xen: use spin_lock_nest_lock when pinning a pagetable
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/tlbflush.h>
48 #include <asm/fixmap.h>
49 #include <asm/mmu_context.h>
50 #include <asm/paravirt.h>
51 #include <asm/linkage.h>
52
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55
56 #include <xen/page.h>
57 #include <xen/interface/xen.h>
58
59 #include "multicalls.h"
60 #include "mmu.h"
61 #include "debugfs.h"
62
63 #define MMU_UPDATE_HISTO 30
64
65 #ifdef CONFIG_XEN_DEBUG_FS
66
67 static struct {
68 u32 pgd_update;
69 u32 pgd_update_pinned;
70 u32 pgd_update_batched;
71
72 u32 pud_update;
73 u32 pud_update_pinned;
74 u32 pud_update_batched;
75
76 u32 pmd_update;
77 u32 pmd_update_pinned;
78 u32 pmd_update_batched;
79
80 u32 pte_update;
81 u32 pte_update_pinned;
82 u32 pte_update_batched;
83
84 u32 mmu_update;
85 u32 mmu_update_extended;
86 u32 mmu_update_histo[MMU_UPDATE_HISTO];
87
88 u32 prot_commit;
89 u32 prot_commit_batched;
90
91 u32 set_pte_at;
92 u32 set_pte_at_batched;
93 u32 set_pte_at_pinned;
94 u32 set_pte_at_current;
95 u32 set_pte_at_kernel;
96 } mmu_stats;
97
98 static u8 zero_stats;
99
100 static inline void check_zero(void)
101 {
102 if (unlikely(zero_stats)) {
103 memset(&mmu_stats, 0, sizeof(mmu_stats));
104 zero_stats = 0;
105 }
106 }
107
108 #define ADD_STATS(elem, val) \
109 do { check_zero(); mmu_stats.elem += (val); } while(0)
110
111 #else /* !CONFIG_XEN_DEBUG_FS */
112
113 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
114
115 #endif /* CONFIG_XEN_DEBUG_FS */
116
117 /*
118 * Just beyond the highest usermode address. STACK_TOP_MAX has a
119 * redzone above it, so round it up to a PGD boundary.
120 */
121 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
122
123
124 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
125 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
126
127 /* Placeholder for holes in the address space */
128 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
129 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
130
131 /* Array of pointers to pages containing p2m entries */
132 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
133 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
134
135 /* Arrays of p2m arrays expressed in mfns used for save/restore */
136 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
137
138 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
139 __page_aligned_bss;
140
141 static inline unsigned p2m_top_index(unsigned long pfn)
142 {
143 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
144 return pfn / P2M_ENTRIES_PER_PAGE;
145 }
146
147 static inline unsigned p2m_index(unsigned long pfn)
148 {
149 return pfn % P2M_ENTRIES_PER_PAGE;
150 }
151
152 /* Build the parallel p2m_top_mfn structures */
153 void xen_setup_mfn_list_list(void)
154 {
155 unsigned pfn, idx;
156
157 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
158 unsigned topidx = p2m_top_index(pfn);
159
160 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
161 }
162
163 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
164 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
165 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
166 }
167
168 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
169
170 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
171 virt_to_mfn(p2m_top_mfn_list);
172 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
173 }
174
175 /* Set up p2m_top to point to the domain-builder provided p2m pages */
176 void __init xen_build_dynamic_phys_to_machine(void)
177 {
178 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
179 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
180 unsigned pfn;
181
182 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
183 unsigned topidx = p2m_top_index(pfn);
184
185 p2m_top[topidx] = &mfn_list[pfn];
186 }
187 }
188
189 unsigned long get_phys_to_machine(unsigned long pfn)
190 {
191 unsigned topidx, idx;
192
193 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
194 return INVALID_P2M_ENTRY;
195
196 topidx = p2m_top_index(pfn);
197 idx = p2m_index(pfn);
198 return p2m_top[topidx][idx];
199 }
200 EXPORT_SYMBOL_GPL(get_phys_to_machine);
201
202 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
203 {
204 unsigned long *p;
205 unsigned i;
206
207 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
208 BUG_ON(p == NULL);
209
210 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
211 p[i] = INVALID_P2M_ENTRY;
212
213 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
214 free_page((unsigned long)p);
215 else
216 *mfnp = virt_to_mfn(p);
217 }
218
219 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
220 {
221 unsigned topidx, idx;
222
223 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
224 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
225 return;
226 }
227
228 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
229 BUG_ON(mfn != INVALID_P2M_ENTRY);
230 return;
231 }
232
233 topidx = p2m_top_index(pfn);
234 if (p2m_top[topidx] == p2m_missing) {
235 /* no need to allocate a page to store an invalid entry */
236 if (mfn == INVALID_P2M_ENTRY)
237 return;
238 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
239 }
240
241 idx = p2m_index(pfn);
242 p2m_top[topidx][idx] = mfn;
243 }
244
245 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
246 {
247 unsigned long address = (unsigned long)vaddr;
248 unsigned int level;
249 pte_t *pte = lookup_address(address, &level);
250 unsigned offset = address & ~PAGE_MASK;
251
252 BUG_ON(pte == NULL);
253
254 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
255 }
256
257 void make_lowmem_page_readonly(void *vaddr)
258 {
259 pte_t *pte, ptev;
260 unsigned long address = (unsigned long)vaddr;
261 unsigned int level;
262
263 pte = lookup_address(address, &level);
264 BUG_ON(pte == NULL);
265
266 ptev = pte_wrprotect(*pte);
267
268 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
269 BUG();
270 }
271
272 void make_lowmem_page_readwrite(void *vaddr)
273 {
274 pte_t *pte, ptev;
275 unsigned long address = (unsigned long)vaddr;
276 unsigned int level;
277
278 pte = lookup_address(address, &level);
279 BUG_ON(pte == NULL);
280
281 ptev = pte_mkwrite(*pte);
282
283 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
284 BUG();
285 }
286
287
288 static bool xen_page_pinned(void *ptr)
289 {
290 struct page *page = virt_to_page(ptr);
291
292 return PagePinned(page);
293 }
294
295 static void xen_extend_mmu_update(const struct mmu_update *update)
296 {
297 struct multicall_space mcs;
298 struct mmu_update *u;
299
300 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
301
302 if (mcs.mc != NULL) {
303 ADD_STATS(mmu_update_extended, 1);
304 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
305
306 mcs.mc->args[1]++;
307
308 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
309 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
310 else
311 ADD_STATS(mmu_update_histo[0], 1);
312 } else {
313 ADD_STATS(mmu_update, 1);
314 mcs = __xen_mc_entry(sizeof(*u));
315 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
316 ADD_STATS(mmu_update_histo[1], 1);
317 }
318
319 u = mcs.args;
320 *u = *update;
321 }
322
323 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
324 {
325 struct mmu_update u;
326
327 preempt_disable();
328
329 xen_mc_batch();
330
331 /* ptr may be ioremapped for 64-bit pagetable setup */
332 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
333 u.val = pmd_val_ma(val);
334 xen_extend_mmu_update(&u);
335
336 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
337
338 xen_mc_issue(PARAVIRT_LAZY_MMU);
339
340 preempt_enable();
341 }
342
343 void xen_set_pmd(pmd_t *ptr, pmd_t val)
344 {
345 ADD_STATS(pmd_update, 1);
346
347 /* If page is not pinned, we can just update the entry
348 directly */
349 if (!xen_page_pinned(ptr)) {
350 *ptr = val;
351 return;
352 }
353
354 ADD_STATS(pmd_update_pinned, 1);
355
356 xen_set_pmd_hyper(ptr, val);
357 }
358
359 /*
360 * Associate a virtual page frame with a given physical page frame
361 * and protection flags for that frame.
362 */
363 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
364 {
365 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
366 }
367
368 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
369 pte_t *ptep, pte_t pteval)
370 {
371 /* updates to init_mm may be done without lock */
372 if (mm == &init_mm)
373 preempt_disable();
374
375 ADD_STATS(set_pte_at, 1);
376 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
377 ADD_STATS(set_pte_at_current, mm == current->mm);
378 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
379
380 if (mm == current->mm || mm == &init_mm) {
381 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
382 struct multicall_space mcs;
383 mcs = xen_mc_entry(0);
384
385 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
386 ADD_STATS(set_pte_at_batched, 1);
387 xen_mc_issue(PARAVIRT_LAZY_MMU);
388 goto out;
389 } else
390 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
391 goto out;
392 }
393 xen_set_pte(ptep, pteval);
394
395 out:
396 if (mm == &init_mm)
397 preempt_enable();
398 }
399
400 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
401 {
402 /* Just return the pte as-is. We preserve the bits on commit */
403 return *ptep;
404 }
405
406 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
407 pte_t *ptep, pte_t pte)
408 {
409 struct mmu_update u;
410
411 xen_mc_batch();
412
413 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
414 u.val = pte_val_ma(pte);
415 xen_extend_mmu_update(&u);
416
417 ADD_STATS(prot_commit, 1);
418 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
419
420 xen_mc_issue(PARAVIRT_LAZY_MMU);
421 }
422
423 /* Assume pteval_t is equivalent to all the other *val_t types. */
424 static pteval_t pte_mfn_to_pfn(pteval_t val)
425 {
426 if (val & _PAGE_PRESENT) {
427 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
428 pteval_t flags = val & PTE_FLAGS_MASK;
429 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
430 }
431
432 return val;
433 }
434
435 static pteval_t pte_pfn_to_mfn(pteval_t val)
436 {
437 if (val & _PAGE_PRESENT) {
438 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
439 pteval_t flags = val & PTE_FLAGS_MASK;
440 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
441 }
442
443 return val;
444 }
445
446 pteval_t xen_pte_val(pte_t pte)
447 {
448 return pte_mfn_to_pfn(pte.pte);
449 }
450
451 pgdval_t xen_pgd_val(pgd_t pgd)
452 {
453 return pte_mfn_to_pfn(pgd.pgd);
454 }
455
456 pte_t xen_make_pte(pteval_t pte)
457 {
458 pte = pte_pfn_to_mfn(pte);
459 return native_make_pte(pte);
460 }
461
462 pgd_t xen_make_pgd(pgdval_t pgd)
463 {
464 pgd = pte_pfn_to_mfn(pgd);
465 return native_make_pgd(pgd);
466 }
467
468 pmdval_t xen_pmd_val(pmd_t pmd)
469 {
470 return pte_mfn_to_pfn(pmd.pmd);
471 }
472
473 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
474 {
475 struct mmu_update u;
476
477 preempt_disable();
478
479 xen_mc_batch();
480
481 /* ptr may be ioremapped for 64-bit pagetable setup */
482 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
483 u.val = pud_val_ma(val);
484 xen_extend_mmu_update(&u);
485
486 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
487
488 xen_mc_issue(PARAVIRT_LAZY_MMU);
489
490 preempt_enable();
491 }
492
493 void xen_set_pud(pud_t *ptr, pud_t val)
494 {
495 ADD_STATS(pud_update, 1);
496
497 /* If page is not pinned, we can just update the entry
498 directly */
499 if (!xen_page_pinned(ptr)) {
500 *ptr = val;
501 return;
502 }
503
504 ADD_STATS(pud_update_pinned, 1);
505
506 xen_set_pud_hyper(ptr, val);
507 }
508
509 void xen_set_pte(pte_t *ptep, pte_t pte)
510 {
511 ADD_STATS(pte_update, 1);
512 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
513 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
514
515 #ifdef CONFIG_X86_PAE
516 ptep->pte_high = pte.pte_high;
517 smp_wmb();
518 ptep->pte_low = pte.pte_low;
519 #else
520 *ptep = pte;
521 #endif
522 }
523
524 #ifdef CONFIG_X86_PAE
525 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
526 {
527 set_64bit((u64 *)ptep, native_pte_val(pte));
528 }
529
530 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
531 {
532 ptep->pte_low = 0;
533 smp_wmb(); /* make sure low gets written first */
534 ptep->pte_high = 0;
535 }
536
537 void xen_pmd_clear(pmd_t *pmdp)
538 {
539 set_pmd(pmdp, __pmd(0));
540 }
541 #endif /* CONFIG_X86_PAE */
542
543 pmd_t xen_make_pmd(pmdval_t pmd)
544 {
545 pmd = pte_pfn_to_mfn(pmd);
546 return native_make_pmd(pmd);
547 }
548
549 #if PAGETABLE_LEVELS == 4
550 pudval_t xen_pud_val(pud_t pud)
551 {
552 return pte_mfn_to_pfn(pud.pud);
553 }
554
555 pud_t xen_make_pud(pudval_t pud)
556 {
557 pud = pte_pfn_to_mfn(pud);
558
559 return native_make_pud(pud);
560 }
561
562 pgd_t *xen_get_user_pgd(pgd_t *pgd)
563 {
564 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
565 unsigned offset = pgd - pgd_page;
566 pgd_t *user_ptr = NULL;
567
568 if (offset < pgd_index(USER_LIMIT)) {
569 struct page *page = virt_to_page(pgd_page);
570 user_ptr = (pgd_t *)page->private;
571 if (user_ptr)
572 user_ptr += offset;
573 }
574
575 return user_ptr;
576 }
577
578 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
579 {
580 struct mmu_update u;
581
582 u.ptr = virt_to_machine(ptr).maddr;
583 u.val = pgd_val_ma(val);
584 xen_extend_mmu_update(&u);
585 }
586
587 /*
588 * Raw hypercall-based set_pgd, intended for in early boot before
589 * there's a page structure. This implies:
590 * 1. The only existing pagetable is the kernel's
591 * 2. It is always pinned
592 * 3. It has no user pagetable attached to it
593 */
594 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
595 {
596 preempt_disable();
597
598 xen_mc_batch();
599
600 __xen_set_pgd_hyper(ptr, val);
601
602 xen_mc_issue(PARAVIRT_LAZY_MMU);
603
604 preempt_enable();
605 }
606
607 void xen_set_pgd(pgd_t *ptr, pgd_t val)
608 {
609 pgd_t *user_ptr = xen_get_user_pgd(ptr);
610
611 ADD_STATS(pgd_update, 1);
612
613 /* If page is not pinned, we can just update the entry
614 directly */
615 if (!xen_page_pinned(ptr)) {
616 *ptr = val;
617 if (user_ptr) {
618 WARN_ON(xen_page_pinned(user_ptr));
619 *user_ptr = val;
620 }
621 return;
622 }
623
624 ADD_STATS(pgd_update_pinned, 1);
625 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
626
627 /* If it's pinned, then we can at least batch the kernel and
628 user updates together. */
629 xen_mc_batch();
630
631 __xen_set_pgd_hyper(ptr, val);
632 if (user_ptr)
633 __xen_set_pgd_hyper(user_ptr, val);
634
635 xen_mc_issue(PARAVIRT_LAZY_MMU);
636 }
637 #endif /* PAGETABLE_LEVELS == 4 */
638
639 /*
640 * (Yet another) pagetable walker. This one is intended for pinning a
641 * pagetable. This means that it walks a pagetable and calls the
642 * callback function on each page it finds making up the page table,
643 * at every level. It walks the entire pagetable, but it only bothers
644 * pinning pte pages which are below limit. In the normal case this
645 * will be STACK_TOP_MAX, but at boot we need to pin up to
646 * FIXADDR_TOP.
647 *
648 * For 32-bit the important bit is that we don't pin beyond there,
649 * because then we start getting into Xen's ptes.
650 *
651 * For 64-bit, we must skip the Xen hole in the middle of the address
652 * space, just after the big x86-64 virtual hole.
653 */
654 static int xen_pgd_walk(struct mm_struct *mm,
655 int (*func)(struct mm_struct *mm, struct page *,
656 enum pt_level),
657 unsigned long limit)
658 {
659 pgd_t *pgd = mm->pgd;
660 int flush = 0;
661 unsigned hole_low, hole_high;
662 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
663 unsigned pgdidx, pudidx, pmdidx;
664
665 /* The limit is the last byte to be touched */
666 limit--;
667 BUG_ON(limit >= FIXADDR_TOP);
668
669 if (xen_feature(XENFEAT_auto_translated_physmap))
670 return 0;
671
672 /*
673 * 64-bit has a great big hole in the middle of the address
674 * space, which contains the Xen mappings. On 32-bit these
675 * will end up making a zero-sized hole and so is a no-op.
676 */
677 hole_low = pgd_index(USER_LIMIT);
678 hole_high = pgd_index(PAGE_OFFSET);
679
680 pgdidx_limit = pgd_index(limit);
681 #if PTRS_PER_PUD > 1
682 pudidx_limit = pud_index(limit);
683 #else
684 pudidx_limit = 0;
685 #endif
686 #if PTRS_PER_PMD > 1
687 pmdidx_limit = pmd_index(limit);
688 #else
689 pmdidx_limit = 0;
690 #endif
691
692 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
693 pud_t *pud;
694
695 if (pgdidx >= hole_low && pgdidx < hole_high)
696 continue;
697
698 if (!pgd_val(pgd[pgdidx]))
699 continue;
700
701 pud = pud_offset(&pgd[pgdidx], 0);
702
703 if (PTRS_PER_PUD > 1) /* not folded */
704 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
705
706 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
707 pmd_t *pmd;
708
709 if (pgdidx == pgdidx_limit &&
710 pudidx > pudidx_limit)
711 goto out;
712
713 if (pud_none(pud[pudidx]))
714 continue;
715
716 pmd = pmd_offset(&pud[pudidx], 0);
717
718 if (PTRS_PER_PMD > 1) /* not folded */
719 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
720
721 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
722 struct page *pte;
723
724 if (pgdidx == pgdidx_limit &&
725 pudidx == pudidx_limit &&
726 pmdidx > pmdidx_limit)
727 goto out;
728
729 if (pmd_none(pmd[pmdidx]))
730 continue;
731
732 pte = pmd_page(pmd[pmdidx]);
733 flush |= (*func)(mm, pte, PT_PTE);
734 }
735 }
736 }
737
738 out:
739 /* Do the top level last, so that the callbacks can use it as
740 a cue to do final things like tlb flushes. */
741 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
742
743 return flush;
744 }
745
746 /* If we're using split pte locks, then take the page's lock and
747 return a pointer to it. Otherwise return NULL. */
748 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
749 {
750 spinlock_t *ptl = NULL;
751
752 #if USE_SPLIT_PTLOCKS
753 ptl = __pte_lockptr(page);
754 spin_lock_nest_lock(ptl, &mm->page_table_lock);
755 #endif
756
757 return ptl;
758 }
759
760 static void xen_pte_unlock(void *v)
761 {
762 spinlock_t *ptl = v;
763 spin_unlock(ptl);
764 }
765
766 static void xen_do_pin(unsigned level, unsigned long pfn)
767 {
768 struct mmuext_op *op;
769 struct multicall_space mcs;
770
771 mcs = __xen_mc_entry(sizeof(*op));
772 op = mcs.args;
773 op->cmd = level;
774 op->arg1.mfn = pfn_to_mfn(pfn);
775 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
776 }
777
778 static int xen_pin_page(struct mm_struct *mm, struct page *page,
779 enum pt_level level)
780 {
781 unsigned pgfl = TestSetPagePinned(page);
782 int flush;
783
784 if (pgfl)
785 flush = 0; /* already pinned */
786 else if (PageHighMem(page))
787 /* kmaps need flushing if we found an unpinned
788 highpage */
789 flush = 1;
790 else {
791 void *pt = lowmem_page_address(page);
792 unsigned long pfn = page_to_pfn(page);
793 struct multicall_space mcs = __xen_mc_entry(0);
794 spinlock_t *ptl;
795
796 flush = 0;
797
798 /*
799 * We need to hold the pagetable lock between the time
800 * we make the pagetable RO and when we actually pin
801 * it. If we don't, then other users may come in and
802 * attempt to update the pagetable by writing it,
803 * which will fail because the memory is RO but not
804 * pinned, so Xen won't do the trap'n'emulate.
805 *
806 * If we're using split pte locks, we can't hold the
807 * entire pagetable's worth of locks during the
808 * traverse, because we may wrap the preempt count (8
809 * bits). The solution is to mark RO and pin each PTE
810 * page while holding the lock. This means the number
811 * of locks we end up holding is never more than a
812 * batch size (~32 entries, at present).
813 *
814 * If we're not using split pte locks, we needn't pin
815 * the PTE pages independently, because we're
816 * protected by the overall pagetable lock.
817 */
818 ptl = NULL;
819 if (level == PT_PTE)
820 ptl = xen_pte_lock(page, mm);
821
822 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
823 pfn_pte(pfn, PAGE_KERNEL_RO),
824 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
825
826 if (ptl) {
827 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
828
829 /* Queue a deferred unlock for when this batch
830 is completed. */
831 xen_mc_callback(xen_pte_unlock, ptl);
832 }
833 }
834
835 return flush;
836 }
837
838 /* This is called just after a mm has been created, but it has not
839 been used yet. We need to make sure that its pagetable is all
840 read-only, and can be pinned. */
841 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
842 {
843 xen_mc_batch();
844
845 if (xen_pgd_walk(mm, xen_pin_page, USER_LIMIT)) {
846 /* re-enable interrupts for kmap_flush_unused */
847 xen_mc_issue(0);
848 kmap_flush_unused();
849 xen_mc_batch();
850 }
851
852 #ifdef CONFIG_X86_64
853 {
854 pgd_t *user_pgd = xen_get_user_pgd(pgd);
855
856 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
857
858 if (user_pgd) {
859 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
860 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(user_pgd)));
861 }
862 }
863 #else /* CONFIG_X86_32 */
864 #ifdef CONFIG_X86_PAE
865 /* Need to make sure unshared kernel PMD is pinnable */
866 xen_pin_page(mm, virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])),
867 PT_PMD);
868 #endif
869 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
870 #endif /* CONFIG_X86_64 */
871 xen_mc_issue(0);
872 }
873
874 static void xen_pgd_pin(struct mm_struct *mm)
875 {
876 __xen_pgd_pin(mm, mm->pgd);
877 }
878
879 /*
880 * On save, we need to pin all pagetables to make sure they get their
881 * mfns turned into pfns. Search the list for any unpinned pgds and pin
882 * them (unpinned pgds are not currently in use, probably because the
883 * process is under construction or destruction).
884 *
885 * Expected to be called in stop_machine() ("equivalent to taking
886 * every spinlock in the system"), so the locking doesn't really
887 * matter all that much.
888 */
889 void xen_mm_pin_all(void)
890 {
891 unsigned long flags;
892 struct page *page;
893
894 spin_lock_irqsave(&pgd_lock, flags);
895
896 list_for_each_entry(page, &pgd_list, lru) {
897 if (!PagePinned(page)) {
898 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
899 SetPageSavePinned(page);
900 }
901 }
902
903 spin_unlock_irqrestore(&pgd_lock, flags);
904 }
905
906 /*
907 * The init_mm pagetable is really pinned as soon as its created, but
908 * that's before we have page structures to store the bits. So do all
909 * the book-keeping now.
910 */
911 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
912 enum pt_level level)
913 {
914 SetPagePinned(page);
915 return 0;
916 }
917
918 void __init xen_mark_init_mm_pinned(void)
919 {
920 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
921 }
922
923 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
924 enum pt_level level)
925 {
926 unsigned pgfl = TestClearPagePinned(page);
927
928 if (pgfl && !PageHighMem(page)) {
929 void *pt = lowmem_page_address(page);
930 unsigned long pfn = page_to_pfn(page);
931 spinlock_t *ptl = NULL;
932 struct multicall_space mcs;
933
934 /*
935 * Do the converse to pin_page. If we're using split
936 * pte locks, we must be holding the lock for while
937 * the pte page is unpinned but still RO to prevent
938 * concurrent updates from seeing it in this
939 * partially-pinned state.
940 */
941 if (level == PT_PTE) {
942 ptl = xen_pte_lock(page, mm);
943
944 if (ptl)
945 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
946 }
947
948 mcs = __xen_mc_entry(0);
949
950 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
951 pfn_pte(pfn, PAGE_KERNEL),
952 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
953
954 if (ptl) {
955 /* unlock when batch completed */
956 xen_mc_callback(xen_pte_unlock, ptl);
957 }
958 }
959
960 return 0; /* never need to flush on unpin */
961 }
962
963 /* Release a pagetables pages back as normal RW */
964 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
965 {
966 xen_mc_batch();
967
968 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
969
970 #ifdef CONFIG_X86_64
971 {
972 pgd_t *user_pgd = xen_get_user_pgd(pgd);
973
974 if (user_pgd) {
975 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(user_pgd)));
976 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
977 }
978 }
979 #endif
980
981 #ifdef CONFIG_X86_PAE
982 /* Need to make sure unshared kernel PMD is unpinned */
983 xen_unpin_page(mm, virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])),
984 PT_PMD);
985 #endif
986
987 xen_pgd_walk(mm, xen_unpin_page, USER_LIMIT);
988
989 xen_mc_issue(0);
990 }
991
992 static void xen_pgd_unpin(struct mm_struct *mm)
993 {
994 __xen_pgd_unpin(mm, mm->pgd);
995 }
996
997 /*
998 * On resume, undo any pinning done at save, so that the rest of the
999 * kernel doesn't see any unexpected pinned pagetables.
1000 */
1001 void xen_mm_unpin_all(void)
1002 {
1003 unsigned long flags;
1004 struct page *page;
1005
1006 spin_lock_irqsave(&pgd_lock, flags);
1007
1008 list_for_each_entry(page, &pgd_list, lru) {
1009 if (PageSavePinned(page)) {
1010 BUG_ON(!PagePinned(page));
1011 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1012 ClearPageSavePinned(page);
1013 }
1014 }
1015
1016 spin_unlock_irqrestore(&pgd_lock, flags);
1017 }
1018
1019 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1020 {
1021 spin_lock(&next->page_table_lock);
1022 xen_pgd_pin(next);
1023 spin_unlock(&next->page_table_lock);
1024 }
1025
1026 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1027 {
1028 spin_lock(&mm->page_table_lock);
1029 xen_pgd_pin(mm);
1030 spin_unlock(&mm->page_table_lock);
1031 }
1032
1033
1034 #ifdef CONFIG_SMP
1035 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1036 we need to repoint it somewhere else before we can unpin it. */
1037 static void drop_other_mm_ref(void *info)
1038 {
1039 struct mm_struct *mm = info;
1040 struct mm_struct *active_mm;
1041
1042 #ifdef CONFIG_X86_64
1043 active_mm = read_pda(active_mm);
1044 #else
1045 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
1046 #endif
1047
1048 if (active_mm == mm)
1049 leave_mm(smp_processor_id());
1050
1051 /* If this cpu still has a stale cr3 reference, then make sure
1052 it has been flushed. */
1053 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
1054 load_cr3(swapper_pg_dir);
1055 arch_flush_lazy_cpu_mode();
1056 }
1057 }
1058
1059 static void xen_drop_mm_ref(struct mm_struct *mm)
1060 {
1061 cpumask_t mask;
1062 unsigned cpu;
1063
1064 if (current->active_mm == mm) {
1065 if (current->mm == mm)
1066 load_cr3(swapper_pg_dir);
1067 else
1068 leave_mm(smp_processor_id());
1069 arch_flush_lazy_cpu_mode();
1070 }
1071
1072 /* Get the "official" set of cpus referring to our pagetable. */
1073 mask = mm->cpu_vm_mask;
1074
1075 /* It's possible that a vcpu may have a stale reference to our
1076 cr3, because its in lazy mode, and it hasn't yet flushed
1077 its set of pending hypercalls yet. In this case, we can
1078 look at its actual current cr3 value, and force it to flush
1079 if needed. */
1080 for_each_online_cpu(cpu) {
1081 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1082 cpu_set(cpu, mask);
1083 }
1084
1085 if (!cpus_empty(mask))
1086 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
1087 }
1088 #else
1089 static void xen_drop_mm_ref(struct mm_struct *mm)
1090 {
1091 if (current->active_mm == mm)
1092 load_cr3(swapper_pg_dir);
1093 }
1094 #endif
1095
1096 /*
1097 * While a process runs, Xen pins its pagetables, which means that the
1098 * hypervisor forces it to be read-only, and it controls all updates
1099 * to it. This means that all pagetable updates have to go via the
1100 * hypervisor, which is moderately expensive.
1101 *
1102 * Since we're pulling the pagetable down, we switch to use init_mm,
1103 * unpin old process pagetable and mark it all read-write, which
1104 * allows further operations on it to be simple memory accesses.
1105 *
1106 * The only subtle point is that another CPU may be still using the
1107 * pagetable because of lazy tlb flushing. This means we need need to
1108 * switch all CPUs off this pagetable before we can unpin it.
1109 */
1110 void xen_exit_mmap(struct mm_struct *mm)
1111 {
1112 get_cpu(); /* make sure we don't move around */
1113 xen_drop_mm_ref(mm);
1114 put_cpu();
1115
1116 spin_lock(&mm->page_table_lock);
1117
1118 /* pgd may not be pinned in the error exit path of execve */
1119 if (xen_page_pinned(mm->pgd))
1120 xen_pgd_unpin(mm);
1121
1122 spin_unlock(&mm->page_table_lock);
1123 }
1124
1125 #ifdef CONFIG_XEN_DEBUG_FS
1126
1127 static struct dentry *d_mmu_debug;
1128
1129 static int __init xen_mmu_debugfs(void)
1130 {
1131 struct dentry *d_xen = xen_init_debugfs();
1132
1133 if (d_xen == NULL)
1134 return -ENOMEM;
1135
1136 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1137
1138 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1139
1140 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1141 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1142 &mmu_stats.pgd_update_pinned);
1143 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1144 &mmu_stats.pgd_update_pinned);
1145
1146 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1147 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1148 &mmu_stats.pud_update_pinned);
1149 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1150 &mmu_stats.pud_update_pinned);
1151
1152 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1153 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1154 &mmu_stats.pmd_update_pinned);
1155 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1156 &mmu_stats.pmd_update_pinned);
1157
1158 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1159 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1160 // &mmu_stats.pte_update_pinned);
1161 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1162 &mmu_stats.pte_update_pinned);
1163
1164 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1165 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1166 &mmu_stats.mmu_update_extended);
1167 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1168 mmu_stats.mmu_update_histo, 20);
1169
1170 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1171 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1172 &mmu_stats.set_pte_at_batched);
1173 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1174 &mmu_stats.set_pte_at_current);
1175 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1176 &mmu_stats.set_pte_at_kernel);
1177
1178 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1179 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
1180 &mmu_stats.prot_commit_batched);
1181
1182 return 0;
1183 }
1184 fs_initcall(xen_mmu_debugfs);
1185
1186 #endif /* CONFIG_XEN_DEBUG_FS */
This page took 0.076243 seconds and 5 git commands to generate.