_X86_PAE */
2457 .set_pud = xen_set_pud_hyper,
2458
2459 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2460 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2461
2462 #if CONFIG_PGTABLE_LEVELS == 4
2463 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2464 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2465 .set_pgd = xen_set_pgd_hyper,
2466
2467 .alloc_pud = xen_alloc_pmd_init,
2468 .release_pud = xen_release_pmd_init,
2469 #endif /* CONFIG_PGTABLE_LEVELS == 4 */
2470
2471 .activate_mm = xen_activate_mm,
2472 .dup_mmap = xen_dup_mmap,
2473 .exit_mmap = xen_exit_mmap,
2474
2475 .lazy_mode = {
2476 .enter = paravirt_enter_lazy_mmu,
2477 .leave = xen_leave_lazy_mmu,
2478 .flush = paravirt_flush_lazy_mmu,
2479 },
2480
2481 .set_fixmap = xen_set_fixmap,
2482 };
2483
2484 void __init xen_init_mmu_ops(void)
2485 {
2486 x86_init.paging.pagetable_init = xen_pagetable_init;
2487
2488 if (xen_feature(XENFEAT_auto_translated_physmap))
2489 return;
2490
2491 pv_mmu_ops = xen_mmu_ops;
2492
2493 memset(dummy_mapping, 0xff, PAGE_SIZE);
2494 }
2495
2496 /* Protected by xen_reservation_lock. */
2497 #define MAX_CONTIG_ORDER 9 /* 2MB */
2498 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2499
2500 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2501 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2502 unsigned long *in_frames,
2503 unsigned long *out_frames)
2504 {
2505 int i;
2506 struct multicall_space mcs;
2507
2508 xen_mc_batch();
2509 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2510 mcs = __xen_mc_entry(0);
2511
2512 if (in_frames)
2513 in_frames[i] = virt_to_mfn(vaddr);
2514
2515 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2516 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2517
2518 if (out_frames)
2519 out_frames[i] = virt_to_pfn(vaddr);
2520 }
2521 xen_mc_issue(0);
2522 }
2523
2524 /*
2525 * Update the pfn-to-mfn mappings for a virtual address range, either to
2526 * point to an array of mfns, or contiguously from a single starting
2527 * mfn.
2528 */
2529 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2530 unsigned long *mfns,
2531 unsigned long first_mfn)
2532 {
2533 unsigned i, limit;
2534 unsigned long mfn;
2535
2536 xen_mc_batch();
2537
2538 limit = 1u << order;
2539 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2540 struct multicall_space mcs;
2541 unsigned flags;
2542
2543 mcs = __xen_mc_entry(0);
2544 if (mfns)
2545 mfn = mfns[i];
2546 else
2547 mfn = first_mfn + i;
2548
2549 if (i < (limit - 1))
2550 flags = 0;
2551 else {
2552 if (order == 0)
2553 flags = UVMF_INVLPG | UVMF_ALL;
2554 else
2555 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2556 }
2557
2558 MULTI_update_va_mapping(mcs.mc, vaddr,
2559 mfn_pte(mfn, PAGE_KERNEL), flags);
2560
2561 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2562 }
2563
2564 xen_mc_issue(0);
2565 }
2566
2567 /*
2568 * Perform the hypercall to exchange a region of our pfns to point to
2569 * memory with the required contiguous alignment. Takes the pfns as
2570 * input, and populates mfns as output.
2571 *
2572 * Returns a success code indicating whether the hypervisor was able to
2573 * satisfy the request or not.
2574 */
2575 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2576 unsigned long *pfns_in,
2577 unsigned long extents_out,
2578 unsigned int order_out,
2579 unsigned long *mfns_out,
2580 unsigned int address_bits)
2581 {
2582 long rc;
2583 int success;
2584
2585 struct xen_memory_exchange exchange = {
2586 .in = {
2587 .nr_extents = extents_in,
2588 .extent_order = order_in,
2589 .extent_start = pfns_in,
2590 .domid = DOMID_SELF
2591 },
2592 .out = {
2593 .nr_extents = extents_out,
2594 .extent_order = order_out,
2595 .extent_start = mfns_out,
2596 .address_bits = address_bits,
2597 .domid = DOMID_SELF
2598 }
2599 };
2600
2601 BUG_ON(extents_in << order_in != extents_out << order_out);
2602
2603 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2604 success = (exchange.nr_exchanged == extents_in);
2605
2606 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2607 BUG_ON(success && (rc != 0));
2608
2609 return success;
2610 }
2611
2612 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2613 unsigned int address_bits,
2614 dma_addr_t *dma_handle)
2615 {
2616 unsigned long *in_frames = discontig_frames, out_frame;
2617 unsigned long flags;
2618 int success;
2619 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2620
2621 /*
2622 * Currently an auto-translated guest will not perform I/O, nor will
2623 * it require PAE page directories below 4GB. Therefore any calls to
2624 * this function are redundant and can be ignored.
2625 */
2626
2627 if (xen_feature(XENFEAT_auto_translated_physmap))
2628 return 0;
2629
2630 if (unlikely(order > MAX_CONTIG_ORDER))
2631 return -ENOMEM;
2632
2633 memset((void *) vstart, 0, PAGE_SIZE << order);
2634
2635 spin_lock_irqsave(&xen_reservation_lock, flags);
2636
2637 /* 1. Zap current PTEs, remembering MFNs. */
2638 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2639
2640 /* 2. Get a new contiguous memory extent. */
2641 out_frame = virt_to_pfn(vstart);
2642 success = xen_exchange_memory(1UL << order, 0, in_frames,
2643 1, order, &out_frame,
2644 address_bits);
2645
2646 /* 3. Map the new extent in place of old pages. */
2647 if (success)
2648 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2649 else
2650 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2651
2652 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2653
2654 *dma_handle = virt_to_machine(vstart).maddr;
2655 return success ? 0 : -ENOMEM;
2656 }
2657 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2658
2659 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2660 {
2661 unsigned long *out_frames = discontig_frames, in_frame;
2662 unsigned long flags;
2663 int success;
2664 unsigned long vstart;
2665
2666 if (xen_feature(XENFEAT_auto_translated_physmap))
2667 return;
2668
2669 if (unlikely(order > MAX_CONTIG_ORDER))
2670 return;
2671
2672 vstart = (unsigned long)phys_to_virt(pstart);
2673 memset((void *) vstart, 0, PAGE_SIZE << order);
2674
2675 spin_lock_irqsave(&xen_reservation_lock, flags);
2676
2677 /* 1. Find start MFN of contiguous extent. */
2678 in_frame = virt_to_mfn(vstart);
2679
2680 /* 2. Zap current PTEs. */
2681 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2682
2683 /* 3. Do the exchange for non-contiguous MFNs. */
2684 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2685 0, out_frames, 0);
2686
2687 /* 4. Map new pages in place of old pages. */
2688 if (success)
2689 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2690 else
2691 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2692
2693 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2694 }
2695 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2696
2697 #ifdef CONFIG_XEN_PVHVM
2698 #ifdef CONFIG_PROC_VMCORE
2699 /*
2700 * This function is used in two contexts:
2701 * - the kdump kernel has to check whether a pfn of the crashed kernel
2702 * was a ballooned page. vmcore is using this function to decide
2703 * whether to access a pfn of the crashed kernel.
2704 * - the kexec kernel has to check whether a pfn was ballooned by the
2705 * previous kernel. If the pfn is ballooned, handle it properly.
2706 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2707 * handle the pfn special in this case.
2708 */
2709 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2710 {
2711 struct xen_hvm_get_mem_type a = {
2712 .domid = DOMID_SELF,
2713 .pfn = pfn,
2714 };
2715 int ram;
2716
2717 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2718 return -ENXIO;
2719
2720 switch (a.mem_type) {
2721 case HVMMEM_mmio_dm:
2722 ram = 0;
2723 break;
2724 case HVMMEM_ram_rw:
2725 case HVMMEM_ram_ro:
2726 default:
2727 ram = 1;
2728 break;
2729 }
2730
2731 return ram;
2732 }
2733 #endif
2734
2735 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2736 {
2737 struct xen_hvm_pagetable_dying a;
2738 int rc;
2739
2740 a.domid = DOMID_SELF;
2741 a.gpa = __pa(mm->pgd);
2742 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2743 WARN_ON_ONCE(rc < 0);
2744 }
2745
2746 static int is_pagetable_dying_supported(void)
2747 {
2748 struct xen_hvm_pagetable_dying a;
2749 int rc = 0;
2750
2751 a.domid = DOMID_SELF;
2752 a.gpa = 0x00;
2753 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2754 if (rc < 0) {
2755 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2756 return 0;
2757 }
2758 return 1;
2759 }
2760
2761 void __init xen_hvm_init_mmu_ops(void)
2762 {
2763 if (is_pagetable_dying_supported())
2764 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2765 #ifdef CONFIG_PROC_VMCORE
2766 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2767 #endif
2768 }
2769 #endif
2770
2771 #define REMAP_BATCH_SIZE 16
2772
2773 struct remap_data {
2774 xen_pfn_t *mfn;
2775 bool contiguous;
2776 pgprot_t prot;
2777 struct mmu_update *mmu_update;
2778 };
2779
2780 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2781 unsigned long addr, void *data)
2782 {
2783 struct remap_data *rmd = data;
2784 pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2785
2786 /* If we have a contiguous range, just update the mfn itself,
2787 else update pointer to be "next mfn". */
2788 if (rmd->contiguous)
2789 (*rmd->mfn)++;
2790 else
2791 rmd->mfn++;
2792
2793 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2794 rmd->mmu_update->val = pte_val_ma(pte);
2795 rmd->mmu_update++;
2796
2797 return 0;
2798 }
2799
2800 static int do_remap_gfn(struct vm_area_struct *vma,
2801 unsigned long addr,
2802 xen_pfn_t *gfn, int nr,
2803 int *err_ptr, pgprot_t prot,
2804 unsigned domid,
2805 struct page **pages)
2806 {
2807 int err = 0;
2808 struct remap_data rmd;
2809 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2810 unsigned long range;
2811 int mapped = 0;
2812
2813 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2814
2815 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2816 #ifdef CONFIG_XEN_PVH
2817 /* We need to update the local page tables and the xen HAP */
2818 return xen_xlate_remap_gfn_array(vma, addr, gfn, nr, err_ptr,
2819 prot, domid, pages);
2820 #else
2821 return -EINVAL;
2822 #endif
2823 }
2824
2825 rmd.mfn = gfn;
2826 rmd.prot = prot;
2827 /* We use the err_ptr to indicate if there we are doing a contiguous
2828 * mapping or a discontigious mapping. */
2829 rmd.contiguous = !err_ptr;
2830
2831 while (nr) {
2832 int index = 0;
2833 int done = 0;
2834 int batch = min(REMAP_BATCH_SIZE, nr);
2835 int batch_left = batch;
2836 range = (unsigned long)batch << PAGE_SHIFT;
2837
2838 rmd.mmu_update = mmu_update;
2839 err = apply_to_page_range(vma->vm_mm, addr, range,
2840 remap_area_mfn_pte_fn, &rmd);
2841 if (err)
2842 goto out;
2843
2844 /* We record the error for each page that gives an error, but
2845 * continue mapping until the whole set is done */
2846 do {
2847 int i;
2848
2849 err = HYPERVISOR_mmu_update(&mmu_update[index],
2850 batch_left, &done, domid);
2851
2852 /*
2853 * @err_ptr may be the same buffer as @gfn, so
2854 * only clear it after each chunk of @gfn is
2855 * used.
2856 */
2857 if (err_ptr) {
2858 for (i = index; i < index + done; i++)
2859 err_ptr[i] = 0;
2860 }
2861 if (err < 0) {
2862 if (!err_ptr)
2863 goto out;
2864 err_ptr[i] = err;
2865 done++; /* Skip failed frame. */
2866 } else
2867 mapped += done;
2868 batch_left -= done;
2869 index += done;
2870 } while (batch_left);
2871
2872 nr -= batch;
2873 addr += range;
2874 if (err_ptr)
2875 err_ptr += batch;
2876 cond_resched();
2877 }
2878 out:
2879
2880 xen_flush_tlb_all();
2881
2882 return err < 0 ? err : mapped;
2883 }
2884
2885 int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2886 unsigned long addr,
2887 xen_pfn_t gfn, int nr,
2888 pgprot_t prot, unsigned domid,
2889 struct page **pages)
2890 {
2891 return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2892 }
2893 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2894
2895 int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2896 unsigned long addr,
2897 xen_pfn_t *gfn, int nr,
2898 int *err_ptr, pgprot_t prot,
2899 unsigned domid, struct page **pages)
2900 {
2901 /* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2902 * and the consequences later is quite hard to detect what the actual
2903 * cause of "wrong memory was mapped in".
2904 */
2905 BUG_ON(err_ptr == NULL);
2906 return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2907 }
2908 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2909
2910
2911 /* Returns: 0 success */
2912 int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2913 int numpgs, struct page **pages)
2914 {
2915 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2916 return 0;
2917
2918 #ifdef CONFIG_XEN_PVH
2919 return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
2920 #else
2921 return -EINVAL;
2922 #endif
2923 }
2924 EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
This page took 0.119165 seconds and 5 git commands to generate.