Merge branch 'stable/bug-fixes-for-rc7' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/fixmap.h>
54 #include <asm/mmu_context.h>
55 #include <asm/setup.h>
56 #include <asm/paravirt.h>
57 #include <asm/e820.h>
58 #include <asm/linkage.h>
59 #include <asm/page.h>
60 #include <asm/init.h>
61 #include <asm/pat.h>
62
63 #include <asm/xen/hypercall.h>
64 #include <asm/xen/hypervisor.h>
65
66 #include <xen/xen.h>
67 #include <xen/page.h>
68 #include <xen/interface/xen.h>
69 #include <xen/interface/hvm/hvm_op.h>
70 #include <xen/interface/version.h>
71 #include <xen/interface/memory.h>
72 #include <xen/hvc-console.h>
73
74 #include "multicalls.h"
75 #include "mmu.h"
76 #include "debugfs.h"
77
78 #define MMU_UPDATE_HISTO 30
79
80 /*
81 * Protects atomic reservation decrease/increase against concurrent increases.
82 * Also protects non-atomic updates of current_pages and balloon lists.
83 */
84 DEFINE_SPINLOCK(xen_reservation_lock);
85
86 #ifdef CONFIG_XEN_DEBUG_FS
87
88 static struct {
89 u32 pgd_update;
90 u32 pgd_update_pinned;
91 u32 pgd_update_batched;
92
93 u32 pud_update;
94 u32 pud_update_pinned;
95 u32 pud_update_batched;
96
97 u32 pmd_update;
98 u32 pmd_update_pinned;
99 u32 pmd_update_batched;
100
101 u32 pte_update;
102 u32 pte_update_pinned;
103 u32 pte_update_batched;
104
105 u32 mmu_update;
106 u32 mmu_update_extended;
107 u32 mmu_update_histo[MMU_UPDATE_HISTO];
108
109 u32 prot_commit;
110 u32 prot_commit_batched;
111
112 u32 set_pte_at;
113 u32 set_pte_at_batched;
114 u32 set_pte_at_pinned;
115 u32 set_pte_at_current;
116 u32 set_pte_at_kernel;
117 } mmu_stats;
118
119 static u8 zero_stats;
120
121 static inline void check_zero(void)
122 {
123 if (unlikely(zero_stats)) {
124 memset(&mmu_stats, 0, sizeof(mmu_stats));
125 zero_stats = 0;
126 }
127 }
128
129 #define ADD_STATS(elem, val) \
130 do { check_zero(); mmu_stats.elem += (val); } while(0)
131
132 #else /* !CONFIG_XEN_DEBUG_FS */
133
134 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
135
136 #endif /* CONFIG_XEN_DEBUG_FS */
137
138
139 /*
140 * Identity map, in addition to plain kernel map. This needs to be
141 * large enough to allocate page table pages to allocate the rest.
142 * Each page can map 2MB.
143 */
144 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
145 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
146
147 #ifdef CONFIG_X86_64
148 /* l3 pud for userspace vsyscall mapping */
149 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
150 #endif /* CONFIG_X86_64 */
151
152 /*
153 * Note about cr3 (pagetable base) values:
154 *
155 * xen_cr3 contains the current logical cr3 value; it contains the
156 * last set cr3. This may not be the current effective cr3, because
157 * its update may be being lazily deferred. However, a vcpu looking
158 * at its own cr3 can use this value knowing that it everything will
159 * be self-consistent.
160 *
161 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
162 * hypercall to set the vcpu cr3 is complete (so it may be a little
163 * out of date, but it will never be set early). If one vcpu is
164 * looking at another vcpu's cr3 value, it should use this variable.
165 */
166 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
167 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
168
169
170 /*
171 * Just beyond the highest usermode address. STACK_TOP_MAX has a
172 * redzone above it, so round it up to a PGD boundary.
173 */
174 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
175
176 unsigned long arbitrary_virt_to_mfn(void *vaddr)
177 {
178 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
179
180 return PFN_DOWN(maddr.maddr);
181 }
182
183 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
184 {
185 unsigned long address = (unsigned long)vaddr;
186 unsigned int level;
187 pte_t *pte;
188 unsigned offset;
189
190 /*
191 * if the PFN is in the linear mapped vaddr range, we can just use
192 * the (quick) virt_to_machine() p2m lookup
193 */
194 if (virt_addr_valid(vaddr))
195 return virt_to_machine(vaddr);
196
197 /* otherwise we have to do a (slower) full page-table walk */
198
199 pte = lookup_address(address, &level);
200 BUG_ON(pte == NULL);
201 offset = address & ~PAGE_MASK;
202 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
203 }
204 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
205
206 void make_lowmem_page_readonly(void *vaddr)
207 {
208 pte_t *pte, ptev;
209 unsigned long address = (unsigned long)vaddr;
210 unsigned int level;
211
212 pte = lookup_address(address, &level);
213 if (pte == NULL)
214 return; /* vaddr missing */
215
216 ptev = pte_wrprotect(*pte);
217
218 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
219 BUG();
220 }
221
222 void make_lowmem_page_readwrite(void *vaddr)
223 {
224 pte_t *pte, ptev;
225 unsigned long address = (unsigned long)vaddr;
226 unsigned int level;
227
228 pte = lookup_address(address, &level);
229 if (pte == NULL)
230 return; /* vaddr missing */
231
232 ptev = pte_mkwrite(*pte);
233
234 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
235 BUG();
236 }
237
238
239 static bool xen_page_pinned(void *ptr)
240 {
241 struct page *page = virt_to_page(ptr);
242
243 return PagePinned(page);
244 }
245
246 static bool xen_iomap_pte(pte_t pte)
247 {
248 return pte_flags(pte) & _PAGE_IOMAP;
249 }
250
251 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
252 {
253 struct multicall_space mcs;
254 struct mmu_update *u;
255
256 mcs = xen_mc_entry(sizeof(*u));
257 u = mcs.args;
258
259 /* ptep might be kmapped when using 32-bit HIGHPTE */
260 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
261 u->val = pte_val_ma(pteval);
262
263 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
264
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
266 }
267 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
268
269 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
270 {
271 xen_set_domain_pte(ptep, pteval, DOMID_IO);
272 }
273
274 static void xen_extend_mmu_update(const struct mmu_update *update)
275 {
276 struct multicall_space mcs;
277 struct mmu_update *u;
278
279 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
280
281 if (mcs.mc != NULL) {
282 ADD_STATS(mmu_update_extended, 1);
283 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
284
285 mcs.mc->args[1]++;
286
287 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
288 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
289 else
290 ADD_STATS(mmu_update_histo[0], 1);
291 } else {
292 ADD_STATS(mmu_update, 1);
293 mcs = __xen_mc_entry(sizeof(*u));
294 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
295 ADD_STATS(mmu_update_histo[1], 1);
296 }
297
298 u = mcs.args;
299 *u = *update;
300 }
301
302 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
303 {
304 struct mmu_update u;
305
306 preempt_disable();
307
308 xen_mc_batch();
309
310 /* ptr may be ioremapped for 64-bit pagetable setup */
311 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
312 u.val = pmd_val_ma(val);
313 xen_extend_mmu_update(&u);
314
315 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
316
317 xen_mc_issue(PARAVIRT_LAZY_MMU);
318
319 preempt_enable();
320 }
321
322 void xen_set_pmd(pmd_t *ptr, pmd_t val)
323 {
324 ADD_STATS(pmd_update, 1);
325
326 /* If page is not pinned, we can just update the entry
327 directly */
328 if (!xen_page_pinned(ptr)) {
329 *ptr = val;
330 return;
331 }
332
333 ADD_STATS(pmd_update_pinned, 1);
334
335 xen_set_pmd_hyper(ptr, val);
336 }
337
338 /*
339 * Associate a virtual page frame with a given physical page frame
340 * and protection flags for that frame.
341 */
342 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
343 {
344 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
345 }
346
347 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
348 pte_t *ptep, pte_t pteval)
349 {
350 if (xen_iomap_pte(pteval)) {
351 xen_set_iomap_pte(ptep, pteval);
352 goto out;
353 }
354
355 ADD_STATS(set_pte_at, 1);
356 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
357 ADD_STATS(set_pte_at_current, mm == current->mm);
358 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
359
360 if (mm == current->mm || mm == &init_mm) {
361 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
362 struct multicall_space mcs;
363 mcs = xen_mc_entry(0);
364
365 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
366 ADD_STATS(set_pte_at_batched, 1);
367 xen_mc_issue(PARAVIRT_LAZY_MMU);
368 goto out;
369 } else
370 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
371 goto out;
372 }
373 xen_set_pte(ptep, pteval);
374
375 out: return;
376 }
377
378 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
379 unsigned long addr, pte_t *ptep)
380 {
381 /* Just return the pte as-is. We preserve the bits on commit */
382 return *ptep;
383 }
384
385 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
386 pte_t *ptep, pte_t pte)
387 {
388 struct mmu_update u;
389
390 xen_mc_batch();
391
392 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
393 u.val = pte_val_ma(pte);
394 xen_extend_mmu_update(&u);
395
396 ADD_STATS(prot_commit, 1);
397 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
398
399 xen_mc_issue(PARAVIRT_LAZY_MMU);
400 }
401
402 /* Assume pteval_t is equivalent to all the other *val_t types. */
403 static pteval_t pte_mfn_to_pfn(pteval_t val)
404 {
405 if (val & _PAGE_PRESENT) {
406 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
407 pteval_t flags = val & PTE_FLAGS_MASK;
408 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
409 }
410
411 return val;
412 }
413
414 static pteval_t pte_pfn_to_mfn(pteval_t val)
415 {
416 if (val & _PAGE_PRESENT) {
417 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
418 pteval_t flags = val & PTE_FLAGS_MASK;
419 unsigned long mfn;
420
421 if (!xen_feature(XENFEAT_auto_translated_physmap))
422 mfn = get_phys_to_machine(pfn);
423 else
424 mfn = pfn;
425 /*
426 * If there's no mfn for the pfn, then just create an
427 * empty non-present pte. Unfortunately this loses
428 * information about the original pfn, so
429 * pte_mfn_to_pfn is asymmetric.
430 */
431 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
432 mfn = 0;
433 flags = 0;
434 } else {
435 /*
436 * Paramount to do this test _after_ the
437 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
438 * IDENTITY_FRAME_BIT resolves to true.
439 */
440 mfn &= ~FOREIGN_FRAME_BIT;
441 if (mfn & IDENTITY_FRAME_BIT) {
442 mfn &= ~IDENTITY_FRAME_BIT;
443 flags |= _PAGE_IOMAP;
444 }
445 }
446 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
447 }
448
449 return val;
450 }
451
452 static pteval_t iomap_pte(pteval_t val)
453 {
454 if (val & _PAGE_PRESENT) {
455 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
456 pteval_t flags = val & PTE_FLAGS_MASK;
457
458 /* We assume the pte frame number is a MFN, so
459 just use it as-is. */
460 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
461 }
462
463 return val;
464 }
465
466 pteval_t xen_pte_val(pte_t pte)
467 {
468 pteval_t pteval = pte.pte;
469
470 /* If this is a WC pte, convert back from Xen WC to Linux WC */
471 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
472 WARN_ON(!pat_enabled);
473 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
474 }
475
476 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
477 return pteval;
478
479 return pte_mfn_to_pfn(pteval);
480 }
481 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
482
483 pgdval_t xen_pgd_val(pgd_t pgd)
484 {
485 return pte_mfn_to_pfn(pgd.pgd);
486 }
487 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
488
489 /*
490 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
491 * are reserved for now, to correspond to the Intel-reserved PAT
492 * types.
493 *
494 * We expect Linux's PAT set as follows:
495 *
496 * Idx PTE flags Linux Xen Default
497 * 0 WB WB WB
498 * 1 PWT WC WT WT
499 * 2 PCD UC- UC- UC-
500 * 3 PCD PWT UC UC UC
501 * 4 PAT WB WC WB
502 * 5 PAT PWT WC WP WT
503 * 6 PAT PCD UC- UC UC-
504 * 7 PAT PCD PWT UC UC UC
505 */
506
507 void xen_set_pat(u64 pat)
508 {
509 /* We expect Linux to use a PAT setting of
510 * UC UC- WC WB (ignoring the PAT flag) */
511 WARN_ON(pat != 0x0007010600070106ull);
512 }
513
514 pte_t xen_make_pte(pteval_t pte)
515 {
516 phys_addr_t addr = (pte & PTE_PFN_MASK);
517
518 /* If Linux is trying to set a WC pte, then map to the Xen WC.
519 * If _PAGE_PAT is set, then it probably means it is really
520 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
521 * things work out OK...
522 *
523 * (We should never see kernel mappings with _PAGE_PSE set,
524 * but we could see hugetlbfs mappings, I think.).
525 */
526 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
527 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
528 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
529 }
530
531 /*
532 * Unprivileged domains are allowed to do IOMAPpings for
533 * PCI passthrough, but not map ISA space. The ISA
534 * mappings are just dummy local mappings to keep other
535 * parts of the kernel happy.
536 */
537 if (unlikely(pte & _PAGE_IOMAP) &&
538 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
539 pte = iomap_pte(pte);
540 } else {
541 pte &= ~_PAGE_IOMAP;
542 pte = pte_pfn_to_mfn(pte);
543 }
544
545 return native_make_pte(pte);
546 }
547 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
548
549 #ifdef CONFIG_XEN_DEBUG
550 pte_t xen_make_pte_debug(pteval_t pte)
551 {
552 phys_addr_t addr = (pte & PTE_PFN_MASK);
553 phys_addr_t other_addr;
554 bool io_page = false;
555 pte_t _pte;
556
557 if (pte & _PAGE_IOMAP)
558 io_page = true;
559
560 _pte = xen_make_pte(pte);
561
562 if (!addr)
563 return _pte;
564
565 if (io_page &&
566 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
567 other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
568 WARN_ONCE(addr != other_addr,
569 "0x%lx is using VM_IO, but it is 0x%lx!\n",
570 (unsigned long)addr, (unsigned long)other_addr);
571 } else {
572 pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
573 other_addr = (_pte.pte & PTE_PFN_MASK);
574 WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set),
575 "0x%lx is missing VM_IO (and wasn't fixed)!\n",
576 (unsigned long)addr);
577 }
578
579 return _pte;
580 }
581 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
582 #endif
583
584 pgd_t xen_make_pgd(pgdval_t pgd)
585 {
586 pgd = pte_pfn_to_mfn(pgd);
587 return native_make_pgd(pgd);
588 }
589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
590
591 pmdval_t xen_pmd_val(pmd_t pmd)
592 {
593 return pte_mfn_to_pfn(pmd.pmd);
594 }
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
596
597 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
598 {
599 struct mmu_update u;
600
601 preempt_disable();
602
603 xen_mc_batch();
604
605 /* ptr may be ioremapped for 64-bit pagetable setup */
606 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
607 u.val = pud_val_ma(val);
608 xen_extend_mmu_update(&u);
609
610 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
611
612 xen_mc_issue(PARAVIRT_LAZY_MMU);
613
614 preempt_enable();
615 }
616
617 void xen_set_pud(pud_t *ptr, pud_t val)
618 {
619 ADD_STATS(pud_update, 1);
620
621 /* If page is not pinned, we can just update the entry
622 directly */
623 if (!xen_page_pinned(ptr)) {
624 *ptr = val;
625 return;
626 }
627
628 ADD_STATS(pud_update_pinned, 1);
629
630 xen_set_pud_hyper(ptr, val);
631 }
632
633 void xen_set_pte(pte_t *ptep, pte_t pte)
634 {
635 if (xen_iomap_pte(pte)) {
636 xen_set_iomap_pte(ptep, pte);
637 return;
638 }
639
640 ADD_STATS(pte_update, 1);
641 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
642 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
643
644 #ifdef CONFIG_X86_PAE
645 ptep->pte_high = pte.pte_high;
646 smp_wmb();
647 ptep->pte_low = pte.pte_low;
648 #else
649 *ptep = pte;
650 #endif
651 }
652
653 #ifdef CONFIG_X86_PAE
654 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
655 {
656 if (xen_iomap_pte(pte)) {
657 xen_set_iomap_pte(ptep, pte);
658 return;
659 }
660
661 set_64bit((u64 *)ptep, native_pte_val(pte));
662 }
663
664 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
665 {
666 ptep->pte_low = 0;
667 smp_wmb(); /* make sure low gets written first */
668 ptep->pte_high = 0;
669 }
670
671 void xen_pmd_clear(pmd_t *pmdp)
672 {
673 set_pmd(pmdp, __pmd(0));
674 }
675 #endif /* CONFIG_X86_PAE */
676
677 pmd_t xen_make_pmd(pmdval_t pmd)
678 {
679 pmd = pte_pfn_to_mfn(pmd);
680 return native_make_pmd(pmd);
681 }
682 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
683
684 #if PAGETABLE_LEVELS == 4
685 pudval_t xen_pud_val(pud_t pud)
686 {
687 return pte_mfn_to_pfn(pud.pud);
688 }
689 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
690
691 pud_t xen_make_pud(pudval_t pud)
692 {
693 pud = pte_pfn_to_mfn(pud);
694
695 return native_make_pud(pud);
696 }
697 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
698
699 pgd_t *xen_get_user_pgd(pgd_t *pgd)
700 {
701 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
702 unsigned offset = pgd - pgd_page;
703 pgd_t *user_ptr = NULL;
704
705 if (offset < pgd_index(USER_LIMIT)) {
706 struct page *page = virt_to_page(pgd_page);
707 user_ptr = (pgd_t *)page->private;
708 if (user_ptr)
709 user_ptr += offset;
710 }
711
712 return user_ptr;
713 }
714
715 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
716 {
717 struct mmu_update u;
718
719 u.ptr = virt_to_machine(ptr).maddr;
720 u.val = pgd_val_ma(val);
721 xen_extend_mmu_update(&u);
722 }
723
724 /*
725 * Raw hypercall-based set_pgd, intended for in early boot before
726 * there's a page structure. This implies:
727 * 1. The only existing pagetable is the kernel's
728 * 2. It is always pinned
729 * 3. It has no user pagetable attached to it
730 */
731 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
732 {
733 preempt_disable();
734
735 xen_mc_batch();
736
737 __xen_set_pgd_hyper(ptr, val);
738
739 xen_mc_issue(PARAVIRT_LAZY_MMU);
740
741 preempt_enable();
742 }
743
744 void xen_set_pgd(pgd_t *ptr, pgd_t val)
745 {
746 pgd_t *user_ptr = xen_get_user_pgd(ptr);
747
748 ADD_STATS(pgd_update, 1);
749
750 /* If page is not pinned, we can just update the entry
751 directly */
752 if (!xen_page_pinned(ptr)) {
753 *ptr = val;
754 if (user_ptr) {
755 WARN_ON(xen_page_pinned(user_ptr));
756 *user_ptr = val;
757 }
758 return;
759 }
760
761 ADD_STATS(pgd_update_pinned, 1);
762 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
763
764 /* If it's pinned, then we can at least batch the kernel and
765 user updates together. */
766 xen_mc_batch();
767
768 __xen_set_pgd_hyper(ptr, val);
769 if (user_ptr)
770 __xen_set_pgd_hyper(user_ptr, val);
771
772 xen_mc_issue(PARAVIRT_LAZY_MMU);
773 }
774 #endif /* PAGETABLE_LEVELS == 4 */
775
776 /*
777 * (Yet another) pagetable walker. This one is intended for pinning a
778 * pagetable. This means that it walks a pagetable and calls the
779 * callback function on each page it finds making up the page table,
780 * at every level. It walks the entire pagetable, but it only bothers
781 * pinning pte pages which are below limit. In the normal case this
782 * will be STACK_TOP_MAX, but at boot we need to pin up to
783 * FIXADDR_TOP.
784 *
785 * For 32-bit the important bit is that we don't pin beyond there,
786 * because then we start getting into Xen's ptes.
787 *
788 * For 64-bit, we must skip the Xen hole in the middle of the address
789 * space, just after the big x86-64 virtual hole.
790 */
791 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
792 int (*func)(struct mm_struct *mm, struct page *,
793 enum pt_level),
794 unsigned long limit)
795 {
796 int flush = 0;
797 unsigned hole_low, hole_high;
798 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
799 unsigned pgdidx, pudidx, pmdidx;
800
801 /* The limit is the last byte to be touched */
802 limit--;
803 BUG_ON(limit >= FIXADDR_TOP);
804
805 if (xen_feature(XENFEAT_auto_translated_physmap))
806 return 0;
807
808 /*
809 * 64-bit has a great big hole in the middle of the address
810 * space, which contains the Xen mappings. On 32-bit these
811 * will end up making a zero-sized hole and so is a no-op.
812 */
813 hole_low = pgd_index(USER_LIMIT);
814 hole_high = pgd_index(PAGE_OFFSET);
815
816 pgdidx_limit = pgd_index(limit);
817 #if PTRS_PER_PUD > 1
818 pudidx_limit = pud_index(limit);
819 #else
820 pudidx_limit = 0;
821 #endif
822 #if PTRS_PER_PMD > 1
823 pmdidx_limit = pmd_index(limit);
824 #else
825 pmdidx_limit = 0;
826 #endif
827
828 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
829 pud_t *pud;
830
831 if (pgdidx >= hole_low && pgdidx < hole_high)
832 continue;
833
834 if (!pgd_val(pgd[pgdidx]))
835 continue;
836
837 pud = pud_offset(&pgd[pgdidx], 0);
838
839 if (PTRS_PER_PUD > 1) /* not folded */
840 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
841
842 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
843 pmd_t *pmd;
844
845 if (pgdidx == pgdidx_limit &&
846 pudidx > pudidx_limit)
847 goto out;
848
849 if (pud_none(pud[pudidx]))
850 continue;
851
852 pmd = pmd_offset(&pud[pudidx], 0);
853
854 if (PTRS_PER_PMD > 1) /* not folded */
855 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
856
857 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
858 struct page *pte;
859
860 if (pgdidx == pgdidx_limit &&
861 pudidx == pudidx_limit &&
862 pmdidx > pmdidx_limit)
863 goto out;
864
865 if (pmd_none(pmd[pmdidx]))
866 continue;
867
868 pte = pmd_page(pmd[pmdidx]);
869 flush |= (*func)(mm, pte, PT_PTE);
870 }
871 }
872 }
873
874 out:
875 /* Do the top level last, so that the callbacks can use it as
876 a cue to do final things like tlb flushes. */
877 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
878
879 return flush;
880 }
881
882 static int xen_pgd_walk(struct mm_struct *mm,
883 int (*func)(struct mm_struct *mm, struct page *,
884 enum pt_level),
885 unsigned long limit)
886 {
887 return __xen_pgd_walk(mm, mm->pgd, func, limit);
888 }
889
890 /* If we're using split pte locks, then take the page's lock and
891 return a pointer to it. Otherwise return NULL. */
892 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
893 {
894 spinlock_t *ptl = NULL;
895
896 #if USE_SPLIT_PTLOCKS
897 ptl = __pte_lockptr(page);
898 spin_lock_nest_lock(ptl, &mm->page_table_lock);
899 #endif
900
901 return ptl;
902 }
903
904 static void xen_pte_unlock(void *v)
905 {
906 spinlock_t *ptl = v;
907 spin_unlock(ptl);
908 }
909
910 static void xen_do_pin(unsigned level, unsigned long pfn)
911 {
912 struct mmuext_op *op;
913 struct multicall_space mcs;
914
915 mcs = __xen_mc_entry(sizeof(*op));
916 op = mcs.args;
917 op->cmd = level;
918 op->arg1.mfn = pfn_to_mfn(pfn);
919 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
920 }
921
922 static int xen_pin_page(struct mm_struct *mm, struct page *page,
923 enum pt_level level)
924 {
925 unsigned pgfl = TestSetPagePinned(page);
926 int flush;
927
928 if (pgfl)
929 flush = 0; /* already pinned */
930 else if (PageHighMem(page))
931 /* kmaps need flushing if we found an unpinned
932 highpage */
933 flush = 1;
934 else {
935 void *pt = lowmem_page_address(page);
936 unsigned long pfn = page_to_pfn(page);
937 struct multicall_space mcs = __xen_mc_entry(0);
938 spinlock_t *ptl;
939
940 flush = 0;
941
942 /*
943 * We need to hold the pagetable lock between the time
944 * we make the pagetable RO and when we actually pin
945 * it. If we don't, then other users may come in and
946 * attempt to update the pagetable by writing it,
947 * which will fail because the memory is RO but not
948 * pinned, so Xen won't do the trap'n'emulate.
949 *
950 * If we're using split pte locks, we can't hold the
951 * entire pagetable's worth of locks during the
952 * traverse, because we may wrap the preempt count (8
953 * bits). The solution is to mark RO and pin each PTE
954 * page while holding the lock. This means the number
955 * of locks we end up holding is never more than a
956 * batch size (~32 entries, at present).
957 *
958 * If we're not using split pte locks, we needn't pin
959 * the PTE pages independently, because we're
960 * protected by the overall pagetable lock.
961 */
962 ptl = NULL;
963 if (level == PT_PTE)
964 ptl = xen_pte_lock(page, mm);
965
966 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
967 pfn_pte(pfn, PAGE_KERNEL_RO),
968 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
969
970 if (ptl) {
971 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
972
973 /* Queue a deferred unlock for when this batch
974 is completed. */
975 xen_mc_callback(xen_pte_unlock, ptl);
976 }
977 }
978
979 return flush;
980 }
981
982 /* This is called just after a mm has been created, but it has not
983 been used yet. We need to make sure that its pagetable is all
984 read-only, and can be pinned. */
985 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
986 {
987 xen_mc_batch();
988
989 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
990 /* re-enable interrupts for flushing */
991 xen_mc_issue(0);
992
993 kmap_flush_unused();
994
995 xen_mc_batch();
996 }
997
998 #ifdef CONFIG_X86_64
999 {
1000 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1001
1002 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1003
1004 if (user_pgd) {
1005 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1006 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1007 PFN_DOWN(__pa(user_pgd)));
1008 }
1009 }
1010 #else /* CONFIG_X86_32 */
1011 #ifdef CONFIG_X86_PAE
1012 /* Need to make sure unshared kernel PMD is pinnable */
1013 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1014 PT_PMD);
1015 #endif
1016 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1017 #endif /* CONFIG_X86_64 */
1018 xen_mc_issue(0);
1019 }
1020
1021 static void xen_pgd_pin(struct mm_struct *mm)
1022 {
1023 __xen_pgd_pin(mm, mm->pgd);
1024 }
1025
1026 /*
1027 * On save, we need to pin all pagetables to make sure they get their
1028 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1029 * them (unpinned pgds are not currently in use, probably because the
1030 * process is under construction or destruction).
1031 *
1032 * Expected to be called in stop_machine() ("equivalent to taking
1033 * every spinlock in the system"), so the locking doesn't really
1034 * matter all that much.
1035 */
1036 void xen_mm_pin_all(void)
1037 {
1038 struct page *page;
1039
1040 spin_lock(&pgd_lock);
1041
1042 list_for_each_entry(page, &pgd_list, lru) {
1043 if (!PagePinned(page)) {
1044 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1045 SetPageSavePinned(page);
1046 }
1047 }
1048
1049 spin_unlock(&pgd_lock);
1050 }
1051
1052 /*
1053 * The init_mm pagetable is really pinned as soon as its created, but
1054 * that's before we have page structures to store the bits. So do all
1055 * the book-keeping now.
1056 */
1057 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1058 enum pt_level level)
1059 {
1060 SetPagePinned(page);
1061 return 0;
1062 }
1063
1064 static void __init xen_mark_init_mm_pinned(void)
1065 {
1066 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1067 }
1068
1069 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1070 enum pt_level level)
1071 {
1072 unsigned pgfl = TestClearPagePinned(page);
1073
1074 if (pgfl && !PageHighMem(page)) {
1075 void *pt = lowmem_page_address(page);
1076 unsigned long pfn = page_to_pfn(page);
1077 spinlock_t *ptl = NULL;
1078 struct multicall_space mcs;
1079
1080 /*
1081 * Do the converse to pin_page. If we're using split
1082 * pte locks, we must be holding the lock for while
1083 * the pte page is unpinned but still RO to prevent
1084 * concurrent updates from seeing it in this
1085 * partially-pinned state.
1086 */
1087 if (level == PT_PTE) {
1088 ptl = xen_pte_lock(page, mm);
1089
1090 if (ptl)
1091 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1092 }
1093
1094 mcs = __xen_mc_entry(0);
1095
1096 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1097 pfn_pte(pfn, PAGE_KERNEL),
1098 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1099
1100 if (ptl) {
1101 /* unlock when batch completed */
1102 xen_mc_callback(xen_pte_unlock, ptl);
1103 }
1104 }
1105
1106 return 0; /* never need to flush on unpin */
1107 }
1108
1109 /* Release a pagetables pages back as normal RW */
1110 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1111 {
1112 xen_mc_batch();
1113
1114 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1115
1116 #ifdef CONFIG_X86_64
1117 {
1118 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1119
1120 if (user_pgd) {
1121 xen_do_pin(MMUEXT_UNPIN_TABLE,
1122 PFN_DOWN(__pa(user_pgd)));
1123 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1124 }
1125 }
1126 #endif
1127
1128 #ifdef CONFIG_X86_PAE
1129 /* Need to make sure unshared kernel PMD is unpinned */
1130 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1131 PT_PMD);
1132 #endif
1133
1134 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1135
1136 xen_mc_issue(0);
1137 }
1138
1139 static void xen_pgd_unpin(struct mm_struct *mm)
1140 {
1141 __xen_pgd_unpin(mm, mm->pgd);
1142 }
1143
1144 /*
1145 * On resume, undo any pinning done at save, so that the rest of the
1146 * kernel doesn't see any unexpected pinned pagetables.
1147 */
1148 void xen_mm_unpin_all(void)
1149 {
1150 struct page *page;
1151
1152 spin_lock(&pgd_lock);
1153
1154 list_for_each_entry(page, &pgd_list, lru) {
1155 if (PageSavePinned(page)) {
1156 BUG_ON(!PagePinned(page));
1157 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1158 ClearPageSavePinned(page);
1159 }
1160 }
1161
1162 spin_unlock(&pgd_lock);
1163 }
1164
1165 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1166 {
1167 spin_lock(&next->page_table_lock);
1168 xen_pgd_pin(next);
1169 spin_unlock(&next->page_table_lock);
1170 }
1171
1172 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1173 {
1174 spin_lock(&mm->page_table_lock);
1175 xen_pgd_pin(mm);
1176 spin_unlock(&mm->page_table_lock);
1177 }
1178
1179
1180 #ifdef CONFIG_SMP
1181 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1182 we need to repoint it somewhere else before we can unpin it. */
1183 static void drop_other_mm_ref(void *info)
1184 {
1185 struct mm_struct *mm = info;
1186 struct mm_struct *active_mm;
1187
1188 active_mm = percpu_read(cpu_tlbstate.active_mm);
1189
1190 if (active_mm == mm)
1191 leave_mm(smp_processor_id());
1192
1193 /* If this cpu still has a stale cr3 reference, then make sure
1194 it has been flushed. */
1195 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1196 load_cr3(swapper_pg_dir);
1197 }
1198
1199 static void xen_drop_mm_ref(struct mm_struct *mm)
1200 {
1201 cpumask_var_t mask;
1202 unsigned cpu;
1203
1204 if (current->active_mm == mm) {
1205 if (current->mm == mm)
1206 load_cr3(swapper_pg_dir);
1207 else
1208 leave_mm(smp_processor_id());
1209 }
1210
1211 /* Get the "official" set of cpus referring to our pagetable. */
1212 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1213 for_each_online_cpu(cpu) {
1214 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1215 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1216 continue;
1217 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1218 }
1219 return;
1220 }
1221 cpumask_copy(mask, mm_cpumask(mm));
1222
1223 /* It's possible that a vcpu may have a stale reference to our
1224 cr3, because its in lazy mode, and it hasn't yet flushed
1225 its set of pending hypercalls yet. In this case, we can
1226 look at its actual current cr3 value, and force it to flush
1227 if needed. */
1228 for_each_online_cpu(cpu) {
1229 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1230 cpumask_set_cpu(cpu, mask);
1231 }
1232
1233 if (!cpumask_empty(mask))
1234 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1235 free_cpumask_var(mask);
1236 }
1237 #else
1238 static void xen_drop_mm_ref(struct mm_struct *mm)
1239 {
1240 if (current->active_mm == mm)
1241 load_cr3(swapper_pg_dir);
1242 }
1243 #endif
1244
1245 /*
1246 * While a process runs, Xen pins its pagetables, which means that the
1247 * hypervisor forces it to be read-only, and it controls all updates
1248 * to it. This means that all pagetable updates have to go via the
1249 * hypervisor, which is moderately expensive.
1250 *
1251 * Since we're pulling the pagetable down, we switch to use init_mm,
1252 * unpin old process pagetable and mark it all read-write, which
1253 * allows further operations on it to be simple memory accesses.
1254 *
1255 * The only subtle point is that another CPU may be still using the
1256 * pagetable because of lazy tlb flushing. This means we need need to
1257 * switch all CPUs off this pagetable before we can unpin it.
1258 */
1259 void xen_exit_mmap(struct mm_struct *mm)
1260 {
1261 get_cpu(); /* make sure we don't move around */
1262 xen_drop_mm_ref(mm);
1263 put_cpu();
1264
1265 spin_lock(&mm->page_table_lock);
1266
1267 /* pgd may not be pinned in the error exit path of execve */
1268 if (xen_page_pinned(mm->pgd))
1269 xen_pgd_unpin(mm);
1270
1271 spin_unlock(&mm->page_table_lock);
1272 }
1273
1274 static __init void xen_pagetable_setup_start(pgd_t *base)
1275 {
1276 }
1277
1278 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1279 {
1280 /* reserve the range used */
1281 native_pagetable_reserve(start, end);
1282
1283 /* set as RW the rest */
1284 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1285 PFN_PHYS(pgt_buf_top));
1286 while (end < PFN_PHYS(pgt_buf_top)) {
1287 make_lowmem_page_readwrite(__va(end));
1288 end += PAGE_SIZE;
1289 }
1290 }
1291
1292 static void xen_post_allocator_init(void);
1293
1294 static __init void xen_pagetable_setup_done(pgd_t *base)
1295 {
1296 xen_setup_shared_info();
1297 xen_post_allocator_init();
1298 }
1299
1300 static void xen_write_cr2(unsigned long cr2)
1301 {
1302 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1303 }
1304
1305 static unsigned long xen_read_cr2(void)
1306 {
1307 return percpu_read(xen_vcpu)->arch.cr2;
1308 }
1309
1310 unsigned long xen_read_cr2_direct(void)
1311 {
1312 return percpu_read(xen_vcpu_info.arch.cr2);
1313 }
1314
1315 static void xen_flush_tlb(void)
1316 {
1317 struct mmuext_op *op;
1318 struct multicall_space mcs;
1319
1320 preempt_disable();
1321
1322 mcs = xen_mc_entry(sizeof(*op));
1323
1324 op = mcs.args;
1325 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1326 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1327
1328 xen_mc_issue(PARAVIRT_LAZY_MMU);
1329
1330 preempt_enable();
1331 }
1332
1333 static void xen_flush_tlb_single(unsigned long addr)
1334 {
1335 struct mmuext_op *op;
1336 struct multicall_space mcs;
1337
1338 preempt_disable();
1339
1340 mcs = xen_mc_entry(sizeof(*op));
1341 op = mcs.args;
1342 op->cmd = MMUEXT_INVLPG_LOCAL;
1343 op->arg1.linear_addr = addr & PAGE_MASK;
1344 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1345
1346 xen_mc_issue(PARAVIRT_LAZY_MMU);
1347
1348 preempt_enable();
1349 }
1350
1351 static void xen_flush_tlb_others(const struct cpumask *cpus,
1352 struct mm_struct *mm, unsigned long va)
1353 {
1354 struct {
1355 struct mmuext_op op;
1356 DECLARE_BITMAP(mask, NR_CPUS);
1357 } *args;
1358 struct multicall_space mcs;
1359
1360 if (cpumask_empty(cpus))
1361 return; /* nothing to do */
1362
1363 mcs = xen_mc_entry(sizeof(*args));
1364 args = mcs.args;
1365 args->op.arg2.vcpumask = to_cpumask(args->mask);
1366
1367 /* Remove us, and any offline CPUS. */
1368 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1369 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1370
1371 if (va == TLB_FLUSH_ALL) {
1372 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1373 } else {
1374 args->op.cmd = MMUEXT_INVLPG_MULTI;
1375 args->op.arg1.linear_addr = va;
1376 }
1377
1378 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1379
1380 xen_mc_issue(PARAVIRT_LAZY_MMU);
1381 }
1382
1383 static unsigned long xen_read_cr3(void)
1384 {
1385 return percpu_read(xen_cr3);
1386 }
1387
1388 static void set_current_cr3(void *v)
1389 {
1390 percpu_write(xen_current_cr3, (unsigned long)v);
1391 }
1392
1393 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1394 {
1395 struct mmuext_op *op;
1396 struct multicall_space mcs;
1397 unsigned long mfn;
1398
1399 if (cr3)
1400 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1401 else
1402 mfn = 0;
1403
1404 WARN_ON(mfn == 0 && kernel);
1405
1406 mcs = __xen_mc_entry(sizeof(*op));
1407
1408 op = mcs.args;
1409 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1410 op->arg1.mfn = mfn;
1411
1412 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1413
1414 if (kernel) {
1415 percpu_write(xen_cr3, cr3);
1416
1417 /* Update xen_current_cr3 once the batch has actually
1418 been submitted. */
1419 xen_mc_callback(set_current_cr3, (void *)cr3);
1420 }
1421 }
1422
1423 static void xen_write_cr3(unsigned long cr3)
1424 {
1425 BUG_ON(preemptible());
1426
1427 xen_mc_batch(); /* disables interrupts */
1428
1429 /* Update while interrupts are disabled, so its atomic with
1430 respect to ipis */
1431 percpu_write(xen_cr3, cr3);
1432
1433 __xen_write_cr3(true, cr3);
1434
1435 #ifdef CONFIG_X86_64
1436 {
1437 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1438 if (user_pgd)
1439 __xen_write_cr3(false, __pa(user_pgd));
1440 else
1441 __xen_write_cr3(false, 0);
1442 }
1443 #endif
1444
1445 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1446 }
1447
1448 static int xen_pgd_alloc(struct mm_struct *mm)
1449 {
1450 pgd_t *pgd = mm->pgd;
1451 int ret = 0;
1452
1453 BUG_ON(PagePinned(virt_to_page(pgd)));
1454
1455 #ifdef CONFIG_X86_64
1456 {
1457 struct page *page = virt_to_page(pgd);
1458 pgd_t *user_pgd;
1459
1460 BUG_ON(page->private != 0);
1461
1462 ret = -ENOMEM;
1463
1464 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1465 page->private = (unsigned long)user_pgd;
1466
1467 if (user_pgd != NULL) {
1468 user_pgd[pgd_index(VSYSCALL_START)] =
1469 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1470 ret = 0;
1471 }
1472
1473 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1474 }
1475 #endif
1476
1477 return ret;
1478 }
1479
1480 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1481 {
1482 #ifdef CONFIG_X86_64
1483 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1484
1485 if (user_pgd)
1486 free_page((unsigned long)user_pgd);
1487 #endif
1488 }
1489
1490 #ifdef CONFIG_X86_32
1491 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1492 {
1493 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1494 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1495 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1496 pte_val_ma(pte));
1497
1498 return pte;
1499 }
1500 #else /* CONFIG_X86_64 */
1501 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1502 {
1503 unsigned long pfn = pte_pfn(pte);
1504
1505 /*
1506 * If the new pfn is within the range of the newly allocated
1507 * kernel pagetable, and it isn't being mapped into an
1508 * early_ioremap fixmap slot as a freshly allocated page, make sure
1509 * it is RO.
1510 */
1511 if (((!is_early_ioremap_ptep(ptep) &&
1512 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1513 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1514 pte = pte_wrprotect(pte);
1515
1516 return pte;
1517 }
1518 #endif /* CONFIG_X86_64 */
1519
1520 /* Init-time set_pte while constructing initial pagetables, which
1521 doesn't allow RO pagetable pages to be remapped RW */
1522 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1523 {
1524 pte = mask_rw_pte(ptep, pte);
1525
1526 xen_set_pte(ptep, pte);
1527 }
1528
1529 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1530 {
1531 struct mmuext_op op;
1532 op.cmd = cmd;
1533 op.arg1.mfn = pfn_to_mfn(pfn);
1534 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1535 BUG();
1536 }
1537
1538 /* Early in boot, while setting up the initial pagetable, assume
1539 everything is pinned. */
1540 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1541 {
1542 #ifdef CONFIG_FLATMEM
1543 BUG_ON(mem_map); /* should only be used early */
1544 #endif
1545 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1546 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1547 }
1548
1549 /* Used for pmd and pud */
1550 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1551 {
1552 #ifdef CONFIG_FLATMEM
1553 BUG_ON(mem_map); /* should only be used early */
1554 #endif
1555 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1556 }
1557
1558 /* Early release_pte assumes that all pts are pinned, since there's
1559 only init_mm and anything attached to that is pinned. */
1560 static __init void xen_release_pte_init(unsigned long pfn)
1561 {
1562 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1563 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1564 }
1565
1566 static __init void xen_release_pmd_init(unsigned long pfn)
1567 {
1568 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1569 }
1570
1571 /* This needs to make sure the new pte page is pinned iff its being
1572 attached to a pinned pagetable. */
1573 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1574 {
1575 struct page *page = pfn_to_page(pfn);
1576
1577 if (PagePinned(virt_to_page(mm->pgd))) {
1578 SetPagePinned(page);
1579
1580 if (!PageHighMem(page)) {
1581 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1582 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1583 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1584 } else {
1585 /* make sure there are no stray mappings of
1586 this page */
1587 kmap_flush_unused();
1588 }
1589 }
1590 }
1591
1592 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1593 {
1594 xen_alloc_ptpage(mm, pfn, PT_PTE);
1595 }
1596
1597 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1598 {
1599 xen_alloc_ptpage(mm, pfn, PT_PMD);
1600 }
1601
1602 /* This should never happen until we're OK to use struct page */
1603 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1604 {
1605 struct page *page = pfn_to_page(pfn);
1606
1607 if (PagePinned(page)) {
1608 if (!PageHighMem(page)) {
1609 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1610 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1611 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1612 }
1613 ClearPagePinned(page);
1614 }
1615 }
1616
1617 static void xen_release_pte(unsigned long pfn)
1618 {
1619 xen_release_ptpage(pfn, PT_PTE);
1620 }
1621
1622 static void xen_release_pmd(unsigned long pfn)
1623 {
1624 xen_release_ptpage(pfn, PT_PMD);
1625 }
1626
1627 #if PAGETABLE_LEVELS == 4
1628 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1629 {
1630 xen_alloc_ptpage(mm, pfn, PT_PUD);
1631 }
1632
1633 static void xen_release_pud(unsigned long pfn)
1634 {
1635 xen_release_ptpage(pfn, PT_PUD);
1636 }
1637 #endif
1638
1639 void __init xen_reserve_top(void)
1640 {
1641 #ifdef CONFIG_X86_32
1642 unsigned long top = HYPERVISOR_VIRT_START;
1643 struct xen_platform_parameters pp;
1644
1645 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1646 top = pp.virt_start;
1647
1648 reserve_top_address(-top);
1649 #endif /* CONFIG_X86_32 */
1650 }
1651
1652 /*
1653 * Like __va(), but returns address in the kernel mapping (which is
1654 * all we have until the physical memory mapping has been set up.
1655 */
1656 static void *__ka(phys_addr_t paddr)
1657 {
1658 #ifdef CONFIG_X86_64
1659 return (void *)(paddr + __START_KERNEL_map);
1660 #else
1661 return __va(paddr);
1662 #endif
1663 }
1664
1665 /* Convert a machine address to physical address */
1666 static unsigned long m2p(phys_addr_t maddr)
1667 {
1668 phys_addr_t paddr;
1669
1670 maddr &= PTE_PFN_MASK;
1671 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1672
1673 return paddr;
1674 }
1675
1676 /* Convert a machine address to kernel virtual */
1677 static void *m2v(phys_addr_t maddr)
1678 {
1679 return __ka(m2p(maddr));
1680 }
1681
1682 /* Set the page permissions on an identity-mapped pages */
1683 static void set_page_prot(void *addr, pgprot_t prot)
1684 {
1685 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1686 pte_t pte = pfn_pte(pfn, prot);
1687
1688 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1689 BUG();
1690 }
1691
1692 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1693 {
1694 unsigned pmdidx, pteidx;
1695 unsigned ident_pte;
1696 unsigned long pfn;
1697
1698 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1699 PAGE_SIZE);
1700
1701 ident_pte = 0;
1702 pfn = 0;
1703 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1704 pte_t *pte_page;
1705
1706 /* Reuse or allocate a page of ptes */
1707 if (pmd_present(pmd[pmdidx]))
1708 pte_page = m2v(pmd[pmdidx].pmd);
1709 else {
1710 /* Check for free pte pages */
1711 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1712 break;
1713
1714 pte_page = &level1_ident_pgt[ident_pte];
1715 ident_pte += PTRS_PER_PTE;
1716
1717 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1718 }
1719
1720 /* Install mappings */
1721 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1722 pte_t pte;
1723
1724 if (!pte_none(pte_page[pteidx]))
1725 continue;
1726
1727 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1728 pte_page[pteidx] = pte;
1729 }
1730 }
1731
1732 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1733 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1734
1735 set_page_prot(pmd, PAGE_KERNEL_RO);
1736 }
1737
1738 void __init xen_setup_machphys_mapping(void)
1739 {
1740 struct xen_machphys_mapping mapping;
1741 unsigned long machine_to_phys_nr_ents;
1742
1743 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1744 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1745 machine_to_phys_nr_ents = mapping.max_mfn + 1;
1746 } else {
1747 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1748 }
1749 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1750 }
1751
1752 #ifdef CONFIG_X86_64
1753 static void convert_pfn_mfn(void *v)
1754 {
1755 pte_t *pte = v;
1756 int i;
1757
1758 /* All levels are converted the same way, so just treat them
1759 as ptes. */
1760 for (i = 0; i < PTRS_PER_PTE; i++)
1761 pte[i] = xen_make_pte(pte[i].pte);
1762 }
1763
1764 /*
1765 * Set up the initial kernel pagetable.
1766 *
1767 * We can construct this by grafting the Xen provided pagetable into
1768 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1769 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1770 * means that only the kernel has a physical mapping to start with -
1771 * but that's enough to get __va working. We need to fill in the rest
1772 * of the physical mapping once some sort of allocator has been set
1773 * up.
1774 */
1775 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1776 unsigned long max_pfn)
1777 {
1778 pud_t *l3;
1779 pmd_t *l2;
1780
1781 /* max_pfn_mapped is the last pfn mapped in the initial memory
1782 * mappings. Considering that on Xen after the kernel mappings we
1783 * have the mappings of some pages that don't exist in pfn space, we
1784 * set max_pfn_mapped to the last real pfn mapped. */
1785 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1786
1787 /* Zap identity mapping */
1788 init_level4_pgt[0] = __pgd(0);
1789
1790 /* Pre-constructed entries are in pfn, so convert to mfn */
1791 convert_pfn_mfn(init_level4_pgt);
1792 convert_pfn_mfn(level3_ident_pgt);
1793 convert_pfn_mfn(level3_kernel_pgt);
1794
1795 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1796 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1797
1798 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1799 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1800
1801 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1802 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1803 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1804
1805 /* Set up identity map */
1806 xen_map_identity_early(level2_ident_pgt, max_pfn);
1807
1808 /* Make pagetable pieces RO */
1809 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1810 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1811 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1812 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1813 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1814 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1815
1816 /* Pin down new L4 */
1817 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1818 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1819
1820 /* Unpin Xen-provided one */
1821 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1822
1823 /* Switch over */
1824 pgd = init_level4_pgt;
1825
1826 /*
1827 * At this stage there can be no user pgd, and no page
1828 * structure to attach it to, so make sure we just set kernel
1829 * pgd.
1830 */
1831 xen_mc_batch();
1832 __xen_write_cr3(true, __pa(pgd));
1833 xen_mc_issue(PARAVIRT_LAZY_CPU);
1834
1835 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1836 __pa(xen_start_info->pt_base +
1837 xen_start_info->nr_pt_frames * PAGE_SIZE),
1838 "XEN PAGETABLES");
1839
1840 return pgd;
1841 }
1842 #else /* !CONFIG_X86_64 */
1843 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1844 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1845
1846 static __init void xen_write_cr3_init(unsigned long cr3)
1847 {
1848 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1849
1850 BUG_ON(read_cr3() != __pa(initial_page_table));
1851 BUG_ON(cr3 != __pa(swapper_pg_dir));
1852
1853 /*
1854 * We are switching to swapper_pg_dir for the first time (from
1855 * initial_page_table) and therefore need to mark that page
1856 * read-only and then pin it.
1857 *
1858 * Xen disallows sharing of kernel PMDs for PAE
1859 * guests. Therefore we must copy the kernel PMD from
1860 * initial_page_table into a new kernel PMD to be used in
1861 * swapper_pg_dir.
1862 */
1863 swapper_kernel_pmd =
1864 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1865 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1866 sizeof(pmd_t) * PTRS_PER_PMD);
1867 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1868 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1869 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1870
1871 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1872 xen_write_cr3(cr3);
1873 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1874
1875 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1876 PFN_DOWN(__pa(initial_page_table)));
1877 set_page_prot(initial_page_table, PAGE_KERNEL);
1878 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1879
1880 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1881 }
1882
1883 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1884 unsigned long max_pfn)
1885 {
1886 pmd_t *kernel_pmd;
1887
1888 initial_kernel_pmd =
1889 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1890
1891 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1892
1893 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1894 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1895
1896 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1897
1898 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1899 initial_page_table[KERNEL_PGD_BOUNDARY] =
1900 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1901
1902 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1903 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1904 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1905
1906 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1907
1908 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1909 PFN_DOWN(__pa(initial_page_table)));
1910 xen_write_cr3(__pa(initial_page_table));
1911
1912 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1913 __pa(xen_start_info->pt_base +
1914 xen_start_info->nr_pt_frames * PAGE_SIZE),
1915 "XEN PAGETABLES");
1916
1917 return initial_page_table;
1918 }
1919 #endif /* CONFIG_X86_64 */
1920
1921 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1922
1923 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1924 {
1925 pte_t pte;
1926
1927 phys >>= PAGE_SHIFT;
1928
1929 switch (idx) {
1930 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1931 #ifdef CONFIG_X86_F00F_BUG
1932 case FIX_F00F_IDT:
1933 #endif
1934 #ifdef CONFIG_X86_32
1935 case FIX_WP_TEST:
1936 case FIX_VDSO:
1937 # ifdef CONFIG_HIGHMEM
1938 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1939 # endif
1940 #else
1941 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1942 #endif
1943 case FIX_TEXT_POKE0:
1944 case FIX_TEXT_POKE1:
1945 /* All local page mappings */
1946 pte = pfn_pte(phys, prot);
1947 break;
1948
1949 #ifdef CONFIG_X86_LOCAL_APIC
1950 case FIX_APIC_BASE: /* maps dummy local APIC */
1951 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1952 break;
1953 #endif
1954
1955 #ifdef CONFIG_X86_IO_APIC
1956 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1957 /*
1958 * We just don't map the IO APIC - all access is via
1959 * hypercalls. Keep the address in the pte for reference.
1960 */
1961 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1962 break;
1963 #endif
1964
1965 case FIX_PARAVIRT_BOOTMAP:
1966 /* This is an MFN, but it isn't an IO mapping from the
1967 IO domain */
1968 pte = mfn_pte(phys, prot);
1969 break;
1970
1971 default:
1972 /* By default, set_fixmap is used for hardware mappings */
1973 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1974 break;
1975 }
1976
1977 __native_set_fixmap(idx, pte);
1978
1979 #ifdef CONFIG_X86_64
1980 /* Replicate changes to map the vsyscall page into the user
1981 pagetable vsyscall mapping. */
1982 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1983 unsigned long vaddr = __fix_to_virt(idx);
1984 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1985 }
1986 #endif
1987 }
1988
1989 __init void xen_ident_map_ISA(void)
1990 {
1991 unsigned long pa;
1992
1993 /*
1994 * If we're dom0, then linear map the ISA machine addresses into
1995 * the kernel's address space.
1996 */
1997 if (!xen_initial_domain())
1998 return;
1999
2000 xen_raw_printk("Xen: setup ISA identity maps\n");
2001
2002 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
2003 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
2004
2005 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
2006 BUG();
2007 }
2008
2009 xen_flush_tlb();
2010 }
2011
2012 static __init void xen_post_allocator_init(void)
2013 {
2014 #ifdef CONFIG_XEN_DEBUG
2015 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
2016 #endif
2017 pv_mmu_ops.set_pte = xen_set_pte;
2018 pv_mmu_ops.set_pmd = xen_set_pmd;
2019 pv_mmu_ops.set_pud = xen_set_pud;
2020 #if PAGETABLE_LEVELS == 4
2021 pv_mmu_ops.set_pgd = xen_set_pgd;
2022 #endif
2023
2024 /* This will work as long as patching hasn't happened yet
2025 (which it hasn't) */
2026 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2027 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2028 pv_mmu_ops.release_pte = xen_release_pte;
2029 pv_mmu_ops.release_pmd = xen_release_pmd;
2030 #if PAGETABLE_LEVELS == 4
2031 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2032 pv_mmu_ops.release_pud = xen_release_pud;
2033 #endif
2034
2035 #ifdef CONFIG_X86_64
2036 SetPagePinned(virt_to_page(level3_user_vsyscall));
2037 #endif
2038 xen_mark_init_mm_pinned();
2039 }
2040
2041 static void xen_leave_lazy_mmu(void)
2042 {
2043 preempt_disable();
2044 xen_mc_flush();
2045 paravirt_leave_lazy_mmu();
2046 preempt_enable();
2047 }
2048
2049 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
2050 .read_cr2 = xen_read_cr2,
2051 .write_cr2 = xen_write_cr2,
2052
2053 .read_cr3 = xen_read_cr3,
2054 #ifdef CONFIG_X86_32
2055 .write_cr3 = xen_write_cr3_init,
2056 #else
2057 .write_cr3 = xen_write_cr3,
2058 #endif
2059
2060 .flush_tlb_user = xen_flush_tlb,
2061 .flush_tlb_kernel = xen_flush_tlb,
2062 .flush_tlb_single = xen_flush_tlb_single,
2063 .flush_tlb_others = xen_flush_tlb_others,
2064
2065 .pte_update = paravirt_nop,
2066 .pte_update_defer = paravirt_nop,
2067
2068 .pgd_alloc = xen_pgd_alloc,
2069 .pgd_free = xen_pgd_free,
2070
2071 .alloc_pte = xen_alloc_pte_init,
2072 .release_pte = xen_release_pte_init,
2073 .alloc_pmd = xen_alloc_pmd_init,
2074 .release_pmd = xen_release_pmd_init,
2075
2076 .set_pte = xen_set_pte_init,
2077 .set_pte_at = xen_set_pte_at,
2078 .set_pmd = xen_set_pmd_hyper,
2079
2080 .ptep_modify_prot_start = __ptep_modify_prot_start,
2081 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2082
2083 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2084 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2085
2086 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2087 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2088
2089 #ifdef CONFIG_X86_PAE
2090 .set_pte_atomic = xen_set_pte_atomic,
2091 .pte_clear = xen_pte_clear,
2092 .pmd_clear = xen_pmd_clear,
2093 #endif /* CONFIG_X86_PAE */
2094 .set_pud = xen_set_pud_hyper,
2095
2096 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2097 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2098
2099 #if PAGETABLE_LEVELS == 4
2100 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2101 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2102 .set_pgd = xen_set_pgd_hyper,
2103
2104 .alloc_pud = xen_alloc_pmd_init,
2105 .release_pud = xen_release_pmd_init,
2106 #endif /* PAGETABLE_LEVELS == 4 */
2107
2108 .activate_mm = xen_activate_mm,
2109 .dup_mmap = xen_dup_mmap,
2110 .exit_mmap = xen_exit_mmap,
2111
2112 .lazy_mode = {
2113 .enter = paravirt_enter_lazy_mmu,
2114 .leave = xen_leave_lazy_mmu,
2115 },
2116
2117 .set_fixmap = xen_set_fixmap,
2118 };
2119
2120 void __init xen_init_mmu_ops(void)
2121 {
2122 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2123 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2124 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2125 pv_mmu_ops = xen_mmu_ops;
2126
2127 memset(dummy_mapping, 0xff, PAGE_SIZE);
2128 }
2129
2130 /* Protected by xen_reservation_lock. */
2131 #define MAX_CONTIG_ORDER 9 /* 2MB */
2132 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2133
2134 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2135 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2136 unsigned long *in_frames,
2137 unsigned long *out_frames)
2138 {
2139 int i;
2140 struct multicall_space mcs;
2141
2142 xen_mc_batch();
2143 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2144 mcs = __xen_mc_entry(0);
2145
2146 if (in_frames)
2147 in_frames[i] = virt_to_mfn(vaddr);
2148
2149 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2150 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2151
2152 if (out_frames)
2153 out_frames[i] = virt_to_pfn(vaddr);
2154 }
2155 xen_mc_issue(0);
2156 }
2157
2158 /*
2159 * Update the pfn-to-mfn mappings for a virtual address range, either to
2160 * point to an array of mfns, or contiguously from a single starting
2161 * mfn.
2162 */
2163 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2164 unsigned long *mfns,
2165 unsigned long first_mfn)
2166 {
2167 unsigned i, limit;
2168 unsigned long mfn;
2169
2170 xen_mc_batch();
2171
2172 limit = 1u << order;
2173 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2174 struct multicall_space mcs;
2175 unsigned flags;
2176
2177 mcs = __xen_mc_entry(0);
2178 if (mfns)
2179 mfn = mfns[i];
2180 else
2181 mfn = first_mfn + i;
2182
2183 if (i < (limit - 1))
2184 flags = 0;
2185 else {
2186 if (order == 0)
2187 flags = UVMF_INVLPG | UVMF_ALL;
2188 else
2189 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2190 }
2191
2192 MULTI_update_va_mapping(mcs.mc, vaddr,
2193 mfn_pte(mfn, PAGE_KERNEL), flags);
2194
2195 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2196 }
2197
2198 xen_mc_issue(0);
2199 }
2200
2201 /*
2202 * Perform the hypercall to exchange a region of our pfns to point to
2203 * memory with the required contiguous alignment. Takes the pfns as
2204 * input, and populates mfns as output.
2205 *
2206 * Returns a success code indicating whether the hypervisor was able to
2207 * satisfy the request or not.
2208 */
2209 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2210 unsigned long *pfns_in,
2211 unsigned long extents_out,
2212 unsigned int order_out,
2213 unsigned long *mfns_out,
2214 unsigned int address_bits)
2215 {
2216 long rc;
2217 int success;
2218
2219 struct xen_memory_exchange exchange = {
2220 .in = {
2221 .nr_extents = extents_in,
2222 .extent_order = order_in,
2223 .extent_start = pfns_in,
2224 .domid = DOMID_SELF
2225 },
2226 .out = {
2227 .nr_extents = extents_out,
2228 .extent_order = order_out,
2229 .extent_start = mfns_out,
2230 .address_bits = address_bits,
2231 .domid = DOMID_SELF
2232 }
2233 };
2234
2235 BUG_ON(extents_in << order_in != extents_out << order_out);
2236
2237 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2238 success = (exchange.nr_exchanged == extents_in);
2239
2240 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2241 BUG_ON(success && (rc != 0));
2242
2243 return success;
2244 }
2245
2246 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2247 unsigned int address_bits)
2248 {
2249 unsigned long *in_frames = discontig_frames, out_frame;
2250 unsigned long flags;
2251 int success;
2252
2253 /*
2254 * Currently an auto-translated guest will not perform I/O, nor will
2255 * it require PAE page directories below 4GB. Therefore any calls to
2256 * this function are redundant and can be ignored.
2257 */
2258
2259 if (xen_feature(XENFEAT_auto_translated_physmap))
2260 return 0;
2261
2262 if (unlikely(order > MAX_CONTIG_ORDER))
2263 return -ENOMEM;
2264
2265 memset((void *) vstart, 0, PAGE_SIZE << order);
2266
2267 spin_lock_irqsave(&xen_reservation_lock, flags);
2268
2269 /* 1. Zap current PTEs, remembering MFNs. */
2270 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2271
2272 /* 2. Get a new contiguous memory extent. */
2273 out_frame = virt_to_pfn(vstart);
2274 success = xen_exchange_memory(1UL << order, 0, in_frames,
2275 1, order, &out_frame,
2276 address_bits);
2277
2278 /* 3. Map the new extent in place of old pages. */
2279 if (success)
2280 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2281 else
2282 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2283
2284 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2285
2286 return success ? 0 : -ENOMEM;
2287 }
2288 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2289
2290 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2291 {
2292 unsigned long *out_frames = discontig_frames, in_frame;
2293 unsigned long flags;
2294 int success;
2295
2296 if (xen_feature(XENFEAT_auto_translated_physmap))
2297 return;
2298
2299 if (unlikely(order > MAX_CONTIG_ORDER))
2300 return;
2301
2302 memset((void *) vstart, 0, PAGE_SIZE << order);
2303
2304 spin_lock_irqsave(&xen_reservation_lock, flags);
2305
2306 /* 1. Find start MFN of contiguous extent. */
2307 in_frame = virt_to_mfn(vstart);
2308
2309 /* 2. Zap current PTEs. */
2310 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2311
2312 /* 3. Do the exchange for non-contiguous MFNs. */
2313 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2314 0, out_frames, 0);
2315
2316 /* 4. Map new pages in place of old pages. */
2317 if (success)
2318 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2319 else
2320 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2321
2322 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2323 }
2324 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2325
2326 #ifdef CONFIG_XEN_PVHVM
2327 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2328 {
2329 struct xen_hvm_pagetable_dying a;
2330 int rc;
2331
2332 a.domid = DOMID_SELF;
2333 a.gpa = __pa(mm->pgd);
2334 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2335 WARN_ON_ONCE(rc < 0);
2336 }
2337
2338 static int is_pagetable_dying_supported(void)
2339 {
2340 struct xen_hvm_pagetable_dying a;
2341 int rc = 0;
2342
2343 a.domid = DOMID_SELF;
2344 a.gpa = 0x00;
2345 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2346 if (rc < 0) {
2347 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2348 return 0;
2349 }
2350 return 1;
2351 }
2352
2353 void __init xen_hvm_init_mmu_ops(void)
2354 {
2355 if (is_pagetable_dying_supported())
2356 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2357 }
2358 #endif
2359
2360 #define REMAP_BATCH_SIZE 16
2361
2362 struct remap_data {
2363 unsigned long mfn;
2364 pgprot_t prot;
2365 struct mmu_update *mmu_update;
2366 };
2367
2368 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2369 unsigned long addr, void *data)
2370 {
2371 struct remap_data *rmd = data;
2372 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2373
2374 rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2375 rmd->mmu_update->val = pte_val_ma(pte);
2376 rmd->mmu_update++;
2377
2378 return 0;
2379 }
2380
2381 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2382 unsigned long addr,
2383 unsigned long mfn, int nr,
2384 pgprot_t prot, unsigned domid)
2385 {
2386 struct remap_data rmd;
2387 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2388 int batch;
2389 unsigned long range;
2390 int err = 0;
2391
2392 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2393
2394 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2395 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2396
2397 rmd.mfn = mfn;
2398 rmd.prot = prot;
2399
2400 while (nr) {
2401 batch = min(REMAP_BATCH_SIZE, nr);
2402 range = (unsigned long)batch << PAGE_SHIFT;
2403
2404 rmd.mmu_update = mmu_update;
2405 err = apply_to_page_range(vma->vm_mm, addr, range,
2406 remap_area_mfn_pte_fn, &rmd);
2407 if (err)
2408 goto out;
2409
2410 err = -EFAULT;
2411 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2412 goto out;
2413
2414 nr -= batch;
2415 addr += range;
2416 }
2417
2418 err = 0;
2419 out:
2420
2421 flush_tlb_all();
2422
2423 return err;
2424 }
2425 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2426
2427 #ifdef CONFIG_XEN_DEBUG_FS
2428
2429 static int p2m_dump_open(struct inode *inode, struct file *filp)
2430 {
2431 return single_open(filp, p2m_dump_show, NULL);
2432 }
2433
2434 static const struct file_operations p2m_dump_fops = {
2435 .open = p2m_dump_open,
2436 .read = seq_read,
2437 .llseek = seq_lseek,
2438 .release = single_release,
2439 };
2440
2441 static struct dentry *d_mmu_debug;
2442
2443 static int __init xen_mmu_debugfs(void)
2444 {
2445 struct dentry *d_xen = xen_init_debugfs();
2446
2447 if (d_xen == NULL)
2448 return -ENOMEM;
2449
2450 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2451
2452 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2453
2454 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2455 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2456 &mmu_stats.pgd_update_pinned);
2457 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2458 &mmu_stats.pgd_update_pinned);
2459
2460 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2461 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2462 &mmu_stats.pud_update_pinned);
2463 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2464 &mmu_stats.pud_update_pinned);
2465
2466 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2467 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2468 &mmu_stats.pmd_update_pinned);
2469 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2470 &mmu_stats.pmd_update_pinned);
2471
2472 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2473 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2474 // &mmu_stats.pte_update_pinned);
2475 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2476 &mmu_stats.pte_update_pinned);
2477
2478 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2479 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2480 &mmu_stats.mmu_update_extended);
2481 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2482 mmu_stats.mmu_update_histo, 20);
2483
2484 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2485 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2486 &mmu_stats.set_pte_at_batched);
2487 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2488 &mmu_stats.set_pte_at_current);
2489 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2490 &mmu_stats.set_pte_at_kernel);
2491
2492 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2493 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2494 &mmu_stats.prot_commit_batched);
2495
2496 debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
2497 return 0;
2498 }
2499 fs_initcall(xen_mmu_debugfs);
2500
2501 #endif /* CONFIG_XEN_DEBUG_FS */
This page took 0.145074 seconds and 6 git commands to generate.