xen: convert p2m to a 3 level tree
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48
49 #include <asm/pgtable.h>
50 #include <asm/tlbflush.h>
51 #include <asm/fixmap.h>
52 #include <asm/mmu_context.h>
53 #include <asm/setup.h>
54 #include <asm/paravirt.h>
55 #include <asm/e820.h>
56 #include <asm/linkage.h>
57 #include <asm/page.h>
58
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61
62 #include <xen/xen.h>
63 #include <xen/page.h>
64 #include <xen/interface/xen.h>
65 #include <xen/interface/hvm/hvm_op.h>
66 #include <xen/interface/version.h>
67 #include <xen/interface/memory.h>
68 #include <xen/hvc-console.h>
69
70 #include "multicalls.h"
71 #include "mmu.h"
72 #include "debugfs.h"
73
74 #define MMU_UPDATE_HISTO 30
75
76 /*
77 * Protects atomic reservation decrease/increase against concurrent increases.
78 * Also protects non-atomic updates of current_pages and driver_pages, and
79 * balloon lists.
80 */
81 DEFINE_SPINLOCK(xen_reservation_lock);
82
83 #ifdef CONFIG_XEN_DEBUG_FS
84
85 static struct {
86 u32 pgd_update;
87 u32 pgd_update_pinned;
88 u32 pgd_update_batched;
89
90 u32 pud_update;
91 u32 pud_update_pinned;
92 u32 pud_update_batched;
93
94 u32 pmd_update;
95 u32 pmd_update_pinned;
96 u32 pmd_update_batched;
97
98 u32 pte_update;
99 u32 pte_update_pinned;
100 u32 pte_update_batched;
101
102 u32 mmu_update;
103 u32 mmu_update_extended;
104 u32 mmu_update_histo[MMU_UPDATE_HISTO];
105
106 u32 prot_commit;
107 u32 prot_commit_batched;
108
109 u32 set_pte_at;
110 u32 set_pte_at_batched;
111 u32 set_pte_at_pinned;
112 u32 set_pte_at_current;
113 u32 set_pte_at_kernel;
114 } mmu_stats;
115
116 static u8 zero_stats;
117
118 static inline void check_zero(void)
119 {
120 if (unlikely(zero_stats)) {
121 memset(&mmu_stats, 0, sizeof(mmu_stats));
122 zero_stats = 0;
123 }
124 }
125
126 #define ADD_STATS(elem, val) \
127 do { check_zero(); mmu_stats.elem += (val); } while(0)
128
129 #else /* !CONFIG_XEN_DEBUG_FS */
130
131 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
132
133 #endif /* CONFIG_XEN_DEBUG_FS */
134
135
136 /*
137 * Identity map, in addition to plain kernel map. This needs to be
138 * large enough to allocate page table pages to allocate the rest.
139 * Each page can map 2MB.
140 */
141 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
142 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
143
144 #ifdef CONFIG_X86_64
145 /* l3 pud for userspace vsyscall mapping */
146 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
147 #endif /* CONFIG_X86_64 */
148
149 /*
150 * Note about cr3 (pagetable base) values:
151 *
152 * xen_cr3 contains the current logical cr3 value; it contains the
153 * last set cr3. This may not be the current effective cr3, because
154 * its update may be being lazily deferred. However, a vcpu looking
155 * at its own cr3 can use this value knowing that it everything will
156 * be self-consistent.
157 *
158 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
159 * hypercall to set the vcpu cr3 is complete (so it may be a little
160 * out of date, but it will never be set early). If one vcpu is
161 * looking at another vcpu's cr3 value, it should use this variable.
162 */
163 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
164 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
165
166
167 /*
168 * Just beyond the highest usermode address. STACK_TOP_MAX has a
169 * redzone above it, so round it up to a PGD boundary.
170 */
171 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
172
173 /*
174 * Xen leaves the responsibility for maintaining p2m mappings to the
175 * guests themselves, but it must also access and update the p2m array
176 * during suspend/resume when all the pages are reallocated.
177 *
178 * The p2m table is logically a flat array, but we implement it as a
179 * three-level tree to allow the address space to be sparse.
180 *
181 * Xen
182 * |
183 * p2m_top p2m_top_mfn
184 * / \ / \
185 * p2m_mid p2m_mid p2m_mid_mfn p2m_mid_mfn
186 * / \ / \ / /
187 * p2m p2m p2m p2m p2m p2m p2m ...
188 *
189 * The p2m_top and p2m_top_mfn levels are limited to 1 page, so the
190 * maximum representable pseudo-physical address space is:
191 * P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages
192 *
193 * P2M_PER_PAGE depends on the architecture, as a mfn is always
194 * unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to
195 * 512 and 1024 entries respectively.
196 */
197
198 static unsigned long max_p2m_pfn __read_mostly;
199
200 #define P2M_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
201 #define P2M_MID_PER_PAGE (PAGE_SIZE / sizeof(unsigned long *))
202 #define P2M_TOP_PER_PAGE (PAGE_SIZE / sizeof(unsigned long **))
203
204 #define MAX_P2M_PFN (P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE)
205
206 /* Placeholders for holes in the address space */
207 static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_PER_PAGE);
208 static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing, P2M_MID_PER_PAGE);
209 static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn, P2M_MID_PER_PAGE);
210
211 static RESERVE_BRK_ARRAY(unsigned long **, p2m_top, P2M_TOP_PER_PAGE);
212 static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, P2M_TOP_PER_PAGE);
213
214 RESERVE_BRK(p2m_mid, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
215 RESERVE_BRK(p2m_mid_mfn, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
216
217 static inline unsigned p2m_top_index(unsigned long pfn)
218 {
219 BUG_ON(pfn >= MAX_P2M_PFN);
220 return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE);
221 }
222
223 static inline unsigned p2m_mid_index(unsigned long pfn)
224 {
225 return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE;
226 }
227
228 static inline unsigned p2m_index(unsigned long pfn)
229 {
230 return pfn % P2M_PER_PAGE;
231 }
232
233 static void p2m_top_init(unsigned long ***top)
234 {
235 unsigned i;
236
237 for (i = 0; i < P2M_TOP_PER_PAGE; i++)
238 top[i] = p2m_mid_missing;
239 }
240
241 static void p2m_top_mfn_init(unsigned long *top)
242 {
243 unsigned i;
244
245 for (i = 0; i < P2M_TOP_PER_PAGE; i++)
246 top[i] = virt_to_mfn(p2m_mid_missing_mfn);
247 }
248
249 static void p2m_mid_init(unsigned long **mid)
250 {
251 unsigned i;
252
253 for (i = 0; i < P2M_MID_PER_PAGE; i++)
254 mid[i] = p2m_missing;
255 }
256
257 static void p2m_mid_mfn_init(unsigned long *mid)
258 {
259 unsigned i;
260
261 for (i = 0; i < P2M_MID_PER_PAGE; i++)
262 mid[i] = virt_to_mfn(p2m_missing);
263 }
264
265 static void p2m_init(unsigned long *p2m)
266 {
267 unsigned i;
268
269 for (i = 0; i < P2M_MID_PER_PAGE; i++)
270 p2m[i] = INVALID_P2M_ENTRY;
271 }
272
273 /*
274 * Build the parallel p2m_top_mfn and p2m_mid_mfn structures
275 *
276 * This is called both at boot time, and after resuming from suspend:
277 * - At boot time we're called very early, and must use extend_brk()
278 * to allocate memory.
279 *
280 * - After resume we're called from within stop_machine, but the mfn
281 * tree should alreay be completely allocated.
282 */
283 void xen_build_mfn_list_list(void)
284 {
285 unsigned pfn, i;
286
287 /* Pre-initialize p2m_top_mfn to be completely missing */
288 if (p2m_top_mfn == NULL) {
289 p2m_mid_missing_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
290 p2m_mid_mfn_init(p2m_mid_missing_mfn);
291
292 p2m_top_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
293 p2m_top_mfn_init(p2m_top_mfn);
294 }
295
296 for (pfn = 0; pfn < max_p2m_pfn; pfn += P2M_PER_PAGE) {
297 unsigned topidx = p2m_top_index(pfn);
298 unsigned mididx = p2m_mid_index(pfn);
299 unsigned long **mid;
300 unsigned long mid_mfn;
301 unsigned long *mid_mfn_p;
302
303 mid = p2m_top[topidx];
304
305 /* Don't bother allocating any mfn mid levels if
306 they're just missing */
307 if (mid[mididx] == p2m_missing)
308 continue;
309
310 mid_mfn = p2m_top_mfn[topidx];
311 mid_mfn_p = mfn_to_virt(mid_mfn);
312
313 if (mid_mfn_p == p2m_mid_missing_mfn) {
314 /*
315 * XXX boot-time only! We should never find
316 * missing parts of the mfn tree after
317 * runtime. extend_brk() will BUG if we call
318 * it too late.
319 */
320 mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
321 p2m_mid_mfn_init(mid_mfn_p);
322
323 mid_mfn = virt_to_mfn(mid_mfn_p);
324
325 p2m_top_mfn[topidx] = mid_mfn;
326 }
327
328 mid_mfn_p[mididx] = virt_to_mfn(mid[mididx]);
329 }
330 }
331
332 void xen_setup_mfn_list_list(void)
333 {
334 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
335
336 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
337 virt_to_mfn(p2m_top_mfn);
338 HYPERVISOR_shared_info->arch.max_pfn = max_p2m_pfn;
339 }
340
341 /* Set up p2m_top to point to the domain-builder provided p2m pages */
342 void __init xen_build_dynamic_phys_to_machine(void)
343 {
344 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
345 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
346 unsigned pfn;
347
348 max_p2m_pfn = max_pfn;
349
350 p2m_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
351 p2m_init(p2m_missing);
352
353 p2m_mid_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
354 p2m_mid_init(p2m_mid_missing);
355
356 p2m_top = extend_brk(PAGE_SIZE, PAGE_SIZE);
357 p2m_top_init(p2m_top);
358
359 /*
360 * The domain builder gives us a pre-constructed p2m array in
361 * mfn_list for all the pages initially given to us, so we just
362 * need to graft that into our tree structure.
363 */
364 for (pfn = 0; pfn < max_pfn; pfn += P2M_PER_PAGE) {
365 unsigned topidx = p2m_top_index(pfn);
366 unsigned mididx = p2m_mid_index(pfn);
367
368 if (p2m_top[topidx] == p2m_mid_missing) {
369 unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE);
370 p2m_mid_init(mid);
371
372 p2m_top[topidx] = mid;
373 }
374
375 p2m_top[topidx][mididx] = &mfn_list[pfn];
376 }
377
378 /* Allocate and initialize top and mid mfn levels */
379 xen_build_mfn_list_list();
380 }
381
382 unsigned long get_phys_to_machine(unsigned long pfn)
383 {
384 unsigned topidx, mididx, idx;
385
386 if (unlikely(pfn >= MAX_P2M_PFN))
387 return INVALID_P2M_ENTRY;
388
389 topidx = p2m_top_index(pfn);
390 mididx = p2m_mid_index(pfn);
391 idx = p2m_index(pfn);
392
393 return p2m_top[topidx][mididx][idx];
394 }
395 EXPORT_SYMBOL_GPL(get_phys_to_machine);
396
397 static void *alloc_p2m_page(void)
398 {
399 return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT);
400 }
401
402 static void free_p2m_page(void *p)
403 {
404 free_page((unsigned long)p);
405 }
406
407 /*
408 * Fully allocate the p2m structure for a given pfn. We need to check
409 * that both the top and mid levels are allocated, and make sure the
410 * parallel mfn tree is kept in sync. We may race with other cpus, so
411 * the new pages are installed with cmpxchg; if we lose the race then
412 * simply free the page we allocated and use the one that's there.
413 */
414 static bool alloc_p2m(unsigned long pfn)
415 {
416 unsigned topidx, mididx;
417 unsigned long ***top_p, **mid;
418 unsigned long *top_mfn_p, *mid_mfn;
419
420 topidx = p2m_top_index(pfn);
421 mididx = p2m_mid_index(pfn);
422
423 top_p = &p2m_top[topidx];
424 mid = *top_p;
425
426 if (mid == p2m_mid_missing) {
427 /* Mid level is missing, allocate a new one */
428 mid = alloc_p2m_page();
429 if (!mid)
430 return false;
431
432 p2m_mid_init(mid);
433
434 if (cmpxchg(top_p, p2m_mid_missing, mid) != p2m_mid_missing)
435 free_p2m_page(mid);
436 }
437
438 top_mfn_p = &p2m_top_mfn[topidx];
439 mid_mfn = mfn_to_virt(*top_mfn_p);
440
441 if (mid_mfn == p2m_mid_missing_mfn) {
442 /* Separately check the mid mfn level */
443 unsigned long missing_mfn;
444 unsigned long mid_mfn_mfn;
445
446 mid_mfn = alloc_p2m_page();
447 if (!mid_mfn)
448 return false;
449
450 p2m_mid_mfn_init(mid_mfn);
451
452 missing_mfn = virt_to_mfn(p2m_mid_missing_mfn);
453 mid_mfn_mfn = virt_to_mfn(mid_mfn);
454 if (cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn) != missing_mfn)
455 free_p2m_page(mid_mfn);
456 }
457
458 if (p2m_top[topidx][mididx] == p2m_missing) {
459 /* p2m leaf page is missing */
460 unsigned long *p2m;
461
462 p2m = alloc_p2m_page();
463 if (!p2m)
464 return false;
465
466 p2m_init(p2m);
467
468 if (cmpxchg(&mid[mididx], p2m_missing, p2m) != p2m_missing)
469 free_p2m_page(p2m);
470 else
471 mid_mfn[mididx] = virt_to_mfn(p2m);
472 }
473
474 return true;
475 }
476
477 /* Try to install p2m mapping; fail if intermediate bits missing */
478 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
479 {
480 unsigned topidx, mididx, idx;
481
482 if (unlikely(pfn >= MAX_P2M_PFN)) {
483 BUG_ON(mfn != INVALID_P2M_ENTRY);
484 return true;
485 }
486
487 topidx = p2m_top_index(pfn);
488 mididx = p2m_mid_index(pfn);
489 idx = p2m_index(pfn);
490
491 if (p2m_top[topidx][mididx] == p2m_missing)
492 return mfn == INVALID_P2M_ENTRY;
493
494 p2m_top[topidx][mididx][idx] = mfn;
495
496 return true;
497 }
498
499 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
500 {
501 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
502 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
503 return;
504 }
505
506 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
507 WARN(!alloc_p2m(pfn), "Can't allocate p2m for %lx, %lx", pfn, mfn);
508
509 if (!__set_phys_to_machine(pfn, mfn))
510 BUG();
511 }
512 }
513
514 unsigned long arbitrary_virt_to_mfn(void *vaddr)
515 {
516 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
517
518 return PFN_DOWN(maddr.maddr);
519 }
520
521 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
522 {
523 unsigned long address = (unsigned long)vaddr;
524 unsigned int level;
525 pte_t *pte;
526 unsigned offset;
527
528 /*
529 * if the PFN is in the linear mapped vaddr range, we can just use
530 * the (quick) virt_to_machine() p2m lookup
531 */
532 if (virt_addr_valid(vaddr))
533 return virt_to_machine(vaddr);
534
535 /* otherwise we have to do a (slower) full page-table walk */
536
537 pte = lookup_address(address, &level);
538 BUG_ON(pte == NULL);
539 offset = address & ~PAGE_MASK;
540 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
541 }
542
543 void make_lowmem_page_readonly(void *vaddr)
544 {
545 pte_t *pte, ptev;
546 unsigned long address = (unsigned long)vaddr;
547 unsigned int level;
548
549 pte = lookup_address(address, &level);
550 BUG_ON(pte == NULL);
551
552 ptev = pte_wrprotect(*pte);
553
554 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
555 BUG();
556 }
557
558 void make_lowmem_page_readwrite(void *vaddr)
559 {
560 pte_t *pte, ptev;
561 unsigned long address = (unsigned long)vaddr;
562 unsigned int level;
563
564 pte = lookup_address(address, &level);
565 BUG_ON(pte == NULL);
566
567 ptev = pte_mkwrite(*pte);
568
569 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
570 BUG();
571 }
572
573
574 static bool xen_page_pinned(void *ptr)
575 {
576 struct page *page = virt_to_page(ptr);
577
578 return PagePinned(page);
579 }
580
581 static bool xen_iomap_pte(pte_t pte)
582 {
583 return pte_flags(pte) & _PAGE_IOMAP;
584 }
585
586 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
587 {
588 struct multicall_space mcs;
589 struct mmu_update *u;
590
591 mcs = xen_mc_entry(sizeof(*u));
592 u = mcs.args;
593
594 /* ptep might be kmapped when using 32-bit HIGHPTE */
595 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
596 u->val = pte_val_ma(pteval);
597
598 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_IO);
599
600 xen_mc_issue(PARAVIRT_LAZY_MMU);
601 }
602
603 static void xen_extend_mmu_update(const struct mmu_update *update)
604 {
605 struct multicall_space mcs;
606 struct mmu_update *u;
607
608 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
609
610 if (mcs.mc != NULL) {
611 ADD_STATS(mmu_update_extended, 1);
612 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
613
614 mcs.mc->args[1]++;
615
616 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
617 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
618 else
619 ADD_STATS(mmu_update_histo[0], 1);
620 } else {
621 ADD_STATS(mmu_update, 1);
622 mcs = __xen_mc_entry(sizeof(*u));
623 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
624 ADD_STATS(mmu_update_histo[1], 1);
625 }
626
627 u = mcs.args;
628 *u = *update;
629 }
630
631 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
632 {
633 struct mmu_update u;
634
635 preempt_disable();
636
637 xen_mc_batch();
638
639 /* ptr may be ioremapped for 64-bit pagetable setup */
640 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
641 u.val = pmd_val_ma(val);
642 xen_extend_mmu_update(&u);
643
644 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
645
646 xen_mc_issue(PARAVIRT_LAZY_MMU);
647
648 preempt_enable();
649 }
650
651 void xen_set_pmd(pmd_t *ptr, pmd_t val)
652 {
653 ADD_STATS(pmd_update, 1);
654
655 /* If page is not pinned, we can just update the entry
656 directly */
657 if (!xen_page_pinned(ptr)) {
658 *ptr = val;
659 return;
660 }
661
662 ADD_STATS(pmd_update_pinned, 1);
663
664 xen_set_pmd_hyper(ptr, val);
665 }
666
667 /*
668 * Associate a virtual page frame with a given physical page frame
669 * and protection flags for that frame.
670 */
671 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
672 {
673 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
674 }
675
676 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
677 pte_t *ptep, pte_t pteval)
678 {
679 if (xen_iomap_pte(pteval)) {
680 xen_set_iomap_pte(ptep, pteval);
681 goto out;
682 }
683
684 ADD_STATS(set_pte_at, 1);
685 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
686 ADD_STATS(set_pte_at_current, mm == current->mm);
687 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
688
689 if (mm == current->mm || mm == &init_mm) {
690 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
691 struct multicall_space mcs;
692 mcs = xen_mc_entry(0);
693
694 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
695 ADD_STATS(set_pte_at_batched, 1);
696 xen_mc_issue(PARAVIRT_LAZY_MMU);
697 goto out;
698 } else
699 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
700 goto out;
701 }
702 xen_set_pte(ptep, pteval);
703
704 out: return;
705 }
706
707 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
708 unsigned long addr, pte_t *ptep)
709 {
710 /* Just return the pte as-is. We preserve the bits on commit */
711 return *ptep;
712 }
713
714 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
715 pte_t *ptep, pte_t pte)
716 {
717 struct mmu_update u;
718
719 xen_mc_batch();
720
721 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
722 u.val = pte_val_ma(pte);
723 xen_extend_mmu_update(&u);
724
725 ADD_STATS(prot_commit, 1);
726 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
727
728 xen_mc_issue(PARAVIRT_LAZY_MMU);
729 }
730
731 /* Assume pteval_t is equivalent to all the other *val_t types. */
732 static pteval_t pte_mfn_to_pfn(pteval_t val)
733 {
734 if (val & _PAGE_PRESENT) {
735 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
736 pteval_t flags = val & PTE_FLAGS_MASK;
737 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
738 }
739
740 return val;
741 }
742
743 static pteval_t pte_pfn_to_mfn(pteval_t val)
744 {
745 if (val & _PAGE_PRESENT) {
746 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
747 pteval_t flags = val & PTE_FLAGS_MASK;
748 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
749 }
750
751 return val;
752 }
753
754 static pteval_t iomap_pte(pteval_t val)
755 {
756 if (val & _PAGE_PRESENT) {
757 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
758 pteval_t flags = val & PTE_FLAGS_MASK;
759
760 /* We assume the pte frame number is a MFN, so
761 just use it as-is. */
762 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
763 }
764
765 return val;
766 }
767
768 pteval_t xen_pte_val(pte_t pte)
769 {
770 if (xen_initial_domain() && (pte.pte & _PAGE_IOMAP))
771 return pte.pte;
772
773 return pte_mfn_to_pfn(pte.pte);
774 }
775 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
776
777 pgdval_t xen_pgd_val(pgd_t pgd)
778 {
779 return pte_mfn_to_pfn(pgd.pgd);
780 }
781 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
782
783 pte_t xen_make_pte(pteval_t pte)
784 {
785 phys_addr_t addr = (pte & PTE_PFN_MASK);
786
787 /*
788 * Unprivileged domains are allowed to do IOMAPpings for
789 * PCI passthrough, but not map ISA space. The ISA
790 * mappings are just dummy local mappings to keep other
791 * parts of the kernel happy.
792 */
793 if (unlikely(pte & _PAGE_IOMAP) &&
794 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
795 pte = iomap_pte(pte);
796 } else {
797 pte &= ~_PAGE_IOMAP;
798 pte = pte_pfn_to_mfn(pte);
799 }
800
801 return native_make_pte(pte);
802 }
803 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
804
805 pgd_t xen_make_pgd(pgdval_t pgd)
806 {
807 pgd = pte_pfn_to_mfn(pgd);
808 return native_make_pgd(pgd);
809 }
810 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
811
812 pmdval_t xen_pmd_val(pmd_t pmd)
813 {
814 return pte_mfn_to_pfn(pmd.pmd);
815 }
816 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
817
818 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
819 {
820 struct mmu_update u;
821
822 preempt_disable();
823
824 xen_mc_batch();
825
826 /* ptr may be ioremapped for 64-bit pagetable setup */
827 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
828 u.val = pud_val_ma(val);
829 xen_extend_mmu_update(&u);
830
831 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
832
833 xen_mc_issue(PARAVIRT_LAZY_MMU);
834
835 preempt_enable();
836 }
837
838 void xen_set_pud(pud_t *ptr, pud_t val)
839 {
840 ADD_STATS(pud_update, 1);
841
842 /* If page is not pinned, we can just update the entry
843 directly */
844 if (!xen_page_pinned(ptr)) {
845 *ptr = val;
846 return;
847 }
848
849 ADD_STATS(pud_update_pinned, 1);
850
851 xen_set_pud_hyper(ptr, val);
852 }
853
854 void xen_set_pte(pte_t *ptep, pte_t pte)
855 {
856 if (xen_iomap_pte(pte)) {
857 xen_set_iomap_pte(ptep, pte);
858 return;
859 }
860
861 ADD_STATS(pte_update, 1);
862 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
863 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
864
865 #ifdef CONFIG_X86_PAE
866 ptep->pte_high = pte.pte_high;
867 smp_wmb();
868 ptep->pte_low = pte.pte_low;
869 #else
870 *ptep = pte;
871 #endif
872 }
873
874 #ifdef CONFIG_X86_PAE
875 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
876 {
877 if (xen_iomap_pte(pte)) {
878 xen_set_iomap_pte(ptep, pte);
879 return;
880 }
881
882 set_64bit((u64 *)ptep, native_pte_val(pte));
883 }
884
885 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
886 {
887 ptep->pte_low = 0;
888 smp_wmb(); /* make sure low gets written first */
889 ptep->pte_high = 0;
890 }
891
892 void xen_pmd_clear(pmd_t *pmdp)
893 {
894 set_pmd(pmdp, __pmd(0));
895 }
896 #endif /* CONFIG_X86_PAE */
897
898 pmd_t xen_make_pmd(pmdval_t pmd)
899 {
900 pmd = pte_pfn_to_mfn(pmd);
901 return native_make_pmd(pmd);
902 }
903 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
904
905 #if PAGETABLE_LEVELS == 4
906 pudval_t xen_pud_val(pud_t pud)
907 {
908 return pte_mfn_to_pfn(pud.pud);
909 }
910 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
911
912 pud_t xen_make_pud(pudval_t pud)
913 {
914 pud = pte_pfn_to_mfn(pud);
915
916 return native_make_pud(pud);
917 }
918 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
919
920 pgd_t *xen_get_user_pgd(pgd_t *pgd)
921 {
922 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
923 unsigned offset = pgd - pgd_page;
924 pgd_t *user_ptr = NULL;
925
926 if (offset < pgd_index(USER_LIMIT)) {
927 struct page *page = virt_to_page(pgd_page);
928 user_ptr = (pgd_t *)page->private;
929 if (user_ptr)
930 user_ptr += offset;
931 }
932
933 return user_ptr;
934 }
935
936 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
937 {
938 struct mmu_update u;
939
940 u.ptr = virt_to_machine(ptr).maddr;
941 u.val = pgd_val_ma(val);
942 xen_extend_mmu_update(&u);
943 }
944
945 /*
946 * Raw hypercall-based set_pgd, intended for in early boot before
947 * there's a page structure. This implies:
948 * 1. The only existing pagetable is the kernel's
949 * 2. It is always pinned
950 * 3. It has no user pagetable attached to it
951 */
952 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
953 {
954 preempt_disable();
955
956 xen_mc_batch();
957
958 __xen_set_pgd_hyper(ptr, val);
959
960 xen_mc_issue(PARAVIRT_LAZY_MMU);
961
962 preempt_enable();
963 }
964
965 void xen_set_pgd(pgd_t *ptr, pgd_t val)
966 {
967 pgd_t *user_ptr = xen_get_user_pgd(ptr);
968
969 ADD_STATS(pgd_update, 1);
970
971 /* If page is not pinned, we can just update the entry
972 directly */
973 if (!xen_page_pinned(ptr)) {
974 *ptr = val;
975 if (user_ptr) {
976 WARN_ON(xen_page_pinned(user_ptr));
977 *user_ptr = val;
978 }
979 return;
980 }
981
982 ADD_STATS(pgd_update_pinned, 1);
983 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
984
985 /* If it's pinned, then we can at least batch the kernel and
986 user updates together. */
987 xen_mc_batch();
988
989 __xen_set_pgd_hyper(ptr, val);
990 if (user_ptr)
991 __xen_set_pgd_hyper(user_ptr, val);
992
993 xen_mc_issue(PARAVIRT_LAZY_MMU);
994 }
995 #endif /* PAGETABLE_LEVELS == 4 */
996
997 /*
998 * (Yet another) pagetable walker. This one is intended for pinning a
999 * pagetable. This means that it walks a pagetable and calls the
1000 * callback function on each page it finds making up the page table,
1001 * at every level. It walks the entire pagetable, but it only bothers
1002 * pinning pte pages which are below limit. In the normal case this
1003 * will be STACK_TOP_MAX, but at boot we need to pin up to
1004 * FIXADDR_TOP.
1005 *
1006 * For 32-bit the important bit is that we don't pin beyond there,
1007 * because then we start getting into Xen's ptes.
1008 *
1009 * For 64-bit, we must skip the Xen hole in the middle of the address
1010 * space, just after the big x86-64 virtual hole.
1011 */
1012 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
1013 int (*func)(struct mm_struct *mm, struct page *,
1014 enum pt_level),
1015 unsigned long limit)
1016 {
1017 int flush = 0;
1018 unsigned hole_low, hole_high;
1019 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
1020 unsigned pgdidx, pudidx, pmdidx;
1021
1022 /* The limit is the last byte to be touched */
1023 limit--;
1024 BUG_ON(limit >= FIXADDR_TOP);
1025
1026 if (xen_feature(XENFEAT_auto_translated_physmap))
1027 return 0;
1028
1029 /*
1030 * 64-bit has a great big hole in the middle of the address
1031 * space, which contains the Xen mappings. On 32-bit these
1032 * will end up making a zero-sized hole and so is a no-op.
1033 */
1034 hole_low = pgd_index(USER_LIMIT);
1035 hole_high = pgd_index(PAGE_OFFSET);
1036
1037 pgdidx_limit = pgd_index(limit);
1038 #if PTRS_PER_PUD > 1
1039 pudidx_limit = pud_index(limit);
1040 #else
1041 pudidx_limit = 0;
1042 #endif
1043 #if PTRS_PER_PMD > 1
1044 pmdidx_limit = pmd_index(limit);
1045 #else
1046 pmdidx_limit = 0;
1047 #endif
1048
1049 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
1050 pud_t *pud;
1051
1052 if (pgdidx >= hole_low && pgdidx < hole_high)
1053 continue;
1054
1055 if (!pgd_val(pgd[pgdidx]))
1056 continue;
1057
1058 pud = pud_offset(&pgd[pgdidx], 0);
1059
1060 if (PTRS_PER_PUD > 1) /* not folded */
1061 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
1062
1063 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
1064 pmd_t *pmd;
1065
1066 if (pgdidx == pgdidx_limit &&
1067 pudidx > pudidx_limit)
1068 goto out;
1069
1070 if (pud_none(pud[pudidx]))
1071 continue;
1072
1073 pmd = pmd_offset(&pud[pudidx], 0);
1074
1075 if (PTRS_PER_PMD > 1) /* not folded */
1076 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
1077
1078 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
1079 struct page *pte;
1080
1081 if (pgdidx == pgdidx_limit &&
1082 pudidx == pudidx_limit &&
1083 pmdidx > pmdidx_limit)
1084 goto out;
1085
1086 if (pmd_none(pmd[pmdidx]))
1087 continue;
1088
1089 pte = pmd_page(pmd[pmdidx]);
1090 flush |= (*func)(mm, pte, PT_PTE);
1091 }
1092 }
1093 }
1094
1095 out:
1096 /* Do the top level last, so that the callbacks can use it as
1097 a cue to do final things like tlb flushes. */
1098 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
1099
1100 return flush;
1101 }
1102
1103 static int xen_pgd_walk(struct mm_struct *mm,
1104 int (*func)(struct mm_struct *mm, struct page *,
1105 enum pt_level),
1106 unsigned long limit)
1107 {
1108 return __xen_pgd_walk(mm, mm->pgd, func, limit);
1109 }
1110
1111 /* If we're using split pte locks, then take the page's lock and
1112 return a pointer to it. Otherwise return NULL. */
1113 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
1114 {
1115 spinlock_t *ptl = NULL;
1116
1117 #if USE_SPLIT_PTLOCKS
1118 ptl = __pte_lockptr(page);
1119 spin_lock_nest_lock(ptl, &mm->page_table_lock);
1120 #endif
1121
1122 return ptl;
1123 }
1124
1125 static void xen_pte_unlock(void *v)
1126 {
1127 spinlock_t *ptl = v;
1128 spin_unlock(ptl);
1129 }
1130
1131 static void xen_do_pin(unsigned level, unsigned long pfn)
1132 {
1133 struct mmuext_op *op;
1134 struct multicall_space mcs;
1135
1136 mcs = __xen_mc_entry(sizeof(*op));
1137 op = mcs.args;
1138 op->cmd = level;
1139 op->arg1.mfn = pfn_to_mfn(pfn);
1140 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1141 }
1142
1143 static int xen_pin_page(struct mm_struct *mm, struct page *page,
1144 enum pt_level level)
1145 {
1146 unsigned pgfl = TestSetPagePinned(page);
1147 int flush;
1148
1149 if (pgfl)
1150 flush = 0; /* already pinned */
1151 else if (PageHighMem(page))
1152 /* kmaps need flushing if we found an unpinned
1153 highpage */
1154 flush = 1;
1155 else {
1156 void *pt = lowmem_page_address(page);
1157 unsigned long pfn = page_to_pfn(page);
1158 struct multicall_space mcs = __xen_mc_entry(0);
1159 spinlock_t *ptl;
1160
1161 flush = 0;
1162
1163 /*
1164 * We need to hold the pagetable lock between the time
1165 * we make the pagetable RO and when we actually pin
1166 * it. If we don't, then other users may come in and
1167 * attempt to update the pagetable by writing it,
1168 * which will fail because the memory is RO but not
1169 * pinned, so Xen won't do the trap'n'emulate.
1170 *
1171 * If we're using split pte locks, we can't hold the
1172 * entire pagetable's worth of locks during the
1173 * traverse, because we may wrap the preempt count (8
1174 * bits). The solution is to mark RO and pin each PTE
1175 * page while holding the lock. This means the number
1176 * of locks we end up holding is never more than a
1177 * batch size (~32 entries, at present).
1178 *
1179 * If we're not using split pte locks, we needn't pin
1180 * the PTE pages independently, because we're
1181 * protected by the overall pagetable lock.
1182 */
1183 ptl = NULL;
1184 if (level == PT_PTE)
1185 ptl = xen_pte_lock(page, mm);
1186
1187 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1188 pfn_pte(pfn, PAGE_KERNEL_RO),
1189 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1190
1191 if (ptl) {
1192 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
1193
1194 /* Queue a deferred unlock for when this batch
1195 is completed. */
1196 xen_mc_callback(xen_pte_unlock, ptl);
1197 }
1198 }
1199
1200 return flush;
1201 }
1202
1203 /* This is called just after a mm has been created, but it has not
1204 been used yet. We need to make sure that its pagetable is all
1205 read-only, and can be pinned. */
1206 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
1207 {
1208 xen_mc_batch();
1209
1210 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
1211 /* re-enable interrupts for flushing */
1212 xen_mc_issue(0);
1213
1214 kmap_flush_unused();
1215
1216 xen_mc_batch();
1217 }
1218
1219 #ifdef CONFIG_X86_64
1220 {
1221 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1222
1223 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1224
1225 if (user_pgd) {
1226 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1227 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1228 PFN_DOWN(__pa(user_pgd)));
1229 }
1230 }
1231 #else /* CONFIG_X86_32 */
1232 #ifdef CONFIG_X86_PAE
1233 /* Need to make sure unshared kernel PMD is pinnable */
1234 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1235 PT_PMD);
1236 #endif
1237 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1238 #endif /* CONFIG_X86_64 */
1239 xen_mc_issue(0);
1240 }
1241
1242 static void xen_pgd_pin(struct mm_struct *mm)
1243 {
1244 __xen_pgd_pin(mm, mm->pgd);
1245 }
1246
1247 /*
1248 * On save, we need to pin all pagetables to make sure they get their
1249 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1250 * them (unpinned pgds are not currently in use, probably because the
1251 * process is under construction or destruction).
1252 *
1253 * Expected to be called in stop_machine() ("equivalent to taking
1254 * every spinlock in the system"), so the locking doesn't really
1255 * matter all that much.
1256 */
1257 void xen_mm_pin_all(void)
1258 {
1259 unsigned long flags;
1260 struct page *page;
1261
1262 spin_lock_irqsave(&pgd_lock, flags);
1263
1264 list_for_each_entry(page, &pgd_list, lru) {
1265 if (!PagePinned(page)) {
1266 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1267 SetPageSavePinned(page);
1268 }
1269 }
1270
1271 spin_unlock_irqrestore(&pgd_lock, flags);
1272 }
1273
1274 /*
1275 * The init_mm pagetable is really pinned as soon as its created, but
1276 * that's before we have page structures to store the bits. So do all
1277 * the book-keeping now.
1278 */
1279 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1280 enum pt_level level)
1281 {
1282 SetPagePinned(page);
1283 return 0;
1284 }
1285
1286 static void __init xen_mark_init_mm_pinned(void)
1287 {
1288 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1289 }
1290
1291 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1292 enum pt_level level)
1293 {
1294 unsigned pgfl = TestClearPagePinned(page);
1295
1296 if (pgfl && !PageHighMem(page)) {
1297 void *pt = lowmem_page_address(page);
1298 unsigned long pfn = page_to_pfn(page);
1299 spinlock_t *ptl = NULL;
1300 struct multicall_space mcs;
1301
1302 /*
1303 * Do the converse to pin_page. If we're using split
1304 * pte locks, we must be holding the lock for while
1305 * the pte page is unpinned but still RO to prevent
1306 * concurrent updates from seeing it in this
1307 * partially-pinned state.
1308 */
1309 if (level == PT_PTE) {
1310 ptl = xen_pte_lock(page, mm);
1311
1312 if (ptl)
1313 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1314 }
1315
1316 mcs = __xen_mc_entry(0);
1317
1318 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1319 pfn_pte(pfn, PAGE_KERNEL),
1320 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1321
1322 if (ptl) {
1323 /* unlock when batch completed */
1324 xen_mc_callback(xen_pte_unlock, ptl);
1325 }
1326 }
1327
1328 return 0; /* never need to flush on unpin */
1329 }
1330
1331 /* Release a pagetables pages back as normal RW */
1332 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1333 {
1334 xen_mc_batch();
1335
1336 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1337
1338 #ifdef CONFIG_X86_64
1339 {
1340 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1341
1342 if (user_pgd) {
1343 xen_do_pin(MMUEXT_UNPIN_TABLE,
1344 PFN_DOWN(__pa(user_pgd)));
1345 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1346 }
1347 }
1348 #endif
1349
1350 #ifdef CONFIG_X86_PAE
1351 /* Need to make sure unshared kernel PMD is unpinned */
1352 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1353 PT_PMD);
1354 #endif
1355
1356 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1357
1358 xen_mc_issue(0);
1359 }
1360
1361 static void xen_pgd_unpin(struct mm_struct *mm)
1362 {
1363 __xen_pgd_unpin(mm, mm->pgd);
1364 }
1365
1366 /*
1367 * On resume, undo any pinning done at save, so that the rest of the
1368 * kernel doesn't see any unexpected pinned pagetables.
1369 */
1370 void xen_mm_unpin_all(void)
1371 {
1372 unsigned long flags;
1373 struct page *page;
1374
1375 spin_lock_irqsave(&pgd_lock, flags);
1376
1377 list_for_each_entry(page, &pgd_list, lru) {
1378 if (PageSavePinned(page)) {
1379 BUG_ON(!PagePinned(page));
1380 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1381 ClearPageSavePinned(page);
1382 }
1383 }
1384
1385 spin_unlock_irqrestore(&pgd_lock, flags);
1386 }
1387
1388 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1389 {
1390 spin_lock(&next->page_table_lock);
1391 xen_pgd_pin(next);
1392 spin_unlock(&next->page_table_lock);
1393 }
1394
1395 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1396 {
1397 spin_lock(&mm->page_table_lock);
1398 xen_pgd_pin(mm);
1399 spin_unlock(&mm->page_table_lock);
1400 }
1401
1402
1403 #ifdef CONFIG_SMP
1404 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1405 we need to repoint it somewhere else before we can unpin it. */
1406 static void drop_other_mm_ref(void *info)
1407 {
1408 struct mm_struct *mm = info;
1409 struct mm_struct *active_mm;
1410
1411 active_mm = percpu_read(cpu_tlbstate.active_mm);
1412
1413 if (active_mm == mm)
1414 leave_mm(smp_processor_id());
1415
1416 /* If this cpu still has a stale cr3 reference, then make sure
1417 it has been flushed. */
1418 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1419 load_cr3(swapper_pg_dir);
1420 }
1421
1422 static void xen_drop_mm_ref(struct mm_struct *mm)
1423 {
1424 cpumask_var_t mask;
1425 unsigned cpu;
1426
1427 if (current->active_mm == mm) {
1428 if (current->mm == mm)
1429 load_cr3(swapper_pg_dir);
1430 else
1431 leave_mm(smp_processor_id());
1432 }
1433
1434 /* Get the "official" set of cpus referring to our pagetable. */
1435 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1436 for_each_online_cpu(cpu) {
1437 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1438 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1439 continue;
1440 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1441 }
1442 return;
1443 }
1444 cpumask_copy(mask, mm_cpumask(mm));
1445
1446 /* It's possible that a vcpu may have a stale reference to our
1447 cr3, because its in lazy mode, and it hasn't yet flushed
1448 its set of pending hypercalls yet. In this case, we can
1449 look at its actual current cr3 value, and force it to flush
1450 if needed. */
1451 for_each_online_cpu(cpu) {
1452 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1453 cpumask_set_cpu(cpu, mask);
1454 }
1455
1456 if (!cpumask_empty(mask))
1457 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1458 free_cpumask_var(mask);
1459 }
1460 #else
1461 static void xen_drop_mm_ref(struct mm_struct *mm)
1462 {
1463 if (current->active_mm == mm)
1464 load_cr3(swapper_pg_dir);
1465 }
1466 #endif
1467
1468 /*
1469 * While a process runs, Xen pins its pagetables, which means that the
1470 * hypervisor forces it to be read-only, and it controls all updates
1471 * to it. This means that all pagetable updates have to go via the
1472 * hypervisor, which is moderately expensive.
1473 *
1474 * Since we're pulling the pagetable down, we switch to use init_mm,
1475 * unpin old process pagetable and mark it all read-write, which
1476 * allows further operations on it to be simple memory accesses.
1477 *
1478 * The only subtle point is that another CPU may be still using the
1479 * pagetable because of lazy tlb flushing. This means we need need to
1480 * switch all CPUs off this pagetable before we can unpin it.
1481 */
1482 void xen_exit_mmap(struct mm_struct *mm)
1483 {
1484 get_cpu(); /* make sure we don't move around */
1485 xen_drop_mm_ref(mm);
1486 put_cpu();
1487
1488 spin_lock(&mm->page_table_lock);
1489
1490 /* pgd may not be pinned in the error exit path of execve */
1491 if (xen_page_pinned(mm->pgd))
1492 xen_pgd_unpin(mm);
1493
1494 spin_unlock(&mm->page_table_lock);
1495 }
1496
1497 static __init void xen_pagetable_setup_start(pgd_t *base)
1498 {
1499 }
1500
1501 static void xen_post_allocator_init(void);
1502
1503 static __init void xen_pagetable_setup_done(pgd_t *base)
1504 {
1505 xen_setup_shared_info();
1506 xen_post_allocator_init();
1507 }
1508
1509 static void xen_write_cr2(unsigned long cr2)
1510 {
1511 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1512 }
1513
1514 static unsigned long xen_read_cr2(void)
1515 {
1516 return percpu_read(xen_vcpu)->arch.cr2;
1517 }
1518
1519 unsigned long xen_read_cr2_direct(void)
1520 {
1521 return percpu_read(xen_vcpu_info.arch.cr2);
1522 }
1523
1524 static void xen_flush_tlb(void)
1525 {
1526 struct mmuext_op *op;
1527 struct multicall_space mcs;
1528
1529 preempt_disable();
1530
1531 mcs = xen_mc_entry(sizeof(*op));
1532
1533 op = mcs.args;
1534 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1535 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1536
1537 xen_mc_issue(PARAVIRT_LAZY_MMU);
1538
1539 preempt_enable();
1540 }
1541
1542 static void xen_flush_tlb_single(unsigned long addr)
1543 {
1544 struct mmuext_op *op;
1545 struct multicall_space mcs;
1546
1547 preempt_disable();
1548
1549 mcs = xen_mc_entry(sizeof(*op));
1550 op = mcs.args;
1551 op->cmd = MMUEXT_INVLPG_LOCAL;
1552 op->arg1.linear_addr = addr & PAGE_MASK;
1553 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1554
1555 xen_mc_issue(PARAVIRT_LAZY_MMU);
1556
1557 preempt_enable();
1558 }
1559
1560 static void xen_flush_tlb_others(const struct cpumask *cpus,
1561 struct mm_struct *mm, unsigned long va)
1562 {
1563 struct {
1564 struct mmuext_op op;
1565 DECLARE_BITMAP(mask, NR_CPUS);
1566 } *args;
1567 struct multicall_space mcs;
1568
1569 if (cpumask_empty(cpus))
1570 return; /* nothing to do */
1571
1572 mcs = xen_mc_entry(sizeof(*args));
1573 args = mcs.args;
1574 args->op.arg2.vcpumask = to_cpumask(args->mask);
1575
1576 /* Remove us, and any offline CPUS. */
1577 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1578 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1579
1580 if (va == TLB_FLUSH_ALL) {
1581 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1582 } else {
1583 args->op.cmd = MMUEXT_INVLPG_MULTI;
1584 args->op.arg1.linear_addr = va;
1585 }
1586
1587 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1588
1589 xen_mc_issue(PARAVIRT_LAZY_MMU);
1590 }
1591
1592 static unsigned long xen_read_cr3(void)
1593 {
1594 return percpu_read(xen_cr3);
1595 }
1596
1597 static void set_current_cr3(void *v)
1598 {
1599 percpu_write(xen_current_cr3, (unsigned long)v);
1600 }
1601
1602 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1603 {
1604 struct mmuext_op *op;
1605 struct multicall_space mcs;
1606 unsigned long mfn;
1607
1608 if (cr3)
1609 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1610 else
1611 mfn = 0;
1612
1613 WARN_ON(mfn == 0 && kernel);
1614
1615 mcs = __xen_mc_entry(sizeof(*op));
1616
1617 op = mcs.args;
1618 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1619 op->arg1.mfn = mfn;
1620
1621 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1622
1623 if (kernel) {
1624 percpu_write(xen_cr3, cr3);
1625
1626 /* Update xen_current_cr3 once the batch has actually
1627 been submitted. */
1628 xen_mc_callback(set_current_cr3, (void *)cr3);
1629 }
1630 }
1631
1632 static void xen_write_cr3(unsigned long cr3)
1633 {
1634 BUG_ON(preemptible());
1635
1636 xen_mc_batch(); /* disables interrupts */
1637
1638 /* Update while interrupts are disabled, so its atomic with
1639 respect to ipis */
1640 percpu_write(xen_cr3, cr3);
1641
1642 __xen_write_cr3(true, cr3);
1643
1644 #ifdef CONFIG_X86_64
1645 {
1646 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1647 if (user_pgd)
1648 __xen_write_cr3(false, __pa(user_pgd));
1649 else
1650 __xen_write_cr3(false, 0);
1651 }
1652 #endif
1653
1654 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1655 }
1656
1657 static int xen_pgd_alloc(struct mm_struct *mm)
1658 {
1659 pgd_t *pgd = mm->pgd;
1660 int ret = 0;
1661
1662 BUG_ON(PagePinned(virt_to_page(pgd)));
1663
1664 #ifdef CONFIG_X86_64
1665 {
1666 struct page *page = virt_to_page(pgd);
1667 pgd_t *user_pgd;
1668
1669 BUG_ON(page->private != 0);
1670
1671 ret = -ENOMEM;
1672
1673 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1674 page->private = (unsigned long)user_pgd;
1675
1676 if (user_pgd != NULL) {
1677 user_pgd[pgd_index(VSYSCALL_START)] =
1678 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1679 ret = 0;
1680 }
1681
1682 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1683 }
1684 #endif
1685
1686 return ret;
1687 }
1688
1689 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1690 {
1691 #ifdef CONFIG_X86_64
1692 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1693
1694 if (user_pgd)
1695 free_page((unsigned long)user_pgd);
1696 #endif
1697 }
1698
1699 #ifdef CONFIG_X86_32
1700 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1701 {
1702 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1703 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1704 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1705 pte_val_ma(pte));
1706
1707 return pte;
1708 }
1709
1710 /* Init-time set_pte while constructing initial pagetables, which
1711 doesn't allow RO pagetable pages to be remapped RW */
1712 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1713 {
1714 pte = mask_rw_pte(ptep, pte);
1715
1716 xen_set_pte(ptep, pte);
1717 }
1718 #endif
1719
1720 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1721 {
1722 struct mmuext_op op;
1723 op.cmd = cmd;
1724 op.arg1.mfn = pfn_to_mfn(pfn);
1725 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1726 BUG();
1727 }
1728
1729 /* Early in boot, while setting up the initial pagetable, assume
1730 everything is pinned. */
1731 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1732 {
1733 #ifdef CONFIG_FLATMEM
1734 BUG_ON(mem_map); /* should only be used early */
1735 #endif
1736 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1737 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1738 }
1739
1740 /* Used for pmd and pud */
1741 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1742 {
1743 #ifdef CONFIG_FLATMEM
1744 BUG_ON(mem_map); /* should only be used early */
1745 #endif
1746 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1747 }
1748
1749 /* Early release_pte assumes that all pts are pinned, since there's
1750 only init_mm and anything attached to that is pinned. */
1751 static __init void xen_release_pte_init(unsigned long pfn)
1752 {
1753 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1754 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1755 }
1756
1757 static __init void xen_release_pmd_init(unsigned long pfn)
1758 {
1759 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1760 }
1761
1762 /* This needs to make sure the new pte page is pinned iff its being
1763 attached to a pinned pagetable. */
1764 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1765 {
1766 struct page *page = pfn_to_page(pfn);
1767
1768 if (PagePinned(virt_to_page(mm->pgd))) {
1769 SetPagePinned(page);
1770
1771 if (!PageHighMem(page)) {
1772 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1773 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1774 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1775 } else {
1776 /* make sure there are no stray mappings of
1777 this page */
1778 kmap_flush_unused();
1779 }
1780 }
1781 }
1782
1783 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1784 {
1785 xen_alloc_ptpage(mm, pfn, PT_PTE);
1786 }
1787
1788 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1789 {
1790 xen_alloc_ptpage(mm, pfn, PT_PMD);
1791 }
1792
1793 /* This should never happen until we're OK to use struct page */
1794 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1795 {
1796 struct page *page = pfn_to_page(pfn);
1797
1798 if (PagePinned(page)) {
1799 if (!PageHighMem(page)) {
1800 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1801 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1802 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1803 }
1804 ClearPagePinned(page);
1805 }
1806 }
1807
1808 static void xen_release_pte(unsigned long pfn)
1809 {
1810 xen_release_ptpage(pfn, PT_PTE);
1811 }
1812
1813 static void xen_release_pmd(unsigned long pfn)
1814 {
1815 xen_release_ptpage(pfn, PT_PMD);
1816 }
1817
1818 #if PAGETABLE_LEVELS == 4
1819 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1820 {
1821 xen_alloc_ptpage(mm, pfn, PT_PUD);
1822 }
1823
1824 static void xen_release_pud(unsigned long pfn)
1825 {
1826 xen_release_ptpage(pfn, PT_PUD);
1827 }
1828 #endif
1829
1830 void __init xen_reserve_top(void)
1831 {
1832 #ifdef CONFIG_X86_32
1833 unsigned long top = HYPERVISOR_VIRT_START;
1834 struct xen_platform_parameters pp;
1835
1836 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1837 top = pp.virt_start;
1838
1839 reserve_top_address(-top);
1840 #endif /* CONFIG_X86_32 */
1841 }
1842
1843 /*
1844 * Like __va(), but returns address in the kernel mapping (which is
1845 * all we have until the physical memory mapping has been set up.
1846 */
1847 static void *__ka(phys_addr_t paddr)
1848 {
1849 #ifdef CONFIG_X86_64
1850 return (void *)(paddr + __START_KERNEL_map);
1851 #else
1852 return __va(paddr);
1853 #endif
1854 }
1855
1856 /* Convert a machine address to physical address */
1857 static unsigned long m2p(phys_addr_t maddr)
1858 {
1859 phys_addr_t paddr;
1860
1861 maddr &= PTE_PFN_MASK;
1862 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1863
1864 return paddr;
1865 }
1866
1867 /* Convert a machine address to kernel virtual */
1868 static void *m2v(phys_addr_t maddr)
1869 {
1870 return __ka(m2p(maddr));
1871 }
1872
1873 static void set_page_prot(void *addr, pgprot_t prot)
1874 {
1875 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1876 pte_t pte = pfn_pte(pfn, prot);
1877
1878 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1879 BUG();
1880 }
1881
1882 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1883 {
1884 unsigned pmdidx, pteidx;
1885 unsigned ident_pte;
1886 unsigned long pfn;
1887
1888 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1889 PAGE_SIZE);
1890
1891 ident_pte = 0;
1892 pfn = 0;
1893 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1894 pte_t *pte_page;
1895
1896 /* Reuse or allocate a page of ptes */
1897 if (pmd_present(pmd[pmdidx]))
1898 pte_page = m2v(pmd[pmdidx].pmd);
1899 else {
1900 /* Check for free pte pages */
1901 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1902 break;
1903
1904 pte_page = &level1_ident_pgt[ident_pte];
1905 ident_pte += PTRS_PER_PTE;
1906
1907 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1908 }
1909
1910 /* Install mappings */
1911 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1912 pte_t pte;
1913
1914 if (pfn > max_pfn_mapped)
1915 max_pfn_mapped = pfn;
1916
1917 if (!pte_none(pte_page[pteidx]))
1918 continue;
1919
1920 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1921 pte_page[pteidx] = pte;
1922 }
1923 }
1924
1925 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1926 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1927
1928 set_page_prot(pmd, PAGE_KERNEL_RO);
1929 }
1930
1931 #ifdef CONFIG_X86_64
1932 static void convert_pfn_mfn(void *v)
1933 {
1934 pte_t *pte = v;
1935 int i;
1936
1937 /* All levels are converted the same way, so just treat them
1938 as ptes. */
1939 for (i = 0; i < PTRS_PER_PTE; i++)
1940 pte[i] = xen_make_pte(pte[i].pte);
1941 }
1942
1943 /*
1944 * Set up the inital kernel pagetable.
1945 *
1946 * We can construct this by grafting the Xen provided pagetable into
1947 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1948 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1949 * means that only the kernel has a physical mapping to start with -
1950 * but that's enough to get __va working. We need to fill in the rest
1951 * of the physical mapping once some sort of allocator has been set
1952 * up.
1953 */
1954 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1955 unsigned long max_pfn)
1956 {
1957 pud_t *l3;
1958 pmd_t *l2;
1959
1960 /* Zap identity mapping */
1961 init_level4_pgt[0] = __pgd(0);
1962
1963 /* Pre-constructed entries are in pfn, so convert to mfn */
1964 convert_pfn_mfn(init_level4_pgt);
1965 convert_pfn_mfn(level3_ident_pgt);
1966 convert_pfn_mfn(level3_kernel_pgt);
1967
1968 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1969 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1970
1971 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1972 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1973
1974 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1975 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1976 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1977
1978 /* Set up identity map */
1979 xen_map_identity_early(level2_ident_pgt, max_pfn);
1980
1981 /* Make pagetable pieces RO */
1982 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1983 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1984 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1985 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1986 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1987 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1988
1989 /* Pin down new L4 */
1990 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1991 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1992
1993 /* Unpin Xen-provided one */
1994 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1995
1996 /* Switch over */
1997 pgd = init_level4_pgt;
1998
1999 /*
2000 * At this stage there can be no user pgd, and no page
2001 * structure to attach it to, so make sure we just set kernel
2002 * pgd.
2003 */
2004 xen_mc_batch();
2005 __xen_write_cr3(true, __pa(pgd));
2006 xen_mc_issue(PARAVIRT_LAZY_CPU);
2007
2008 reserve_early(__pa(xen_start_info->pt_base),
2009 __pa(xen_start_info->pt_base +
2010 xen_start_info->nr_pt_frames * PAGE_SIZE),
2011 "XEN PAGETABLES");
2012
2013 return pgd;
2014 }
2015 #else /* !CONFIG_X86_64 */
2016 static RESERVE_BRK_ARRAY(pmd_t, level2_kernel_pgt, PTRS_PER_PMD);
2017
2018 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
2019 unsigned long max_pfn)
2020 {
2021 pmd_t *kernel_pmd;
2022
2023 level2_kernel_pgt = extend_brk(sizeof(pmd_t *) * PTRS_PER_PMD, PAGE_SIZE);
2024
2025 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
2026 xen_start_info->nr_pt_frames * PAGE_SIZE +
2027 512*1024);
2028
2029 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2030 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
2031
2032 xen_map_identity_early(level2_kernel_pgt, max_pfn);
2033
2034 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
2035 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
2036 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
2037
2038 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
2039 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2040 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2041
2042 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2043
2044 xen_write_cr3(__pa(swapper_pg_dir));
2045
2046 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
2047
2048 reserve_early(__pa(xen_start_info->pt_base),
2049 __pa(xen_start_info->pt_base +
2050 xen_start_info->nr_pt_frames * PAGE_SIZE),
2051 "XEN PAGETABLES");
2052
2053 return swapper_pg_dir;
2054 }
2055 #endif /* CONFIG_X86_64 */
2056
2057 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2058 {
2059 pte_t pte;
2060
2061 phys >>= PAGE_SHIFT;
2062
2063 switch (idx) {
2064 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2065 #ifdef CONFIG_X86_F00F_BUG
2066 case FIX_F00F_IDT:
2067 #endif
2068 #ifdef CONFIG_X86_32
2069 case FIX_WP_TEST:
2070 case FIX_VDSO:
2071 # ifdef CONFIG_HIGHMEM
2072 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2073 # endif
2074 #else
2075 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2076 #endif
2077 #ifdef CONFIG_X86_LOCAL_APIC
2078 case FIX_APIC_BASE: /* maps dummy local APIC */
2079 #endif
2080 case FIX_TEXT_POKE0:
2081 case FIX_TEXT_POKE1:
2082 /* All local page mappings */
2083 pte = pfn_pte(phys, prot);
2084 break;
2085
2086 case FIX_PARAVIRT_BOOTMAP:
2087 /* This is an MFN, but it isn't an IO mapping from the
2088 IO domain */
2089 pte = mfn_pte(phys, prot);
2090 break;
2091
2092 default:
2093 /* By default, set_fixmap is used for hardware mappings */
2094 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2095 break;
2096 }
2097
2098 __native_set_fixmap(idx, pte);
2099
2100 #ifdef CONFIG_X86_64
2101 /* Replicate changes to map the vsyscall page into the user
2102 pagetable vsyscall mapping. */
2103 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
2104 unsigned long vaddr = __fix_to_virt(idx);
2105 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2106 }
2107 #endif
2108 }
2109
2110 static __init void xen_post_allocator_init(void)
2111 {
2112 pv_mmu_ops.set_pte = xen_set_pte;
2113 pv_mmu_ops.set_pmd = xen_set_pmd;
2114 pv_mmu_ops.set_pud = xen_set_pud;
2115 #if PAGETABLE_LEVELS == 4
2116 pv_mmu_ops.set_pgd = xen_set_pgd;
2117 #endif
2118
2119 /* This will work as long as patching hasn't happened yet
2120 (which it hasn't) */
2121 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2122 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2123 pv_mmu_ops.release_pte = xen_release_pte;
2124 pv_mmu_ops.release_pmd = xen_release_pmd;
2125 #if PAGETABLE_LEVELS == 4
2126 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2127 pv_mmu_ops.release_pud = xen_release_pud;
2128 #endif
2129
2130 #ifdef CONFIG_X86_64
2131 SetPagePinned(virt_to_page(level3_user_vsyscall));
2132 #endif
2133 xen_mark_init_mm_pinned();
2134 }
2135
2136 static void xen_leave_lazy_mmu(void)
2137 {
2138 preempt_disable();
2139 xen_mc_flush();
2140 paravirt_leave_lazy_mmu();
2141 preempt_enable();
2142 }
2143
2144 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
2145 .read_cr2 = xen_read_cr2,
2146 .write_cr2 = xen_write_cr2,
2147
2148 .read_cr3 = xen_read_cr3,
2149 .write_cr3 = xen_write_cr3,
2150
2151 .flush_tlb_user = xen_flush_tlb,
2152 .flush_tlb_kernel = xen_flush_tlb,
2153 .flush_tlb_single = xen_flush_tlb_single,
2154 .flush_tlb_others = xen_flush_tlb_others,
2155
2156 .pte_update = paravirt_nop,
2157 .pte_update_defer = paravirt_nop,
2158
2159 .pgd_alloc = xen_pgd_alloc,
2160 .pgd_free = xen_pgd_free,
2161
2162 .alloc_pte = xen_alloc_pte_init,
2163 .release_pte = xen_release_pte_init,
2164 .alloc_pmd = xen_alloc_pmd_init,
2165 .alloc_pmd_clone = paravirt_nop,
2166 .release_pmd = xen_release_pmd_init,
2167
2168 #ifdef CONFIG_X86_64
2169 .set_pte = xen_set_pte,
2170 #else
2171 .set_pte = xen_set_pte_init,
2172 #endif
2173 .set_pte_at = xen_set_pte_at,
2174 .set_pmd = xen_set_pmd_hyper,
2175
2176 .ptep_modify_prot_start = __ptep_modify_prot_start,
2177 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2178
2179 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2180 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2181
2182 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2183 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2184
2185 #ifdef CONFIG_X86_PAE
2186 .set_pte_atomic = xen_set_pte_atomic,
2187 .pte_clear = xen_pte_clear,
2188 .pmd_clear = xen_pmd_clear,
2189 #endif /* CONFIG_X86_PAE */
2190 .set_pud = xen_set_pud_hyper,
2191
2192 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2193 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2194
2195 #if PAGETABLE_LEVELS == 4
2196 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2197 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2198 .set_pgd = xen_set_pgd_hyper,
2199
2200 .alloc_pud = xen_alloc_pmd_init,
2201 .release_pud = xen_release_pmd_init,
2202 #endif /* PAGETABLE_LEVELS == 4 */
2203
2204 .activate_mm = xen_activate_mm,
2205 .dup_mmap = xen_dup_mmap,
2206 .exit_mmap = xen_exit_mmap,
2207
2208 .lazy_mode = {
2209 .enter = paravirt_enter_lazy_mmu,
2210 .leave = xen_leave_lazy_mmu,
2211 },
2212
2213 .set_fixmap = xen_set_fixmap,
2214 };
2215
2216 void __init xen_init_mmu_ops(void)
2217 {
2218 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2219 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2220 pv_mmu_ops = xen_mmu_ops;
2221
2222 vmap_lazy_unmap = false;
2223 }
2224
2225 /* Protected by xen_reservation_lock. */
2226 #define MAX_CONTIG_ORDER 9 /* 2MB */
2227 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2228
2229 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2230 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2231 unsigned long *in_frames,
2232 unsigned long *out_frames)
2233 {
2234 int i;
2235 struct multicall_space mcs;
2236
2237 xen_mc_batch();
2238 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2239 mcs = __xen_mc_entry(0);
2240
2241 if (in_frames)
2242 in_frames[i] = virt_to_mfn(vaddr);
2243
2244 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2245 set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2246
2247 if (out_frames)
2248 out_frames[i] = virt_to_pfn(vaddr);
2249 }
2250 xen_mc_issue(0);
2251 }
2252
2253 /*
2254 * Update the pfn-to-mfn mappings for a virtual address range, either to
2255 * point to an array of mfns, or contiguously from a single starting
2256 * mfn.
2257 */
2258 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2259 unsigned long *mfns,
2260 unsigned long first_mfn)
2261 {
2262 unsigned i, limit;
2263 unsigned long mfn;
2264
2265 xen_mc_batch();
2266
2267 limit = 1u << order;
2268 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2269 struct multicall_space mcs;
2270 unsigned flags;
2271
2272 mcs = __xen_mc_entry(0);
2273 if (mfns)
2274 mfn = mfns[i];
2275 else
2276 mfn = first_mfn + i;
2277
2278 if (i < (limit - 1))
2279 flags = 0;
2280 else {
2281 if (order == 0)
2282 flags = UVMF_INVLPG | UVMF_ALL;
2283 else
2284 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2285 }
2286
2287 MULTI_update_va_mapping(mcs.mc, vaddr,
2288 mfn_pte(mfn, PAGE_KERNEL), flags);
2289
2290 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2291 }
2292
2293 xen_mc_issue(0);
2294 }
2295
2296 /*
2297 * Perform the hypercall to exchange a region of our pfns to point to
2298 * memory with the required contiguous alignment. Takes the pfns as
2299 * input, and populates mfns as output.
2300 *
2301 * Returns a success code indicating whether the hypervisor was able to
2302 * satisfy the request or not.
2303 */
2304 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2305 unsigned long *pfns_in,
2306 unsigned long extents_out,
2307 unsigned int order_out,
2308 unsigned long *mfns_out,
2309 unsigned int address_bits)
2310 {
2311 long rc;
2312 int success;
2313
2314 struct xen_memory_exchange exchange = {
2315 .in = {
2316 .nr_extents = extents_in,
2317 .extent_order = order_in,
2318 .extent_start = pfns_in,
2319 .domid = DOMID_SELF
2320 },
2321 .out = {
2322 .nr_extents = extents_out,
2323 .extent_order = order_out,
2324 .extent_start = mfns_out,
2325 .address_bits = address_bits,
2326 .domid = DOMID_SELF
2327 }
2328 };
2329
2330 BUG_ON(extents_in << order_in != extents_out << order_out);
2331
2332 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2333 success = (exchange.nr_exchanged == extents_in);
2334
2335 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2336 BUG_ON(success && (rc != 0));
2337
2338 return success;
2339 }
2340
2341 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2342 unsigned int address_bits)
2343 {
2344 unsigned long *in_frames = discontig_frames, out_frame;
2345 unsigned long flags;
2346 int success;
2347
2348 /*
2349 * Currently an auto-translated guest will not perform I/O, nor will
2350 * it require PAE page directories below 4GB. Therefore any calls to
2351 * this function are redundant and can be ignored.
2352 */
2353
2354 if (xen_feature(XENFEAT_auto_translated_physmap))
2355 return 0;
2356
2357 if (unlikely(order > MAX_CONTIG_ORDER))
2358 return -ENOMEM;
2359
2360 memset((void *) vstart, 0, PAGE_SIZE << order);
2361
2362 spin_lock_irqsave(&xen_reservation_lock, flags);
2363
2364 /* 1. Zap current PTEs, remembering MFNs. */
2365 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2366
2367 /* 2. Get a new contiguous memory extent. */
2368 out_frame = virt_to_pfn(vstart);
2369 success = xen_exchange_memory(1UL << order, 0, in_frames,
2370 1, order, &out_frame,
2371 address_bits);
2372
2373 /* 3. Map the new extent in place of old pages. */
2374 if (success)
2375 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2376 else
2377 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2378
2379 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2380
2381 return success ? 0 : -ENOMEM;
2382 }
2383 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2384
2385 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2386 {
2387 unsigned long *out_frames = discontig_frames, in_frame;
2388 unsigned long flags;
2389 int success;
2390
2391 if (xen_feature(XENFEAT_auto_translated_physmap))
2392 return;
2393
2394 if (unlikely(order > MAX_CONTIG_ORDER))
2395 return;
2396
2397 memset((void *) vstart, 0, PAGE_SIZE << order);
2398
2399 spin_lock_irqsave(&xen_reservation_lock, flags);
2400
2401 /* 1. Find start MFN of contiguous extent. */
2402 in_frame = virt_to_mfn(vstart);
2403
2404 /* 2. Zap current PTEs. */
2405 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2406
2407 /* 3. Do the exchange for non-contiguous MFNs. */
2408 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2409 0, out_frames, 0);
2410
2411 /* 4. Map new pages in place of old pages. */
2412 if (success)
2413 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2414 else
2415 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2416
2417 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2418 }
2419 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2420
2421 #ifdef CONFIG_XEN_PVHVM
2422 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2423 {
2424 struct xen_hvm_pagetable_dying a;
2425 int rc;
2426
2427 a.domid = DOMID_SELF;
2428 a.gpa = __pa(mm->pgd);
2429 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2430 WARN_ON_ONCE(rc < 0);
2431 }
2432
2433 static int is_pagetable_dying_supported(void)
2434 {
2435 struct xen_hvm_pagetable_dying a;
2436 int rc = 0;
2437
2438 a.domid = DOMID_SELF;
2439 a.gpa = 0x00;
2440 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2441 if (rc < 0) {
2442 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2443 return 0;
2444 }
2445 return 1;
2446 }
2447
2448 void __init xen_hvm_init_mmu_ops(void)
2449 {
2450 if (is_pagetable_dying_supported())
2451 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2452 }
2453 #endif
2454
2455 #ifdef CONFIG_XEN_DEBUG_FS
2456
2457 static struct dentry *d_mmu_debug;
2458
2459 static int __init xen_mmu_debugfs(void)
2460 {
2461 struct dentry *d_xen = xen_init_debugfs();
2462
2463 if (d_xen == NULL)
2464 return -ENOMEM;
2465
2466 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2467
2468 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2469
2470 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2471 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2472 &mmu_stats.pgd_update_pinned);
2473 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2474 &mmu_stats.pgd_update_pinned);
2475
2476 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2477 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2478 &mmu_stats.pud_update_pinned);
2479 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2480 &mmu_stats.pud_update_pinned);
2481
2482 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2483 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2484 &mmu_stats.pmd_update_pinned);
2485 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2486 &mmu_stats.pmd_update_pinned);
2487
2488 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2489 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2490 // &mmu_stats.pte_update_pinned);
2491 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2492 &mmu_stats.pte_update_pinned);
2493
2494 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2495 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2496 &mmu_stats.mmu_update_extended);
2497 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2498 mmu_stats.mmu_update_histo, 20);
2499
2500 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2501 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2502 &mmu_stats.set_pte_at_batched);
2503 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2504 &mmu_stats.set_pte_at_current);
2505 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2506 &mmu_stats.set_pte_at_kernel);
2507
2508 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2509 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2510 &mmu_stats.prot_commit_batched);
2511
2512 return 0;
2513 }
2514 fs_initcall(xen_mmu_debugfs);
2515
2516 #endif /* CONFIG_XEN_DEBUG_FS */
This page took 0.085099 seconds and 5 git commands to generate.