Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/fixmap.h>
54 #include <asm/mmu_context.h>
55 #include <asm/setup.h>
56 #include <asm/paravirt.h>
57 #include <asm/e820.h>
58 #include <asm/linkage.h>
59 #include <asm/page.h>
60 #include <asm/init.h>
61 #include <asm/pat.h>
62
63 #include <asm/xen/hypercall.h>
64 #include <asm/xen/hypervisor.h>
65
66 #include <xen/xen.h>
67 #include <xen/page.h>
68 #include <xen/interface/xen.h>
69 #include <xen/interface/hvm/hvm_op.h>
70 #include <xen/interface/version.h>
71 #include <xen/interface/memory.h>
72 #include <xen/hvc-console.h>
73
74 #include "multicalls.h"
75 #include "mmu.h"
76 #include "debugfs.h"
77
78 #define MMU_UPDATE_HISTO 30
79
80 /*
81 * Protects atomic reservation decrease/increase against concurrent increases.
82 * Also protects non-atomic updates of current_pages and balloon lists.
83 */
84 DEFINE_SPINLOCK(xen_reservation_lock);
85
86 #ifdef CONFIG_XEN_DEBUG_FS
87
88 static struct {
89 u32 pgd_update;
90 u32 pgd_update_pinned;
91 u32 pgd_update_batched;
92
93 u32 pud_update;
94 u32 pud_update_pinned;
95 u32 pud_update_batched;
96
97 u32 pmd_update;
98 u32 pmd_update_pinned;
99 u32 pmd_update_batched;
100
101 u32 pte_update;
102 u32 pte_update_pinned;
103 u32 pte_update_batched;
104
105 u32 mmu_update;
106 u32 mmu_update_extended;
107 u32 mmu_update_histo[MMU_UPDATE_HISTO];
108
109 u32 prot_commit;
110 u32 prot_commit_batched;
111
112 u32 set_pte_at;
113 u32 set_pte_at_batched;
114 u32 set_pte_at_pinned;
115 u32 set_pte_at_current;
116 u32 set_pte_at_kernel;
117 } mmu_stats;
118
119 static u8 zero_stats;
120
121 static inline void check_zero(void)
122 {
123 if (unlikely(zero_stats)) {
124 memset(&mmu_stats, 0, sizeof(mmu_stats));
125 zero_stats = 0;
126 }
127 }
128
129 #define ADD_STATS(elem, val) \
130 do { check_zero(); mmu_stats.elem += (val); } while(0)
131
132 #else /* !CONFIG_XEN_DEBUG_FS */
133
134 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
135
136 #endif /* CONFIG_XEN_DEBUG_FS */
137
138
139 /*
140 * Identity map, in addition to plain kernel map. This needs to be
141 * large enough to allocate page table pages to allocate the rest.
142 * Each page can map 2MB.
143 */
144 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
145 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
146
147 #ifdef CONFIG_X86_64
148 /* l3 pud for userspace vsyscall mapping */
149 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
150 #endif /* CONFIG_X86_64 */
151
152 /*
153 * Note about cr3 (pagetable base) values:
154 *
155 * xen_cr3 contains the current logical cr3 value; it contains the
156 * last set cr3. This may not be the current effective cr3, because
157 * its update may be being lazily deferred. However, a vcpu looking
158 * at its own cr3 can use this value knowing that it everything will
159 * be self-consistent.
160 *
161 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
162 * hypercall to set the vcpu cr3 is complete (so it may be a little
163 * out of date, but it will never be set early). If one vcpu is
164 * looking at another vcpu's cr3 value, it should use this variable.
165 */
166 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
167 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
168
169
170 /*
171 * Just beyond the highest usermode address. STACK_TOP_MAX has a
172 * redzone above it, so round it up to a PGD boundary.
173 */
174 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
175
176 unsigned long arbitrary_virt_to_mfn(void *vaddr)
177 {
178 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
179
180 return PFN_DOWN(maddr.maddr);
181 }
182
183 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
184 {
185 unsigned long address = (unsigned long)vaddr;
186 unsigned int level;
187 pte_t *pte;
188 unsigned offset;
189
190 /*
191 * if the PFN is in the linear mapped vaddr range, we can just use
192 * the (quick) virt_to_machine() p2m lookup
193 */
194 if (virt_addr_valid(vaddr))
195 return virt_to_machine(vaddr);
196
197 /* otherwise we have to do a (slower) full page-table walk */
198
199 pte = lookup_address(address, &level);
200 BUG_ON(pte == NULL);
201 offset = address & ~PAGE_MASK;
202 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
203 }
204 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
205
206 void make_lowmem_page_readonly(void *vaddr)
207 {
208 pte_t *pte, ptev;
209 unsigned long address = (unsigned long)vaddr;
210 unsigned int level;
211
212 pte = lookup_address(address, &level);
213 if (pte == NULL)
214 return; /* vaddr missing */
215
216 ptev = pte_wrprotect(*pte);
217
218 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
219 BUG();
220 }
221
222 void make_lowmem_page_readwrite(void *vaddr)
223 {
224 pte_t *pte, ptev;
225 unsigned long address = (unsigned long)vaddr;
226 unsigned int level;
227
228 pte = lookup_address(address, &level);
229 if (pte == NULL)
230 return; /* vaddr missing */
231
232 ptev = pte_mkwrite(*pte);
233
234 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
235 BUG();
236 }
237
238
239 static bool xen_page_pinned(void *ptr)
240 {
241 struct page *page = virt_to_page(ptr);
242
243 return PagePinned(page);
244 }
245
246 static bool xen_iomap_pte(pte_t pte)
247 {
248 return pte_flags(pte) & _PAGE_IOMAP;
249 }
250
251 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
252 {
253 struct multicall_space mcs;
254 struct mmu_update *u;
255
256 mcs = xen_mc_entry(sizeof(*u));
257 u = mcs.args;
258
259 /* ptep might be kmapped when using 32-bit HIGHPTE */
260 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
261 u->val = pte_val_ma(pteval);
262
263 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
264
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
266 }
267 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
268
269 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
270 {
271 xen_set_domain_pte(ptep, pteval, DOMID_IO);
272 }
273
274 static void xen_extend_mmu_update(const struct mmu_update *update)
275 {
276 struct multicall_space mcs;
277 struct mmu_update *u;
278
279 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
280
281 if (mcs.mc != NULL) {
282 ADD_STATS(mmu_update_extended, 1);
283 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
284
285 mcs.mc->args[1]++;
286
287 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
288 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
289 else
290 ADD_STATS(mmu_update_histo[0], 1);
291 } else {
292 ADD_STATS(mmu_update, 1);
293 mcs = __xen_mc_entry(sizeof(*u));
294 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
295 ADD_STATS(mmu_update_histo[1], 1);
296 }
297
298 u = mcs.args;
299 *u = *update;
300 }
301
302 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
303 {
304 struct mmu_update u;
305
306 preempt_disable();
307
308 xen_mc_batch();
309
310 /* ptr may be ioremapped for 64-bit pagetable setup */
311 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
312 u.val = pmd_val_ma(val);
313 xen_extend_mmu_update(&u);
314
315 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
316
317 xen_mc_issue(PARAVIRT_LAZY_MMU);
318
319 preempt_enable();
320 }
321
322 void xen_set_pmd(pmd_t *ptr, pmd_t val)
323 {
324 ADD_STATS(pmd_update, 1);
325
326 /* If page is not pinned, we can just update the entry
327 directly */
328 if (!xen_page_pinned(ptr)) {
329 *ptr = val;
330 return;
331 }
332
333 ADD_STATS(pmd_update_pinned, 1);
334
335 xen_set_pmd_hyper(ptr, val);
336 }
337
338 /*
339 * Associate a virtual page frame with a given physical page frame
340 * and protection flags for that frame.
341 */
342 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
343 {
344 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
345 }
346
347 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
348 pte_t *ptep, pte_t pteval)
349 {
350 if (xen_iomap_pte(pteval)) {
351 xen_set_iomap_pte(ptep, pteval);
352 goto out;
353 }
354
355 ADD_STATS(set_pte_at, 1);
356 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
357 ADD_STATS(set_pte_at_current, mm == current->mm);
358 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
359
360 if (mm == current->mm || mm == &init_mm) {
361 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
362 struct multicall_space mcs;
363 mcs = xen_mc_entry(0);
364
365 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
366 ADD_STATS(set_pte_at_batched, 1);
367 xen_mc_issue(PARAVIRT_LAZY_MMU);
368 goto out;
369 } else
370 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
371 goto out;
372 }
373 xen_set_pte(ptep, pteval);
374
375 out: return;
376 }
377
378 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
379 unsigned long addr, pte_t *ptep)
380 {
381 /* Just return the pte as-is. We preserve the bits on commit */
382 return *ptep;
383 }
384
385 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
386 pte_t *ptep, pte_t pte)
387 {
388 struct mmu_update u;
389
390 xen_mc_batch();
391
392 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
393 u.val = pte_val_ma(pte);
394 xen_extend_mmu_update(&u);
395
396 ADD_STATS(prot_commit, 1);
397 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
398
399 xen_mc_issue(PARAVIRT_LAZY_MMU);
400 }
401
402 /* Assume pteval_t is equivalent to all the other *val_t types. */
403 static pteval_t pte_mfn_to_pfn(pteval_t val)
404 {
405 if (val & _PAGE_PRESENT) {
406 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
407 pteval_t flags = val & PTE_FLAGS_MASK;
408 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
409 }
410
411 return val;
412 }
413
414 static pteval_t pte_pfn_to_mfn(pteval_t val)
415 {
416 if (val & _PAGE_PRESENT) {
417 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
418 pteval_t flags = val & PTE_FLAGS_MASK;
419 unsigned long mfn;
420
421 if (!xen_feature(XENFEAT_auto_translated_physmap))
422 mfn = get_phys_to_machine(pfn);
423 else
424 mfn = pfn;
425 /*
426 * If there's no mfn for the pfn, then just create an
427 * empty non-present pte. Unfortunately this loses
428 * information about the original pfn, so
429 * pte_mfn_to_pfn is asymmetric.
430 */
431 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
432 mfn = 0;
433 flags = 0;
434 } else {
435 /*
436 * Paramount to do this test _after_ the
437 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
438 * IDENTITY_FRAME_BIT resolves to true.
439 */
440 mfn &= ~FOREIGN_FRAME_BIT;
441 if (mfn & IDENTITY_FRAME_BIT) {
442 mfn &= ~IDENTITY_FRAME_BIT;
443 flags |= _PAGE_IOMAP;
444 }
445 }
446 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
447 }
448
449 return val;
450 }
451
452 static pteval_t iomap_pte(pteval_t val)
453 {
454 if (val & _PAGE_PRESENT) {
455 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
456 pteval_t flags = val & PTE_FLAGS_MASK;
457
458 /* We assume the pte frame number is a MFN, so
459 just use it as-is. */
460 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
461 }
462
463 return val;
464 }
465
466 pteval_t xen_pte_val(pte_t pte)
467 {
468 pteval_t pteval = pte.pte;
469
470 /* If this is a WC pte, convert back from Xen WC to Linux WC */
471 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
472 WARN_ON(!pat_enabled);
473 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
474 }
475
476 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
477 return pteval;
478
479 return pte_mfn_to_pfn(pteval);
480 }
481 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
482
483 pgdval_t xen_pgd_val(pgd_t pgd)
484 {
485 return pte_mfn_to_pfn(pgd.pgd);
486 }
487 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
488
489 /*
490 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
491 * are reserved for now, to correspond to the Intel-reserved PAT
492 * types.
493 *
494 * We expect Linux's PAT set as follows:
495 *
496 * Idx PTE flags Linux Xen Default
497 * 0 WB WB WB
498 * 1 PWT WC WT WT
499 * 2 PCD UC- UC- UC-
500 * 3 PCD PWT UC UC UC
501 * 4 PAT WB WC WB
502 * 5 PAT PWT WC WP WT
503 * 6 PAT PCD UC- UC UC-
504 * 7 PAT PCD PWT UC UC UC
505 */
506
507 void xen_set_pat(u64 pat)
508 {
509 /* We expect Linux to use a PAT setting of
510 * UC UC- WC WB (ignoring the PAT flag) */
511 WARN_ON(pat != 0x0007010600070106ull);
512 }
513
514 pte_t xen_make_pte(pteval_t pte)
515 {
516 phys_addr_t addr = (pte & PTE_PFN_MASK);
517
518 /* If Linux is trying to set a WC pte, then map to the Xen WC.
519 * If _PAGE_PAT is set, then it probably means it is really
520 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
521 * things work out OK...
522 *
523 * (We should never see kernel mappings with _PAGE_PSE set,
524 * but we could see hugetlbfs mappings, I think.).
525 */
526 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
527 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
528 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
529 }
530
531 /*
532 * Unprivileged domains are allowed to do IOMAPpings for
533 * PCI passthrough, but not map ISA space. The ISA
534 * mappings are just dummy local mappings to keep other
535 * parts of the kernel happy.
536 */
537 if (unlikely(pte & _PAGE_IOMAP) &&
538 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
539 pte = iomap_pte(pte);
540 } else {
541 pte &= ~_PAGE_IOMAP;
542 pte = pte_pfn_to_mfn(pte);
543 }
544
545 return native_make_pte(pte);
546 }
547 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
548
549 #ifdef CONFIG_XEN_DEBUG
550 pte_t xen_make_pte_debug(pteval_t pte)
551 {
552 phys_addr_t addr = (pte & PTE_PFN_MASK);
553 phys_addr_t other_addr;
554 bool io_page = false;
555 pte_t _pte;
556
557 if (pte & _PAGE_IOMAP)
558 io_page = true;
559
560 _pte = xen_make_pte(pte);
561
562 if (!addr)
563 return _pte;
564
565 if (io_page &&
566 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
567 other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
568 WARN_ONCE(addr != other_addr,
569 "0x%lx is using VM_IO, but it is 0x%lx!\n",
570 (unsigned long)addr, (unsigned long)other_addr);
571 } else {
572 pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
573 other_addr = (_pte.pte & PTE_PFN_MASK);
574 WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set),
575 "0x%lx is missing VM_IO (and wasn't fixed)!\n",
576 (unsigned long)addr);
577 }
578
579 return _pte;
580 }
581 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
582 #endif
583
584 pgd_t xen_make_pgd(pgdval_t pgd)
585 {
586 pgd = pte_pfn_to_mfn(pgd);
587 return native_make_pgd(pgd);
588 }
589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
590
591 pmdval_t xen_pmd_val(pmd_t pmd)
592 {
593 return pte_mfn_to_pfn(pmd.pmd);
594 }
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
596
597 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
598 {
599 struct mmu_update u;
600
601 preempt_disable();
602
603 xen_mc_batch();
604
605 /* ptr may be ioremapped for 64-bit pagetable setup */
606 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
607 u.val = pud_val_ma(val);
608 xen_extend_mmu_update(&u);
609
610 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
611
612 xen_mc_issue(PARAVIRT_LAZY_MMU);
613
614 preempt_enable();
615 }
616
617 void xen_set_pud(pud_t *ptr, pud_t val)
618 {
619 ADD_STATS(pud_update, 1);
620
621 /* If page is not pinned, we can just update the entry
622 directly */
623 if (!xen_page_pinned(ptr)) {
624 *ptr = val;
625 return;
626 }
627
628 ADD_STATS(pud_update_pinned, 1);
629
630 xen_set_pud_hyper(ptr, val);
631 }
632
633 void xen_set_pte(pte_t *ptep, pte_t pte)
634 {
635 if (xen_iomap_pte(pte)) {
636 xen_set_iomap_pte(ptep, pte);
637 return;
638 }
639
640 ADD_STATS(pte_update, 1);
641 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
642 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
643
644 #ifdef CONFIG_X86_PAE
645 ptep->pte_high = pte.pte_high;
646 smp_wmb();
647 ptep->pte_low = pte.pte_low;
648 #else
649 *ptep = pte;
650 #endif
651 }
652
653 #ifdef CONFIG_X86_PAE
654 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
655 {
656 if (xen_iomap_pte(pte)) {
657 xen_set_iomap_pte(ptep, pte);
658 return;
659 }
660
661 set_64bit((u64 *)ptep, native_pte_val(pte));
662 }
663
664 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
665 {
666 ptep->pte_low = 0;
667 smp_wmb(); /* make sure low gets written first */
668 ptep->pte_high = 0;
669 }
670
671 void xen_pmd_clear(pmd_t *pmdp)
672 {
673 set_pmd(pmdp, __pmd(0));
674 }
675 #endif /* CONFIG_X86_PAE */
676
677 pmd_t xen_make_pmd(pmdval_t pmd)
678 {
679 pmd = pte_pfn_to_mfn(pmd);
680 return native_make_pmd(pmd);
681 }
682 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
683
684 #if PAGETABLE_LEVELS == 4
685 pudval_t xen_pud_val(pud_t pud)
686 {
687 return pte_mfn_to_pfn(pud.pud);
688 }
689 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
690
691 pud_t xen_make_pud(pudval_t pud)
692 {
693 pud = pte_pfn_to_mfn(pud);
694
695 return native_make_pud(pud);
696 }
697 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
698
699 pgd_t *xen_get_user_pgd(pgd_t *pgd)
700 {
701 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
702 unsigned offset = pgd - pgd_page;
703 pgd_t *user_ptr = NULL;
704
705 if (offset < pgd_index(USER_LIMIT)) {
706 struct page *page = virt_to_page(pgd_page);
707 user_ptr = (pgd_t *)page->private;
708 if (user_ptr)
709 user_ptr += offset;
710 }
711
712 return user_ptr;
713 }
714
715 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
716 {
717 struct mmu_update u;
718
719 u.ptr = virt_to_machine(ptr).maddr;
720 u.val = pgd_val_ma(val);
721 xen_extend_mmu_update(&u);
722 }
723
724 /*
725 * Raw hypercall-based set_pgd, intended for in early boot before
726 * there's a page structure. This implies:
727 * 1. The only existing pagetable is the kernel's
728 * 2. It is always pinned
729 * 3. It has no user pagetable attached to it
730 */
731 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
732 {
733 preempt_disable();
734
735 xen_mc_batch();
736
737 __xen_set_pgd_hyper(ptr, val);
738
739 xen_mc_issue(PARAVIRT_LAZY_MMU);
740
741 preempt_enable();
742 }
743
744 void xen_set_pgd(pgd_t *ptr, pgd_t val)
745 {
746 pgd_t *user_ptr = xen_get_user_pgd(ptr);
747
748 ADD_STATS(pgd_update, 1);
749
750 /* If page is not pinned, we can just update the entry
751 directly */
752 if (!xen_page_pinned(ptr)) {
753 *ptr = val;
754 if (user_ptr) {
755 WARN_ON(xen_page_pinned(user_ptr));
756 *user_ptr = val;
757 }
758 return;
759 }
760
761 ADD_STATS(pgd_update_pinned, 1);
762 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
763
764 /* If it's pinned, then we can at least batch the kernel and
765 user updates together. */
766 xen_mc_batch();
767
768 __xen_set_pgd_hyper(ptr, val);
769 if (user_ptr)
770 __xen_set_pgd_hyper(user_ptr, val);
771
772 xen_mc_issue(PARAVIRT_LAZY_MMU);
773 }
774 #endif /* PAGETABLE_LEVELS == 4 */
775
776 /*
777 * (Yet another) pagetable walker. This one is intended for pinning a
778 * pagetable. This means that it walks a pagetable and calls the
779 * callback function on each page it finds making up the page table,
780 * at every level. It walks the entire pagetable, but it only bothers
781 * pinning pte pages which are below limit. In the normal case this
782 * will be STACK_TOP_MAX, but at boot we need to pin up to
783 * FIXADDR_TOP.
784 *
785 * For 32-bit the important bit is that we don't pin beyond there,
786 * because then we start getting into Xen's ptes.
787 *
788 * For 64-bit, we must skip the Xen hole in the middle of the address
789 * space, just after the big x86-64 virtual hole.
790 */
791 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
792 int (*func)(struct mm_struct *mm, struct page *,
793 enum pt_level),
794 unsigned long limit)
795 {
796 int flush = 0;
797 unsigned hole_low, hole_high;
798 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
799 unsigned pgdidx, pudidx, pmdidx;
800
801 /* The limit is the last byte to be touched */
802 limit--;
803 BUG_ON(limit >= FIXADDR_TOP);
804
805 if (xen_feature(XENFEAT_auto_translated_physmap))
806 return 0;
807
808 /*
809 * 64-bit has a great big hole in the middle of the address
810 * space, which contains the Xen mappings. On 32-bit these
811 * will end up making a zero-sized hole and so is a no-op.
812 */
813 hole_low = pgd_index(USER_LIMIT);
814 hole_high = pgd_index(PAGE_OFFSET);
815
816 pgdidx_limit = pgd_index(limit);
817 #if PTRS_PER_PUD > 1
818 pudidx_limit = pud_index(limit);
819 #else
820 pudidx_limit = 0;
821 #endif
822 #if PTRS_PER_PMD > 1
823 pmdidx_limit = pmd_index(limit);
824 #else
825 pmdidx_limit = 0;
826 #endif
827
828 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
829 pud_t *pud;
830
831 if (pgdidx >= hole_low && pgdidx < hole_high)
832 continue;
833
834 if (!pgd_val(pgd[pgdidx]))
835 continue;
836
837 pud = pud_offset(&pgd[pgdidx], 0);
838
839 if (PTRS_PER_PUD > 1) /* not folded */
840 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
841
842 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
843 pmd_t *pmd;
844
845 if (pgdidx == pgdidx_limit &&
846 pudidx > pudidx_limit)
847 goto out;
848
849 if (pud_none(pud[pudidx]))
850 continue;
851
852 pmd = pmd_offset(&pud[pudidx], 0);
853
854 if (PTRS_PER_PMD > 1) /* not folded */
855 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
856
857 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
858 struct page *pte;
859
860 if (pgdidx == pgdidx_limit &&
861 pudidx == pudidx_limit &&
862 pmdidx > pmdidx_limit)
863 goto out;
864
865 if (pmd_none(pmd[pmdidx]))
866 continue;
867
868 pte = pmd_page(pmd[pmdidx]);
869 flush |= (*func)(mm, pte, PT_PTE);
870 }
871 }
872 }
873
874 out:
875 /* Do the top level last, so that the callbacks can use it as
876 a cue to do final things like tlb flushes. */
877 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
878
879 return flush;
880 }
881
882 static int xen_pgd_walk(struct mm_struct *mm,
883 int (*func)(struct mm_struct *mm, struct page *,
884 enum pt_level),
885 unsigned long limit)
886 {
887 return __xen_pgd_walk(mm, mm->pgd, func, limit);
888 }
889
890 /* If we're using split pte locks, then take the page's lock and
891 return a pointer to it. Otherwise return NULL. */
892 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
893 {
894 spinlock_t *ptl = NULL;
895
896 #if USE_SPLIT_PTLOCKS
897 ptl = __pte_lockptr(page);
898 spin_lock_nest_lock(ptl, &mm->page_table_lock);
899 #endif
900
901 return ptl;
902 }
903
904 static void xen_pte_unlock(void *v)
905 {
906 spinlock_t *ptl = v;
907 spin_unlock(ptl);
908 }
909
910 static void xen_do_pin(unsigned level, unsigned long pfn)
911 {
912 struct mmuext_op *op;
913 struct multicall_space mcs;
914
915 mcs = __xen_mc_entry(sizeof(*op));
916 op = mcs.args;
917 op->cmd = level;
918 op->arg1.mfn = pfn_to_mfn(pfn);
919 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
920 }
921
922 static int xen_pin_page(struct mm_struct *mm, struct page *page,
923 enum pt_level level)
924 {
925 unsigned pgfl = TestSetPagePinned(page);
926 int flush;
927
928 if (pgfl)
929 flush = 0; /* already pinned */
930 else if (PageHighMem(page))
931 /* kmaps need flushing if we found an unpinned
932 highpage */
933 flush = 1;
934 else {
935 void *pt = lowmem_page_address(page);
936 unsigned long pfn = page_to_pfn(page);
937 struct multicall_space mcs = __xen_mc_entry(0);
938 spinlock_t *ptl;
939
940 flush = 0;
941
942 /*
943 * We need to hold the pagetable lock between the time
944 * we make the pagetable RO and when we actually pin
945 * it. If we don't, then other users may come in and
946 * attempt to update the pagetable by writing it,
947 * which will fail because the memory is RO but not
948 * pinned, so Xen won't do the trap'n'emulate.
949 *
950 * If we're using split pte locks, we can't hold the
951 * entire pagetable's worth of locks during the
952 * traverse, because we may wrap the preempt count (8
953 * bits). The solution is to mark RO and pin each PTE
954 * page while holding the lock. This means the number
955 * of locks we end up holding is never more than a
956 * batch size (~32 entries, at present).
957 *
958 * If we're not using split pte locks, we needn't pin
959 * the PTE pages independently, because we're
960 * protected by the overall pagetable lock.
961 */
962 ptl = NULL;
963 if (level == PT_PTE)
964 ptl = xen_pte_lock(page, mm);
965
966 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
967 pfn_pte(pfn, PAGE_KERNEL_RO),
968 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
969
970 if (ptl) {
971 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
972
973 /* Queue a deferred unlock for when this batch
974 is completed. */
975 xen_mc_callback(xen_pte_unlock, ptl);
976 }
977 }
978
979 return flush;
980 }
981
982 /* This is called just after a mm has been created, but it has not
983 been used yet. We need to make sure that its pagetable is all
984 read-only, and can be pinned. */
985 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
986 {
987 xen_mc_batch();
988
989 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
990 /* re-enable interrupts for flushing */
991 xen_mc_issue(0);
992
993 kmap_flush_unused();
994
995 xen_mc_batch();
996 }
997
998 #ifdef CONFIG_X86_64
999 {
1000 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1001
1002 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1003
1004 if (user_pgd) {
1005 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1006 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1007 PFN_DOWN(__pa(user_pgd)));
1008 }
1009 }
1010 #else /* CONFIG_X86_32 */
1011 #ifdef CONFIG_X86_PAE
1012 /* Need to make sure unshared kernel PMD is pinnable */
1013 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1014 PT_PMD);
1015 #endif
1016 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1017 #endif /* CONFIG_X86_64 */
1018 xen_mc_issue(0);
1019 }
1020
1021 static void xen_pgd_pin(struct mm_struct *mm)
1022 {
1023 __xen_pgd_pin(mm, mm->pgd);
1024 }
1025
1026 /*
1027 * On save, we need to pin all pagetables to make sure they get their
1028 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1029 * them (unpinned pgds are not currently in use, probably because the
1030 * process is under construction or destruction).
1031 *
1032 * Expected to be called in stop_machine() ("equivalent to taking
1033 * every spinlock in the system"), so the locking doesn't really
1034 * matter all that much.
1035 */
1036 void xen_mm_pin_all(void)
1037 {
1038 struct page *page;
1039
1040 spin_lock(&pgd_lock);
1041
1042 list_for_each_entry(page, &pgd_list, lru) {
1043 if (!PagePinned(page)) {
1044 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1045 SetPageSavePinned(page);
1046 }
1047 }
1048
1049 spin_unlock(&pgd_lock);
1050 }
1051
1052 /*
1053 * The init_mm pagetable is really pinned as soon as its created, but
1054 * that's before we have page structures to store the bits. So do all
1055 * the book-keeping now.
1056 */
1057 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1058 enum pt_level level)
1059 {
1060 SetPagePinned(page);
1061 return 0;
1062 }
1063
1064 static void __init xen_mark_init_mm_pinned(void)
1065 {
1066 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1067 }
1068
1069 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1070 enum pt_level level)
1071 {
1072 unsigned pgfl = TestClearPagePinned(page);
1073
1074 if (pgfl && !PageHighMem(page)) {
1075 void *pt = lowmem_page_address(page);
1076 unsigned long pfn = page_to_pfn(page);
1077 spinlock_t *ptl = NULL;
1078 struct multicall_space mcs;
1079
1080 /*
1081 * Do the converse to pin_page. If we're using split
1082 * pte locks, we must be holding the lock for while
1083 * the pte page is unpinned but still RO to prevent
1084 * concurrent updates from seeing it in this
1085 * partially-pinned state.
1086 */
1087 if (level == PT_PTE) {
1088 ptl = xen_pte_lock(page, mm);
1089
1090 if (ptl)
1091 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1092 }
1093
1094 mcs = __xen_mc_entry(0);
1095
1096 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1097 pfn_pte(pfn, PAGE_KERNEL),
1098 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1099
1100 if (ptl) {
1101 /* unlock when batch completed */
1102 xen_mc_callback(xen_pte_unlock, ptl);
1103 }
1104 }
1105
1106 return 0; /* never need to flush on unpin */
1107 }
1108
1109 /* Release a pagetables pages back as normal RW */
1110 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1111 {
1112 xen_mc_batch();
1113
1114 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1115
1116 #ifdef CONFIG_X86_64
1117 {
1118 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1119
1120 if (user_pgd) {
1121 xen_do_pin(MMUEXT_UNPIN_TABLE,
1122 PFN_DOWN(__pa(user_pgd)));
1123 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1124 }
1125 }
1126 #endif
1127
1128 #ifdef CONFIG_X86_PAE
1129 /* Need to make sure unshared kernel PMD is unpinned */
1130 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1131 PT_PMD);
1132 #endif
1133
1134 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1135
1136 xen_mc_issue(0);
1137 }
1138
1139 static void xen_pgd_unpin(struct mm_struct *mm)
1140 {
1141 __xen_pgd_unpin(mm, mm->pgd);
1142 }
1143
1144 /*
1145 * On resume, undo any pinning done at save, so that the rest of the
1146 * kernel doesn't see any unexpected pinned pagetables.
1147 */
1148 void xen_mm_unpin_all(void)
1149 {
1150 struct page *page;
1151
1152 spin_lock(&pgd_lock);
1153
1154 list_for_each_entry(page, &pgd_list, lru) {
1155 if (PageSavePinned(page)) {
1156 BUG_ON(!PagePinned(page));
1157 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1158 ClearPageSavePinned(page);
1159 }
1160 }
1161
1162 spin_unlock(&pgd_lock);
1163 }
1164
1165 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1166 {
1167 spin_lock(&next->page_table_lock);
1168 xen_pgd_pin(next);
1169 spin_unlock(&next->page_table_lock);
1170 }
1171
1172 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1173 {
1174 spin_lock(&mm->page_table_lock);
1175 xen_pgd_pin(mm);
1176 spin_unlock(&mm->page_table_lock);
1177 }
1178
1179
1180 #ifdef CONFIG_SMP
1181 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1182 we need to repoint it somewhere else before we can unpin it. */
1183 static void drop_other_mm_ref(void *info)
1184 {
1185 struct mm_struct *mm = info;
1186 struct mm_struct *active_mm;
1187
1188 active_mm = percpu_read(cpu_tlbstate.active_mm);
1189
1190 if (active_mm == mm)
1191 leave_mm(smp_processor_id());
1192
1193 /* If this cpu still has a stale cr3 reference, then make sure
1194 it has been flushed. */
1195 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1196 load_cr3(swapper_pg_dir);
1197 }
1198
1199 static void xen_drop_mm_ref(struct mm_struct *mm)
1200 {
1201 cpumask_var_t mask;
1202 unsigned cpu;
1203
1204 if (current->active_mm == mm) {
1205 if (current->mm == mm)
1206 load_cr3(swapper_pg_dir);
1207 else
1208 leave_mm(smp_processor_id());
1209 }
1210
1211 /* Get the "official" set of cpus referring to our pagetable. */
1212 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1213 for_each_online_cpu(cpu) {
1214 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1215 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1216 continue;
1217 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1218 }
1219 return;
1220 }
1221 cpumask_copy(mask, mm_cpumask(mm));
1222
1223 /* It's possible that a vcpu may have a stale reference to our
1224 cr3, because its in lazy mode, and it hasn't yet flushed
1225 its set of pending hypercalls yet. In this case, we can
1226 look at its actual current cr3 value, and force it to flush
1227 if needed. */
1228 for_each_online_cpu(cpu) {
1229 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1230 cpumask_set_cpu(cpu, mask);
1231 }
1232
1233 if (!cpumask_empty(mask))
1234 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1235 free_cpumask_var(mask);
1236 }
1237 #else
1238 static void xen_drop_mm_ref(struct mm_struct *mm)
1239 {
1240 if (current->active_mm == mm)
1241 load_cr3(swapper_pg_dir);
1242 }
1243 #endif
1244
1245 /*
1246 * While a process runs, Xen pins its pagetables, which means that the
1247 * hypervisor forces it to be read-only, and it controls all updates
1248 * to it. This means that all pagetable updates have to go via the
1249 * hypervisor, which is moderately expensive.
1250 *
1251 * Since we're pulling the pagetable down, we switch to use init_mm,
1252 * unpin old process pagetable and mark it all read-write, which
1253 * allows further operations on it to be simple memory accesses.
1254 *
1255 * The only subtle point is that another CPU may be still using the
1256 * pagetable because of lazy tlb flushing. This means we need need to
1257 * switch all CPUs off this pagetable before we can unpin it.
1258 */
1259 void xen_exit_mmap(struct mm_struct *mm)
1260 {
1261 get_cpu(); /* make sure we don't move around */
1262 xen_drop_mm_ref(mm);
1263 put_cpu();
1264
1265 spin_lock(&mm->page_table_lock);
1266
1267 /* pgd may not be pinned in the error exit path of execve */
1268 if (xen_page_pinned(mm->pgd))
1269 xen_pgd_unpin(mm);
1270
1271 spin_unlock(&mm->page_table_lock);
1272 }
1273
1274 static __init void xen_pagetable_setup_start(pgd_t *base)
1275 {
1276 }
1277
1278 static void xen_post_allocator_init(void);
1279
1280 static __init void xen_pagetable_setup_done(pgd_t *base)
1281 {
1282 xen_setup_shared_info();
1283 xen_post_allocator_init();
1284 }
1285
1286 static void xen_write_cr2(unsigned long cr2)
1287 {
1288 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1289 }
1290
1291 static unsigned long xen_read_cr2(void)
1292 {
1293 return percpu_read(xen_vcpu)->arch.cr2;
1294 }
1295
1296 unsigned long xen_read_cr2_direct(void)
1297 {
1298 return percpu_read(xen_vcpu_info.arch.cr2);
1299 }
1300
1301 static void xen_flush_tlb(void)
1302 {
1303 struct mmuext_op *op;
1304 struct multicall_space mcs;
1305
1306 preempt_disable();
1307
1308 mcs = xen_mc_entry(sizeof(*op));
1309
1310 op = mcs.args;
1311 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1312 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1313
1314 xen_mc_issue(PARAVIRT_LAZY_MMU);
1315
1316 preempt_enable();
1317 }
1318
1319 static void xen_flush_tlb_single(unsigned long addr)
1320 {
1321 struct mmuext_op *op;
1322 struct multicall_space mcs;
1323
1324 preempt_disable();
1325
1326 mcs = xen_mc_entry(sizeof(*op));
1327 op = mcs.args;
1328 op->cmd = MMUEXT_INVLPG_LOCAL;
1329 op->arg1.linear_addr = addr & PAGE_MASK;
1330 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1331
1332 xen_mc_issue(PARAVIRT_LAZY_MMU);
1333
1334 preempt_enable();
1335 }
1336
1337 static void xen_flush_tlb_others(const struct cpumask *cpus,
1338 struct mm_struct *mm, unsigned long va)
1339 {
1340 struct {
1341 struct mmuext_op op;
1342 DECLARE_BITMAP(mask, NR_CPUS);
1343 } *args;
1344 struct multicall_space mcs;
1345
1346 if (cpumask_empty(cpus))
1347 return; /* nothing to do */
1348
1349 mcs = xen_mc_entry(sizeof(*args));
1350 args = mcs.args;
1351 args->op.arg2.vcpumask = to_cpumask(args->mask);
1352
1353 /* Remove us, and any offline CPUS. */
1354 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1355 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1356
1357 if (va == TLB_FLUSH_ALL) {
1358 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1359 } else {
1360 args->op.cmd = MMUEXT_INVLPG_MULTI;
1361 args->op.arg1.linear_addr = va;
1362 }
1363
1364 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1365
1366 xen_mc_issue(PARAVIRT_LAZY_MMU);
1367 }
1368
1369 static unsigned long xen_read_cr3(void)
1370 {
1371 return percpu_read(xen_cr3);
1372 }
1373
1374 static void set_current_cr3(void *v)
1375 {
1376 percpu_write(xen_current_cr3, (unsigned long)v);
1377 }
1378
1379 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1380 {
1381 struct mmuext_op *op;
1382 struct multicall_space mcs;
1383 unsigned long mfn;
1384
1385 if (cr3)
1386 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1387 else
1388 mfn = 0;
1389
1390 WARN_ON(mfn == 0 && kernel);
1391
1392 mcs = __xen_mc_entry(sizeof(*op));
1393
1394 op = mcs.args;
1395 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1396 op->arg1.mfn = mfn;
1397
1398 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1399
1400 if (kernel) {
1401 percpu_write(xen_cr3, cr3);
1402
1403 /* Update xen_current_cr3 once the batch has actually
1404 been submitted. */
1405 xen_mc_callback(set_current_cr3, (void *)cr3);
1406 }
1407 }
1408
1409 static void xen_write_cr3(unsigned long cr3)
1410 {
1411 BUG_ON(preemptible());
1412
1413 xen_mc_batch(); /* disables interrupts */
1414
1415 /* Update while interrupts are disabled, so its atomic with
1416 respect to ipis */
1417 percpu_write(xen_cr3, cr3);
1418
1419 __xen_write_cr3(true, cr3);
1420
1421 #ifdef CONFIG_X86_64
1422 {
1423 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1424 if (user_pgd)
1425 __xen_write_cr3(false, __pa(user_pgd));
1426 else
1427 __xen_write_cr3(false, 0);
1428 }
1429 #endif
1430
1431 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1432 }
1433
1434 static int xen_pgd_alloc(struct mm_struct *mm)
1435 {
1436 pgd_t *pgd = mm->pgd;
1437 int ret = 0;
1438
1439 BUG_ON(PagePinned(virt_to_page(pgd)));
1440
1441 #ifdef CONFIG_X86_64
1442 {
1443 struct page *page = virt_to_page(pgd);
1444 pgd_t *user_pgd;
1445
1446 BUG_ON(page->private != 0);
1447
1448 ret = -ENOMEM;
1449
1450 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1451 page->private = (unsigned long)user_pgd;
1452
1453 if (user_pgd != NULL) {
1454 user_pgd[pgd_index(VSYSCALL_START)] =
1455 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1456 ret = 0;
1457 }
1458
1459 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1460 }
1461 #endif
1462
1463 return ret;
1464 }
1465
1466 #ifdef CONFIG_X86_64
1467 static __initdata u64 __last_pgt_set_rw = 0;
1468 static __initdata u64 __pgt_buf_start = 0;
1469 static __initdata u64 __pgt_buf_end = 0;
1470 static __initdata u64 __pgt_buf_top = 0;
1471 /*
1472 * As a consequence of the commit:
1473 *
1474 * commit 4b239f458c229de044d6905c2b0f9fe16ed9e01e
1475 * Author: Yinghai Lu <yinghai@kernel.org>
1476 * Date: Fri Dec 17 16:58:28 2010 -0800
1477 *
1478 * x86-64, mm: Put early page table high
1479 *
1480 * at some point init_memory_mapping is going to reach the pagetable pages
1481 * area and map those pages too (mapping them as normal memory that falls
1482 * in the range of addresses passed to init_memory_mapping as argument).
1483 * Some of those pages are already pagetable pages (they are in the range
1484 * pgt_buf_start-pgt_buf_end) therefore they are going to be mapped RO and
1485 * everything is fine.
1486 * Some of these pages are not pagetable pages yet (they fall in the range
1487 * pgt_buf_end-pgt_buf_top; for example the page at pgt_buf_end) so they
1488 * are going to be mapped RW. When these pages become pagetable pages and
1489 * are hooked into the pagetable, xen will find that the guest has already
1490 * a RW mapping of them somewhere and fail the operation.
1491 * The reason Xen requires pagetables to be RO is that the hypervisor needs
1492 * to verify that the pagetables are valid before using them. The validation
1493 * operations are called "pinning".
1494 *
1495 * In order to fix the issue we mark all the pages in the entire range
1496 * pgt_buf_start-pgt_buf_top as RO, however when the pagetable allocation
1497 * is completed only the range pgt_buf_start-pgt_buf_end is reserved by
1498 * init_memory_mapping. Hence the kernel is going to crash as soon as one
1499 * of the pages in the range pgt_buf_end-pgt_buf_top is reused (b/c those
1500 * ranges are RO).
1501 *
1502 * For this reason, 'mark_rw_past_pgt' is introduced which is called _after_
1503 * the init_memory_mapping has completed (in a perfect world we would
1504 * call this function from init_memory_mapping, but lets ignore that).
1505 *
1506 * Because we are called _after_ init_memory_mapping the pgt_buf_[start,
1507 * end,top] have all changed to new values (b/c init_memory_mapping
1508 * is called and setting up another new page-table). Hence, the first time
1509 * we enter this function, we save away the pgt_buf_start value and update
1510 * the pgt_buf_[end,top].
1511 *
1512 * When we detect that the "old" pgt_buf_start through pgt_buf_end
1513 * PFNs have been reserved (so memblock_x86_reserve_range has been called),
1514 * we immediately set out to RW the "old" pgt_buf_end through pgt_buf_top.
1515 *
1516 * And then we update those "old" pgt_buf_[end|top] with the new ones
1517 * so that we can redo this on the next pagetable.
1518 */
1519 static __init void mark_rw_past_pgt(void) {
1520
1521 if (pgt_buf_end > pgt_buf_start) {
1522 u64 addr, size;
1523
1524 /* Save it away. */
1525 if (!__pgt_buf_start) {
1526 __pgt_buf_start = pgt_buf_start;
1527 __pgt_buf_end = pgt_buf_end;
1528 __pgt_buf_top = pgt_buf_top;
1529 return;
1530 }
1531 /* If we get the range that starts at __pgt_buf_end that means
1532 * the range is reserved, and that in 'init_memory_mapping'
1533 * the 'memblock_x86_reserve_range' has been called with the
1534 * outdated __pgt_buf_start, __pgt_buf_end (the "new"
1535 * pgt_buf_[start|end|top] refer now to a new pagetable.
1536 * Note: we are called _after_ the pgt_buf_[..] have been
1537 * updated.*/
1538
1539 addr = memblock_x86_find_in_range_size(PFN_PHYS(__pgt_buf_start),
1540 &size, PAGE_SIZE);
1541
1542 /* Still not reserved, meaning 'memblock_x86_reserve_range'
1543 * hasn't been called yet. Update the _end and _top.*/
1544 if (addr == PFN_PHYS(__pgt_buf_start)) {
1545 __pgt_buf_end = pgt_buf_end;
1546 __pgt_buf_top = pgt_buf_top;
1547 return;
1548 }
1549
1550 /* OK, the area is reserved, meaning it is time for us to
1551 * set RW for the old end->top PFNs. */
1552
1553 /* ..unless we had already done this. */
1554 if (__pgt_buf_end == __last_pgt_set_rw)
1555 return;
1556
1557 addr = PFN_PHYS(__pgt_buf_end);
1558
1559 /* set as RW the rest */
1560 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n",
1561 PFN_PHYS(__pgt_buf_end), PFN_PHYS(__pgt_buf_top));
1562
1563 while (addr < PFN_PHYS(__pgt_buf_top)) {
1564 make_lowmem_page_readwrite(__va(addr));
1565 addr += PAGE_SIZE;
1566 }
1567 /* And update everything so that we are ready for the next
1568 * pagetable (the one created for regions past 4GB) */
1569 __last_pgt_set_rw = __pgt_buf_end;
1570 __pgt_buf_start = pgt_buf_start;
1571 __pgt_buf_end = pgt_buf_end;
1572 __pgt_buf_top = pgt_buf_top;
1573 }
1574 return;
1575 }
1576 #else
1577 static __init void mark_rw_past_pgt(void) { }
1578 #endif
1579 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1580 {
1581 #ifdef CONFIG_X86_64
1582 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1583
1584 if (user_pgd)
1585 free_page((unsigned long)user_pgd);
1586 #endif
1587 }
1588
1589 #ifdef CONFIG_X86_32
1590 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1591 {
1592 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1593 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1594 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1595 pte_val_ma(pte));
1596
1597 return pte;
1598 }
1599 #else /* CONFIG_X86_64 */
1600 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1601 {
1602 unsigned long pfn = pte_pfn(pte);
1603
1604 /*
1605 * A bit of optimization. We do not need to call the workaround
1606 * when xen_set_pte_init is called with a PTE with 0 as PFN.
1607 * That is b/c the pagetable at that point are just being populated
1608 * with empty values and we can save some cycles by not calling
1609 * the 'memblock' code.*/
1610 if (pfn)
1611 mark_rw_past_pgt();
1612 /*
1613 * If the new pfn is within the range of the newly allocated
1614 * kernel pagetable, and it isn't being mapped into an
1615 * early_ioremap fixmap slot as a freshly allocated page, make sure
1616 * it is RO.
1617 */
1618 if (((!is_early_ioremap_ptep(ptep) &&
1619 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1620 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1621 pte = pte_wrprotect(pte);
1622
1623 return pte;
1624 }
1625 #endif /* CONFIG_X86_64 */
1626
1627 /* Init-time set_pte while constructing initial pagetables, which
1628 doesn't allow RO pagetable pages to be remapped RW */
1629 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1630 {
1631 pte = mask_rw_pte(ptep, pte);
1632
1633 xen_set_pte(ptep, pte);
1634 }
1635
1636 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1637 {
1638 struct mmuext_op op;
1639 op.cmd = cmd;
1640 op.arg1.mfn = pfn_to_mfn(pfn);
1641 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1642 BUG();
1643 }
1644
1645 /* Early in boot, while setting up the initial pagetable, assume
1646 everything is pinned. */
1647 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1648 {
1649 #ifdef CONFIG_FLATMEM
1650 BUG_ON(mem_map); /* should only be used early */
1651 #endif
1652 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1653 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1654 }
1655
1656 /* Used for pmd and pud */
1657 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1658 {
1659 #ifdef CONFIG_FLATMEM
1660 BUG_ON(mem_map); /* should only be used early */
1661 #endif
1662 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1663 }
1664
1665 /* Early release_pte assumes that all pts are pinned, since there's
1666 only init_mm and anything attached to that is pinned. */
1667 static __init void xen_release_pte_init(unsigned long pfn)
1668 {
1669 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1670 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1671 }
1672
1673 static __init void xen_release_pmd_init(unsigned long pfn)
1674 {
1675 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1676 }
1677
1678 /* This needs to make sure the new pte page is pinned iff its being
1679 attached to a pinned pagetable. */
1680 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1681 {
1682 struct page *page = pfn_to_page(pfn);
1683
1684 if (PagePinned(virt_to_page(mm->pgd))) {
1685 SetPagePinned(page);
1686
1687 if (!PageHighMem(page)) {
1688 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1689 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1690 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1691 } else {
1692 /* make sure there are no stray mappings of
1693 this page */
1694 kmap_flush_unused();
1695 }
1696 }
1697 }
1698
1699 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1700 {
1701 xen_alloc_ptpage(mm, pfn, PT_PTE);
1702 }
1703
1704 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1705 {
1706 xen_alloc_ptpage(mm, pfn, PT_PMD);
1707 }
1708
1709 /* This should never happen until we're OK to use struct page */
1710 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1711 {
1712 struct page *page = pfn_to_page(pfn);
1713
1714 if (PagePinned(page)) {
1715 if (!PageHighMem(page)) {
1716 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1717 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1718 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1719 }
1720 ClearPagePinned(page);
1721 }
1722 }
1723
1724 static void xen_release_pte(unsigned long pfn)
1725 {
1726 xen_release_ptpage(pfn, PT_PTE);
1727 }
1728
1729 static void xen_release_pmd(unsigned long pfn)
1730 {
1731 xen_release_ptpage(pfn, PT_PMD);
1732 }
1733
1734 #if PAGETABLE_LEVELS == 4
1735 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1736 {
1737 xen_alloc_ptpage(mm, pfn, PT_PUD);
1738 }
1739
1740 static void xen_release_pud(unsigned long pfn)
1741 {
1742 xen_release_ptpage(pfn, PT_PUD);
1743 }
1744 #endif
1745
1746 void __init xen_reserve_top(void)
1747 {
1748 #ifdef CONFIG_X86_32
1749 unsigned long top = HYPERVISOR_VIRT_START;
1750 struct xen_platform_parameters pp;
1751
1752 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1753 top = pp.virt_start;
1754
1755 reserve_top_address(-top);
1756 #endif /* CONFIG_X86_32 */
1757 }
1758
1759 /*
1760 * Like __va(), but returns address in the kernel mapping (which is
1761 * all we have until the physical memory mapping has been set up.
1762 */
1763 static void *__ka(phys_addr_t paddr)
1764 {
1765 #ifdef CONFIG_X86_64
1766 return (void *)(paddr + __START_KERNEL_map);
1767 #else
1768 return __va(paddr);
1769 #endif
1770 }
1771
1772 /* Convert a machine address to physical address */
1773 static unsigned long m2p(phys_addr_t maddr)
1774 {
1775 phys_addr_t paddr;
1776
1777 maddr &= PTE_PFN_MASK;
1778 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1779
1780 return paddr;
1781 }
1782
1783 /* Convert a machine address to kernel virtual */
1784 static void *m2v(phys_addr_t maddr)
1785 {
1786 return __ka(m2p(maddr));
1787 }
1788
1789 /* Set the page permissions on an identity-mapped pages */
1790 static void set_page_prot(void *addr, pgprot_t prot)
1791 {
1792 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1793 pte_t pte = pfn_pte(pfn, prot);
1794
1795 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1796 BUG();
1797 }
1798
1799 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1800 {
1801 unsigned pmdidx, pteidx;
1802 unsigned ident_pte;
1803 unsigned long pfn;
1804
1805 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1806 PAGE_SIZE);
1807
1808 ident_pte = 0;
1809 pfn = 0;
1810 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1811 pte_t *pte_page;
1812
1813 /* Reuse or allocate a page of ptes */
1814 if (pmd_present(pmd[pmdidx]))
1815 pte_page = m2v(pmd[pmdidx].pmd);
1816 else {
1817 /* Check for free pte pages */
1818 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1819 break;
1820
1821 pte_page = &level1_ident_pgt[ident_pte];
1822 ident_pte += PTRS_PER_PTE;
1823
1824 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1825 }
1826
1827 /* Install mappings */
1828 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1829 pte_t pte;
1830
1831 if (!pte_none(pte_page[pteidx]))
1832 continue;
1833
1834 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1835 pte_page[pteidx] = pte;
1836 }
1837 }
1838
1839 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1840 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1841
1842 set_page_prot(pmd, PAGE_KERNEL_RO);
1843 }
1844
1845 void __init xen_setup_machphys_mapping(void)
1846 {
1847 struct xen_machphys_mapping mapping;
1848 unsigned long machine_to_phys_nr_ents;
1849
1850 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1851 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1852 machine_to_phys_nr_ents = mapping.max_mfn + 1;
1853 } else {
1854 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1855 }
1856 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1857 }
1858
1859 #ifdef CONFIG_X86_64
1860 static void convert_pfn_mfn(void *v)
1861 {
1862 pte_t *pte = v;
1863 int i;
1864
1865 /* All levels are converted the same way, so just treat them
1866 as ptes. */
1867 for (i = 0; i < PTRS_PER_PTE; i++)
1868 pte[i] = xen_make_pte(pte[i].pte);
1869 }
1870
1871 /*
1872 * Set up the initial kernel pagetable.
1873 *
1874 * We can construct this by grafting the Xen provided pagetable into
1875 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1876 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1877 * means that only the kernel has a physical mapping to start with -
1878 * but that's enough to get __va working. We need to fill in the rest
1879 * of the physical mapping once some sort of allocator has been set
1880 * up.
1881 */
1882 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1883 unsigned long max_pfn)
1884 {
1885 pud_t *l3;
1886 pmd_t *l2;
1887
1888 /* max_pfn_mapped is the last pfn mapped in the initial memory
1889 * mappings. Considering that on Xen after the kernel mappings we
1890 * have the mappings of some pages that don't exist in pfn space, we
1891 * set max_pfn_mapped to the last real pfn mapped. */
1892 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1893
1894 /* Zap identity mapping */
1895 init_level4_pgt[0] = __pgd(0);
1896
1897 /* Pre-constructed entries are in pfn, so convert to mfn */
1898 convert_pfn_mfn(init_level4_pgt);
1899 convert_pfn_mfn(level3_ident_pgt);
1900 convert_pfn_mfn(level3_kernel_pgt);
1901
1902 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1903 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1904
1905 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1906 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1907
1908 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1909 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1910 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1911
1912 /* Set up identity map */
1913 xen_map_identity_early(level2_ident_pgt, max_pfn);
1914
1915 /* Make pagetable pieces RO */
1916 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1917 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1918 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1919 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1920 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1921 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1922
1923 /* Pin down new L4 */
1924 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1925 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1926
1927 /* Unpin Xen-provided one */
1928 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1929
1930 /* Switch over */
1931 pgd = init_level4_pgt;
1932
1933 /*
1934 * At this stage there can be no user pgd, and no page
1935 * structure to attach it to, so make sure we just set kernel
1936 * pgd.
1937 */
1938 xen_mc_batch();
1939 __xen_write_cr3(true, __pa(pgd));
1940 xen_mc_issue(PARAVIRT_LAZY_CPU);
1941
1942 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1943 __pa(xen_start_info->pt_base +
1944 xen_start_info->nr_pt_frames * PAGE_SIZE),
1945 "XEN PAGETABLES");
1946
1947 return pgd;
1948 }
1949 #else /* !CONFIG_X86_64 */
1950 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1951 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1952
1953 static __init void xen_write_cr3_init(unsigned long cr3)
1954 {
1955 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1956
1957 BUG_ON(read_cr3() != __pa(initial_page_table));
1958 BUG_ON(cr3 != __pa(swapper_pg_dir));
1959
1960 /*
1961 * We are switching to swapper_pg_dir for the first time (from
1962 * initial_page_table) and therefore need to mark that page
1963 * read-only and then pin it.
1964 *
1965 * Xen disallows sharing of kernel PMDs for PAE
1966 * guests. Therefore we must copy the kernel PMD from
1967 * initial_page_table into a new kernel PMD to be used in
1968 * swapper_pg_dir.
1969 */
1970 swapper_kernel_pmd =
1971 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1972 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1973 sizeof(pmd_t) * PTRS_PER_PMD);
1974 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1975 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1976 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1977
1978 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1979 xen_write_cr3(cr3);
1980 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1981
1982 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1983 PFN_DOWN(__pa(initial_page_table)));
1984 set_page_prot(initial_page_table, PAGE_KERNEL);
1985 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1986
1987 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1988 }
1989
1990 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1991 unsigned long max_pfn)
1992 {
1993 pmd_t *kernel_pmd;
1994
1995 initial_kernel_pmd =
1996 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1997
1998 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1999
2000 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2001 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
2002
2003 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2004
2005 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
2006 initial_page_table[KERNEL_PGD_BOUNDARY] =
2007 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2008
2009 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2010 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2011 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2012
2013 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2014
2015 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2016 PFN_DOWN(__pa(initial_page_table)));
2017 xen_write_cr3(__pa(initial_page_table));
2018
2019 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
2020 __pa(xen_start_info->pt_base +
2021 xen_start_info->nr_pt_frames * PAGE_SIZE),
2022 "XEN PAGETABLES");
2023
2024 return initial_page_table;
2025 }
2026 #endif /* CONFIG_X86_64 */
2027
2028 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2029
2030 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2031 {
2032 pte_t pte;
2033
2034 phys >>= PAGE_SHIFT;
2035
2036 switch (idx) {
2037 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2038 #ifdef CONFIG_X86_F00F_BUG
2039 case FIX_F00F_IDT:
2040 #endif
2041 #ifdef CONFIG_X86_32
2042 case FIX_WP_TEST:
2043 case FIX_VDSO:
2044 # ifdef CONFIG_HIGHMEM
2045 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2046 # endif
2047 #else
2048 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2049 #endif
2050 case FIX_TEXT_POKE0:
2051 case FIX_TEXT_POKE1:
2052 /* All local page mappings */
2053 pte = pfn_pte(phys, prot);
2054 break;
2055
2056 #ifdef CONFIG_X86_LOCAL_APIC
2057 case FIX_APIC_BASE: /* maps dummy local APIC */
2058 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2059 break;
2060 #endif
2061
2062 #ifdef CONFIG_X86_IO_APIC
2063 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2064 /*
2065 * We just don't map the IO APIC - all access is via
2066 * hypercalls. Keep the address in the pte for reference.
2067 */
2068 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2069 break;
2070 #endif
2071
2072 case FIX_PARAVIRT_BOOTMAP:
2073 /* This is an MFN, but it isn't an IO mapping from the
2074 IO domain */
2075 pte = mfn_pte(phys, prot);
2076 break;
2077
2078 default:
2079 /* By default, set_fixmap is used for hardware mappings */
2080 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2081 break;
2082 }
2083
2084 __native_set_fixmap(idx, pte);
2085
2086 #ifdef CONFIG_X86_64
2087 /* Replicate changes to map the vsyscall page into the user
2088 pagetable vsyscall mapping. */
2089 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
2090 unsigned long vaddr = __fix_to_virt(idx);
2091 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2092 }
2093 #endif
2094 }
2095
2096 __init void xen_ident_map_ISA(void)
2097 {
2098 unsigned long pa;
2099
2100 /*
2101 * If we're dom0, then linear map the ISA machine addresses into
2102 * the kernel's address space.
2103 */
2104 if (!xen_initial_domain())
2105 return;
2106
2107 xen_raw_printk("Xen: setup ISA identity maps\n");
2108
2109 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
2110 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
2111
2112 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
2113 BUG();
2114 }
2115
2116 xen_flush_tlb();
2117 }
2118
2119 static __init void xen_post_allocator_init(void)
2120 {
2121 mark_rw_past_pgt();
2122
2123 #ifdef CONFIG_XEN_DEBUG
2124 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
2125 #endif
2126 pv_mmu_ops.set_pte = xen_set_pte;
2127 pv_mmu_ops.set_pmd = xen_set_pmd;
2128 pv_mmu_ops.set_pud = xen_set_pud;
2129 #if PAGETABLE_LEVELS == 4
2130 pv_mmu_ops.set_pgd = xen_set_pgd;
2131 #endif
2132
2133 /* This will work as long as patching hasn't happened yet
2134 (which it hasn't) */
2135 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2136 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2137 pv_mmu_ops.release_pte = xen_release_pte;
2138 pv_mmu_ops.release_pmd = xen_release_pmd;
2139 #if PAGETABLE_LEVELS == 4
2140 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2141 pv_mmu_ops.release_pud = xen_release_pud;
2142 #endif
2143
2144 #ifdef CONFIG_X86_64
2145 SetPagePinned(virt_to_page(level3_user_vsyscall));
2146 #endif
2147 xen_mark_init_mm_pinned();
2148 }
2149
2150 static void xen_leave_lazy_mmu(void)
2151 {
2152 preempt_disable();
2153 xen_mc_flush();
2154 paravirt_leave_lazy_mmu();
2155 preempt_enable();
2156 }
2157
2158 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
2159 .read_cr2 = xen_read_cr2,
2160 .write_cr2 = xen_write_cr2,
2161
2162 .read_cr3 = xen_read_cr3,
2163 #ifdef CONFIG_X86_32
2164 .write_cr3 = xen_write_cr3_init,
2165 #else
2166 .write_cr3 = xen_write_cr3,
2167 #endif
2168
2169 .flush_tlb_user = xen_flush_tlb,
2170 .flush_tlb_kernel = xen_flush_tlb,
2171 .flush_tlb_single = xen_flush_tlb_single,
2172 .flush_tlb_others = xen_flush_tlb_others,
2173
2174 .pte_update = paravirt_nop,
2175 .pte_update_defer = paravirt_nop,
2176
2177 .pgd_alloc = xen_pgd_alloc,
2178 .pgd_free = xen_pgd_free,
2179
2180 .alloc_pte = xen_alloc_pte_init,
2181 .release_pte = xen_release_pte_init,
2182 .alloc_pmd = xen_alloc_pmd_init,
2183 .release_pmd = xen_release_pmd_init,
2184
2185 .set_pte = xen_set_pte_init,
2186 .set_pte_at = xen_set_pte_at,
2187 .set_pmd = xen_set_pmd_hyper,
2188
2189 .ptep_modify_prot_start = __ptep_modify_prot_start,
2190 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2191
2192 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2193 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2194
2195 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2196 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2197
2198 #ifdef CONFIG_X86_PAE
2199 .set_pte_atomic = xen_set_pte_atomic,
2200 .pte_clear = xen_pte_clear,
2201 .pmd_clear = xen_pmd_clear,
2202 #endif /* CONFIG_X86_PAE */
2203 .set_pud = xen_set_pud_hyper,
2204
2205 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2206 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2207
2208 #if PAGETABLE_LEVELS == 4
2209 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2210 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2211 .set_pgd = xen_set_pgd_hyper,
2212
2213 .alloc_pud = xen_alloc_pmd_init,
2214 .release_pud = xen_release_pmd_init,
2215 #endif /* PAGETABLE_LEVELS == 4 */
2216
2217 .activate_mm = xen_activate_mm,
2218 .dup_mmap = xen_dup_mmap,
2219 .exit_mmap = xen_exit_mmap,
2220
2221 .lazy_mode = {
2222 .enter = paravirt_enter_lazy_mmu,
2223 .leave = xen_leave_lazy_mmu,
2224 },
2225
2226 .set_fixmap = xen_set_fixmap,
2227 };
2228
2229 void __init xen_init_mmu_ops(void)
2230 {
2231 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2232 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2233 pv_mmu_ops = xen_mmu_ops;
2234
2235 memset(dummy_mapping, 0xff, PAGE_SIZE);
2236 }
2237
2238 /* Protected by xen_reservation_lock. */
2239 #define MAX_CONTIG_ORDER 9 /* 2MB */
2240 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2241
2242 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2243 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2244 unsigned long *in_frames,
2245 unsigned long *out_frames)
2246 {
2247 int i;
2248 struct multicall_space mcs;
2249
2250 xen_mc_batch();
2251 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2252 mcs = __xen_mc_entry(0);
2253
2254 if (in_frames)
2255 in_frames[i] = virt_to_mfn(vaddr);
2256
2257 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2258 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2259
2260 if (out_frames)
2261 out_frames[i] = virt_to_pfn(vaddr);
2262 }
2263 xen_mc_issue(0);
2264 }
2265
2266 /*
2267 * Update the pfn-to-mfn mappings for a virtual address range, either to
2268 * point to an array of mfns, or contiguously from a single starting
2269 * mfn.
2270 */
2271 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2272 unsigned long *mfns,
2273 unsigned long first_mfn)
2274 {
2275 unsigned i, limit;
2276 unsigned long mfn;
2277
2278 xen_mc_batch();
2279
2280 limit = 1u << order;
2281 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2282 struct multicall_space mcs;
2283 unsigned flags;
2284
2285 mcs = __xen_mc_entry(0);
2286 if (mfns)
2287 mfn = mfns[i];
2288 else
2289 mfn = first_mfn + i;
2290
2291 if (i < (limit - 1))
2292 flags = 0;
2293 else {
2294 if (order == 0)
2295 flags = UVMF_INVLPG | UVMF_ALL;
2296 else
2297 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2298 }
2299
2300 MULTI_update_va_mapping(mcs.mc, vaddr,
2301 mfn_pte(mfn, PAGE_KERNEL), flags);
2302
2303 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2304 }
2305
2306 xen_mc_issue(0);
2307 }
2308
2309 /*
2310 * Perform the hypercall to exchange a region of our pfns to point to
2311 * memory with the required contiguous alignment. Takes the pfns as
2312 * input, and populates mfns as output.
2313 *
2314 * Returns a success code indicating whether the hypervisor was able to
2315 * satisfy the request or not.
2316 */
2317 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2318 unsigned long *pfns_in,
2319 unsigned long extents_out,
2320 unsigned int order_out,
2321 unsigned long *mfns_out,
2322 unsigned int address_bits)
2323 {
2324 long rc;
2325 int success;
2326
2327 struct xen_memory_exchange exchange = {
2328 .in = {
2329 .nr_extents = extents_in,
2330 .extent_order = order_in,
2331 .extent_start = pfns_in,
2332 .domid = DOMID_SELF
2333 },
2334 .out = {
2335 .nr_extents = extents_out,
2336 .extent_order = order_out,
2337 .extent_start = mfns_out,
2338 .address_bits = address_bits,
2339 .domid = DOMID_SELF
2340 }
2341 };
2342
2343 BUG_ON(extents_in << order_in != extents_out << order_out);
2344
2345 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2346 success = (exchange.nr_exchanged == extents_in);
2347
2348 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2349 BUG_ON(success && (rc != 0));
2350
2351 return success;
2352 }
2353
2354 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2355 unsigned int address_bits)
2356 {
2357 unsigned long *in_frames = discontig_frames, out_frame;
2358 unsigned long flags;
2359 int success;
2360
2361 /*
2362 * Currently an auto-translated guest will not perform I/O, nor will
2363 * it require PAE page directories below 4GB. Therefore any calls to
2364 * this function are redundant and can be ignored.
2365 */
2366
2367 if (xen_feature(XENFEAT_auto_translated_physmap))
2368 return 0;
2369
2370 if (unlikely(order > MAX_CONTIG_ORDER))
2371 return -ENOMEM;
2372
2373 memset((void *) vstart, 0, PAGE_SIZE << order);
2374
2375 spin_lock_irqsave(&xen_reservation_lock, flags);
2376
2377 /* 1. Zap current PTEs, remembering MFNs. */
2378 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2379
2380 /* 2. Get a new contiguous memory extent. */
2381 out_frame = virt_to_pfn(vstart);
2382 success = xen_exchange_memory(1UL << order, 0, in_frames,
2383 1, order, &out_frame,
2384 address_bits);
2385
2386 /* 3. Map the new extent in place of old pages. */
2387 if (success)
2388 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2389 else
2390 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2391
2392 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2393
2394 return success ? 0 : -ENOMEM;
2395 }
2396 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2397
2398 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2399 {
2400 unsigned long *out_frames = discontig_frames, in_frame;
2401 unsigned long flags;
2402 int success;
2403
2404 if (xen_feature(XENFEAT_auto_translated_physmap))
2405 return;
2406
2407 if (unlikely(order > MAX_CONTIG_ORDER))
2408 return;
2409
2410 memset((void *) vstart, 0, PAGE_SIZE << order);
2411
2412 spin_lock_irqsave(&xen_reservation_lock, flags);
2413
2414 /* 1. Find start MFN of contiguous extent. */
2415 in_frame = virt_to_mfn(vstart);
2416
2417 /* 2. Zap current PTEs. */
2418 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2419
2420 /* 3. Do the exchange for non-contiguous MFNs. */
2421 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2422 0, out_frames, 0);
2423
2424 /* 4. Map new pages in place of old pages. */
2425 if (success)
2426 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2427 else
2428 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2429
2430 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2431 }
2432 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2433
2434 #ifdef CONFIG_XEN_PVHVM
2435 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2436 {
2437 struct xen_hvm_pagetable_dying a;
2438 int rc;
2439
2440 a.domid = DOMID_SELF;
2441 a.gpa = __pa(mm->pgd);
2442 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2443 WARN_ON_ONCE(rc < 0);
2444 }
2445
2446 static int is_pagetable_dying_supported(void)
2447 {
2448 struct xen_hvm_pagetable_dying a;
2449 int rc = 0;
2450
2451 a.domid = DOMID_SELF;
2452 a.gpa = 0x00;
2453 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2454 if (rc < 0) {
2455 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2456 return 0;
2457 }
2458 return 1;
2459 }
2460
2461 void __init xen_hvm_init_mmu_ops(void)
2462 {
2463 if (is_pagetable_dying_supported())
2464 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2465 }
2466 #endif
2467
2468 #define REMAP_BATCH_SIZE 16
2469
2470 struct remap_data {
2471 unsigned long mfn;
2472 pgprot_t prot;
2473 struct mmu_update *mmu_update;
2474 };
2475
2476 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2477 unsigned long addr, void *data)
2478 {
2479 struct remap_data *rmd = data;
2480 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2481
2482 rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2483 rmd->mmu_update->val = pte_val_ma(pte);
2484 rmd->mmu_update++;
2485
2486 return 0;
2487 }
2488
2489 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2490 unsigned long addr,
2491 unsigned long mfn, int nr,
2492 pgprot_t prot, unsigned domid)
2493 {
2494 struct remap_data rmd;
2495 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2496 int batch;
2497 unsigned long range;
2498 int err = 0;
2499
2500 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2501
2502 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2503 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2504
2505 rmd.mfn = mfn;
2506 rmd.prot = prot;
2507
2508 while (nr) {
2509 batch = min(REMAP_BATCH_SIZE, nr);
2510 range = (unsigned long)batch << PAGE_SHIFT;
2511
2512 rmd.mmu_update = mmu_update;
2513 err = apply_to_page_range(vma->vm_mm, addr, range,
2514 remap_area_mfn_pte_fn, &rmd);
2515 if (err)
2516 goto out;
2517
2518 err = -EFAULT;
2519 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2520 goto out;
2521
2522 nr -= batch;
2523 addr += range;
2524 }
2525
2526 err = 0;
2527 out:
2528
2529 flush_tlb_all();
2530
2531 return err;
2532 }
2533 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2534
2535 #ifdef CONFIG_XEN_DEBUG_FS
2536
2537 static int p2m_dump_open(struct inode *inode, struct file *filp)
2538 {
2539 return single_open(filp, p2m_dump_show, NULL);
2540 }
2541
2542 static const struct file_operations p2m_dump_fops = {
2543 .open = p2m_dump_open,
2544 .read = seq_read,
2545 .llseek = seq_lseek,
2546 .release = single_release,
2547 };
2548
2549 static struct dentry *d_mmu_debug;
2550
2551 static int __init xen_mmu_debugfs(void)
2552 {
2553 struct dentry *d_xen = xen_init_debugfs();
2554
2555 if (d_xen == NULL)
2556 return -ENOMEM;
2557
2558 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2559
2560 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2561
2562 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2563 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2564 &mmu_stats.pgd_update_pinned);
2565 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2566 &mmu_stats.pgd_update_pinned);
2567
2568 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2569 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2570 &mmu_stats.pud_update_pinned);
2571 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2572 &mmu_stats.pud_update_pinned);
2573
2574 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2575 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2576 &mmu_stats.pmd_update_pinned);
2577 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2578 &mmu_stats.pmd_update_pinned);
2579
2580 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2581 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2582 // &mmu_stats.pte_update_pinned);
2583 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2584 &mmu_stats.pte_update_pinned);
2585
2586 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2587 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2588 &mmu_stats.mmu_update_extended);
2589 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2590 mmu_stats.mmu_update_histo, 20);
2591
2592 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2593 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2594 &mmu_stats.set_pte_at_batched);
2595 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2596 &mmu_stats.set_pte_at_current);
2597 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2598 &mmu_stats.set_pte_at_kernel);
2599
2600 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2601 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2602 &mmu_stats.prot_commit_batched);
2603
2604 debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
2605 return 0;
2606 }
2607 fs_initcall(xen_mmu_debugfs);
2608
2609 #endif /* CONFIG_XEN_DEBUG_FS */
This page took 0.128498 seconds and 6 git commands to generate.