Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48
49 #include <asm/pgtable.h>
50 #include <asm/tlbflush.h>
51 #include <asm/fixmap.h>
52 #include <asm/mmu_context.h>
53 #include <asm/setup.h>
54 #include <asm/paravirt.h>
55 #include <asm/e820.h>
56 #include <asm/linkage.h>
57 #include <asm/page.h>
58
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61
62 #include <xen/xen.h>
63 #include <xen/page.h>
64 #include <xen/interface/xen.h>
65 #include <xen/interface/hvm/hvm_op.h>
66 #include <xen/interface/version.h>
67 #include <xen/interface/memory.h>
68 #include <xen/hvc-console.h>
69
70 #include "multicalls.h"
71 #include "mmu.h"
72 #include "debugfs.h"
73
74 #define MMU_UPDATE_HISTO 30
75
76 /*
77 * Protects atomic reservation decrease/increase against concurrent increases.
78 * Also protects non-atomic updates of current_pages and driver_pages, and
79 * balloon lists.
80 */
81 DEFINE_SPINLOCK(xen_reservation_lock);
82
83 #ifdef CONFIG_XEN_DEBUG_FS
84
85 static struct {
86 u32 pgd_update;
87 u32 pgd_update_pinned;
88 u32 pgd_update_batched;
89
90 u32 pud_update;
91 u32 pud_update_pinned;
92 u32 pud_update_batched;
93
94 u32 pmd_update;
95 u32 pmd_update_pinned;
96 u32 pmd_update_batched;
97
98 u32 pte_update;
99 u32 pte_update_pinned;
100 u32 pte_update_batched;
101
102 u32 mmu_update;
103 u32 mmu_update_extended;
104 u32 mmu_update_histo[MMU_UPDATE_HISTO];
105
106 u32 prot_commit;
107 u32 prot_commit_batched;
108
109 u32 set_pte_at;
110 u32 set_pte_at_batched;
111 u32 set_pte_at_pinned;
112 u32 set_pte_at_current;
113 u32 set_pte_at_kernel;
114 } mmu_stats;
115
116 static u8 zero_stats;
117
118 static inline void check_zero(void)
119 {
120 if (unlikely(zero_stats)) {
121 memset(&mmu_stats, 0, sizeof(mmu_stats));
122 zero_stats = 0;
123 }
124 }
125
126 #define ADD_STATS(elem, val) \
127 do { check_zero(); mmu_stats.elem += (val); } while(0)
128
129 #else /* !CONFIG_XEN_DEBUG_FS */
130
131 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
132
133 #endif /* CONFIG_XEN_DEBUG_FS */
134
135
136 /*
137 * Identity map, in addition to plain kernel map. This needs to be
138 * large enough to allocate page table pages to allocate the rest.
139 * Each page can map 2MB.
140 */
141 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
142
143 #ifdef CONFIG_X86_64
144 /* l3 pud for userspace vsyscall mapping */
145 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
146 #endif /* CONFIG_X86_64 */
147
148 /*
149 * Note about cr3 (pagetable base) values:
150 *
151 * xen_cr3 contains the current logical cr3 value; it contains the
152 * last set cr3. This may not be the current effective cr3, because
153 * its update may be being lazily deferred. However, a vcpu looking
154 * at its own cr3 can use this value knowing that it everything will
155 * be self-consistent.
156 *
157 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
158 * hypercall to set the vcpu cr3 is complete (so it may be a little
159 * out of date, but it will never be set early). If one vcpu is
160 * looking at another vcpu's cr3 value, it should use this variable.
161 */
162 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
163 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
164
165
166 /*
167 * Just beyond the highest usermode address. STACK_TOP_MAX has a
168 * redzone above it, so round it up to a PGD boundary.
169 */
170 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
171
172
173 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
174 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
175
176 /* Placeholder for holes in the address space */
177 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
178 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
179
180 /* Array of pointers to pages containing p2m entries */
181 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
182 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
183
184 /* Arrays of p2m arrays expressed in mfns used for save/restore */
185 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
186
187 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
188 __page_aligned_bss;
189
190 static inline unsigned p2m_top_index(unsigned long pfn)
191 {
192 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
193 return pfn / P2M_ENTRIES_PER_PAGE;
194 }
195
196 static inline unsigned p2m_index(unsigned long pfn)
197 {
198 return pfn % P2M_ENTRIES_PER_PAGE;
199 }
200
201 /* Build the parallel p2m_top_mfn structures */
202 void xen_build_mfn_list_list(void)
203 {
204 unsigned pfn, idx;
205
206 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
207 unsigned topidx = p2m_top_index(pfn);
208
209 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
210 }
211
212 for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
213 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
214 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
215 }
216 }
217
218 void xen_setup_mfn_list_list(void)
219 {
220 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
221
222 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
223 virt_to_mfn(p2m_top_mfn_list);
224 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
225 }
226
227 /* Set up p2m_top to point to the domain-builder provided p2m pages */
228 void __init xen_build_dynamic_phys_to_machine(void)
229 {
230 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
231 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
232 unsigned pfn;
233
234 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
235 unsigned topidx = p2m_top_index(pfn);
236
237 p2m_top[topidx] = &mfn_list[pfn];
238 }
239
240 xen_build_mfn_list_list();
241 }
242
243 unsigned long get_phys_to_machine(unsigned long pfn)
244 {
245 unsigned topidx, idx;
246
247 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
248 return INVALID_P2M_ENTRY;
249
250 topidx = p2m_top_index(pfn);
251 idx = p2m_index(pfn);
252 return p2m_top[topidx][idx];
253 }
254 EXPORT_SYMBOL_GPL(get_phys_to_machine);
255
256 /* install a new p2m_top page */
257 bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
258 {
259 unsigned topidx = p2m_top_index(pfn);
260 unsigned long **pfnp, *mfnp;
261 unsigned i;
262
263 pfnp = &p2m_top[topidx];
264 mfnp = &p2m_top_mfn[topidx];
265
266 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
267 p[i] = INVALID_P2M_ENTRY;
268
269 if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
270 *mfnp = virt_to_mfn(p);
271 return true;
272 }
273
274 return false;
275 }
276
277 static void alloc_p2m(unsigned long pfn)
278 {
279 unsigned long *p;
280
281 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
282 BUG_ON(p == NULL);
283
284 if (!install_p2mtop_page(pfn, p))
285 free_page((unsigned long)p);
286 }
287
288 /* Try to install p2m mapping; fail if intermediate bits missing */
289 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
290 {
291 unsigned topidx, idx;
292
293 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
294 BUG_ON(mfn != INVALID_P2M_ENTRY);
295 return true;
296 }
297
298 topidx = p2m_top_index(pfn);
299 if (p2m_top[topidx] == p2m_missing) {
300 if (mfn == INVALID_P2M_ENTRY)
301 return true;
302 return false;
303 }
304
305 idx = p2m_index(pfn);
306 p2m_top[topidx][idx] = mfn;
307
308 return true;
309 }
310
311 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
312 {
313 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
314 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
315 return;
316 }
317
318 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
319 alloc_p2m(pfn);
320
321 if (!__set_phys_to_machine(pfn, mfn))
322 BUG();
323 }
324 }
325
326 unsigned long arbitrary_virt_to_mfn(void *vaddr)
327 {
328 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
329
330 return PFN_DOWN(maddr.maddr);
331 }
332
333 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
334 {
335 unsigned long address = (unsigned long)vaddr;
336 unsigned int level;
337 pte_t *pte;
338 unsigned offset;
339
340 /*
341 * if the PFN is in the linear mapped vaddr range, we can just use
342 * the (quick) virt_to_machine() p2m lookup
343 */
344 if (virt_addr_valid(vaddr))
345 return virt_to_machine(vaddr);
346
347 /* otherwise we have to do a (slower) full page-table walk */
348
349 pte = lookup_address(address, &level);
350 BUG_ON(pte == NULL);
351 offset = address & ~PAGE_MASK;
352 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
353 }
354
355 void make_lowmem_page_readonly(void *vaddr)
356 {
357 pte_t *pte, ptev;
358 unsigned long address = (unsigned long)vaddr;
359 unsigned int level;
360
361 pte = lookup_address(address, &level);
362 BUG_ON(pte == NULL);
363
364 ptev = pte_wrprotect(*pte);
365
366 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
367 BUG();
368 }
369
370 void make_lowmem_page_readwrite(void *vaddr)
371 {
372 pte_t *pte, ptev;
373 unsigned long address = (unsigned long)vaddr;
374 unsigned int level;
375
376 pte = lookup_address(address, &level);
377 BUG_ON(pte == NULL);
378
379 ptev = pte_mkwrite(*pte);
380
381 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
382 BUG();
383 }
384
385
386 static bool xen_page_pinned(void *ptr)
387 {
388 struct page *page = virt_to_page(ptr);
389
390 return PagePinned(page);
391 }
392
393 static bool xen_iomap_pte(pte_t pte)
394 {
395 return pte_flags(pte) & _PAGE_IOMAP;
396 }
397
398 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
399 {
400 struct multicall_space mcs;
401 struct mmu_update *u;
402
403 mcs = xen_mc_entry(sizeof(*u));
404 u = mcs.args;
405
406 /* ptep might be kmapped when using 32-bit HIGHPTE */
407 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
408 u->val = pte_val_ma(pteval);
409
410 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_IO);
411
412 xen_mc_issue(PARAVIRT_LAZY_MMU);
413 }
414
415 static void xen_extend_mmu_update(const struct mmu_update *update)
416 {
417 struct multicall_space mcs;
418 struct mmu_update *u;
419
420 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
421
422 if (mcs.mc != NULL) {
423 ADD_STATS(mmu_update_extended, 1);
424 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
425
426 mcs.mc->args[1]++;
427
428 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
429 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
430 else
431 ADD_STATS(mmu_update_histo[0], 1);
432 } else {
433 ADD_STATS(mmu_update, 1);
434 mcs = __xen_mc_entry(sizeof(*u));
435 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
436 ADD_STATS(mmu_update_histo[1], 1);
437 }
438
439 u = mcs.args;
440 *u = *update;
441 }
442
443 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
444 {
445 struct mmu_update u;
446
447 preempt_disable();
448
449 xen_mc_batch();
450
451 /* ptr may be ioremapped for 64-bit pagetable setup */
452 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
453 u.val = pmd_val_ma(val);
454 xen_extend_mmu_update(&u);
455
456 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
457
458 xen_mc_issue(PARAVIRT_LAZY_MMU);
459
460 preempt_enable();
461 }
462
463 void xen_set_pmd(pmd_t *ptr, pmd_t val)
464 {
465 ADD_STATS(pmd_update, 1);
466
467 /* If page is not pinned, we can just update the entry
468 directly */
469 if (!xen_page_pinned(ptr)) {
470 *ptr = val;
471 return;
472 }
473
474 ADD_STATS(pmd_update_pinned, 1);
475
476 xen_set_pmd_hyper(ptr, val);
477 }
478
479 /*
480 * Associate a virtual page frame with a given physical page frame
481 * and protection flags for that frame.
482 */
483 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
484 {
485 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
486 }
487
488 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
489 pte_t *ptep, pte_t pteval)
490 {
491 if (xen_iomap_pte(pteval)) {
492 xen_set_iomap_pte(ptep, pteval);
493 goto out;
494 }
495
496 ADD_STATS(set_pte_at, 1);
497 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
498 ADD_STATS(set_pte_at_current, mm == current->mm);
499 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
500
501 if (mm == current->mm || mm == &init_mm) {
502 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
503 struct multicall_space mcs;
504 mcs = xen_mc_entry(0);
505
506 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
507 ADD_STATS(set_pte_at_batched, 1);
508 xen_mc_issue(PARAVIRT_LAZY_MMU);
509 goto out;
510 } else
511 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
512 goto out;
513 }
514 xen_set_pte(ptep, pteval);
515
516 out: return;
517 }
518
519 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
520 unsigned long addr, pte_t *ptep)
521 {
522 /* Just return the pte as-is. We preserve the bits on commit */
523 return *ptep;
524 }
525
526 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
527 pte_t *ptep, pte_t pte)
528 {
529 struct mmu_update u;
530
531 xen_mc_batch();
532
533 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
534 u.val = pte_val_ma(pte);
535 xen_extend_mmu_update(&u);
536
537 ADD_STATS(prot_commit, 1);
538 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
539
540 xen_mc_issue(PARAVIRT_LAZY_MMU);
541 }
542
543 /* Assume pteval_t is equivalent to all the other *val_t types. */
544 static pteval_t pte_mfn_to_pfn(pteval_t val)
545 {
546 if (val & _PAGE_PRESENT) {
547 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
548 pteval_t flags = val & PTE_FLAGS_MASK;
549 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
550 }
551
552 return val;
553 }
554
555 static pteval_t pte_pfn_to_mfn(pteval_t val)
556 {
557 if (val & _PAGE_PRESENT) {
558 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
559 pteval_t flags = val & PTE_FLAGS_MASK;
560 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
561 }
562
563 return val;
564 }
565
566 static pteval_t iomap_pte(pteval_t val)
567 {
568 if (val & _PAGE_PRESENT) {
569 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
570 pteval_t flags = val & PTE_FLAGS_MASK;
571
572 /* We assume the pte frame number is a MFN, so
573 just use it as-is. */
574 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
575 }
576
577 return val;
578 }
579
580 pteval_t xen_pte_val(pte_t pte)
581 {
582 if (xen_initial_domain() && (pte.pte & _PAGE_IOMAP))
583 return pte.pte;
584
585 return pte_mfn_to_pfn(pte.pte);
586 }
587 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
588
589 pgdval_t xen_pgd_val(pgd_t pgd)
590 {
591 return pte_mfn_to_pfn(pgd.pgd);
592 }
593 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
594
595 pte_t xen_make_pte(pteval_t pte)
596 {
597 phys_addr_t addr = (pte & PTE_PFN_MASK);
598
599 /*
600 * Unprivileged domains are allowed to do IOMAPpings for
601 * PCI passthrough, but not map ISA space. The ISA
602 * mappings are just dummy local mappings to keep other
603 * parts of the kernel happy.
604 */
605 if (unlikely(pte & _PAGE_IOMAP) &&
606 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
607 pte = iomap_pte(pte);
608 } else {
609 pte &= ~_PAGE_IOMAP;
610 pte = pte_pfn_to_mfn(pte);
611 }
612
613 return native_make_pte(pte);
614 }
615 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
616
617 pgd_t xen_make_pgd(pgdval_t pgd)
618 {
619 pgd = pte_pfn_to_mfn(pgd);
620 return native_make_pgd(pgd);
621 }
622 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
623
624 pmdval_t xen_pmd_val(pmd_t pmd)
625 {
626 return pte_mfn_to_pfn(pmd.pmd);
627 }
628 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
629
630 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
631 {
632 struct mmu_update u;
633
634 preempt_disable();
635
636 xen_mc_batch();
637
638 /* ptr may be ioremapped for 64-bit pagetable setup */
639 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
640 u.val = pud_val_ma(val);
641 xen_extend_mmu_update(&u);
642
643 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
644
645 xen_mc_issue(PARAVIRT_LAZY_MMU);
646
647 preempt_enable();
648 }
649
650 void xen_set_pud(pud_t *ptr, pud_t val)
651 {
652 ADD_STATS(pud_update, 1);
653
654 /* If page is not pinned, we can just update the entry
655 directly */
656 if (!xen_page_pinned(ptr)) {
657 *ptr = val;
658 return;
659 }
660
661 ADD_STATS(pud_update_pinned, 1);
662
663 xen_set_pud_hyper(ptr, val);
664 }
665
666 void xen_set_pte(pte_t *ptep, pte_t pte)
667 {
668 if (xen_iomap_pte(pte)) {
669 xen_set_iomap_pte(ptep, pte);
670 return;
671 }
672
673 ADD_STATS(pte_update, 1);
674 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
675 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
676
677 #ifdef CONFIG_X86_PAE
678 ptep->pte_high = pte.pte_high;
679 smp_wmb();
680 ptep->pte_low = pte.pte_low;
681 #else
682 *ptep = pte;
683 #endif
684 }
685
686 #ifdef CONFIG_X86_PAE
687 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
688 {
689 if (xen_iomap_pte(pte)) {
690 xen_set_iomap_pte(ptep, pte);
691 return;
692 }
693
694 set_64bit((u64 *)ptep, native_pte_val(pte));
695 }
696
697 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
698 {
699 ptep->pte_low = 0;
700 smp_wmb(); /* make sure low gets written first */
701 ptep->pte_high = 0;
702 }
703
704 void xen_pmd_clear(pmd_t *pmdp)
705 {
706 set_pmd(pmdp, __pmd(0));
707 }
708 #endif /* CONFIG_X86_PAE */
709
710 pmd_t xen_make_pmd(pmdval_t pmd)
711 {
712 pmd = pte_pfn_to_mfn(pmd);
713 return native_make_pmd(pmd);
714 }
715 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
716
717 #if PAGETABLE_LEVELS == 4
718 pudval_t xen_pud_val(pud_t pud)
719 {
720 return pte_mfn_to_pfn(pud.pud);
721 }
722 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
723
724 pud_t xen_make_pud(pudval_t pud)
725 {
726 pud = pte_pfn_to_mfn(pud);
727
728 return native_make_pud(pud);
729 }
730 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
731
732 pgd_t *xen_get_user_pgd(pgd_t *pgd)
733 {
734 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
735 unsigned offset = pgd - pgd_page;
736 pgd_t *user_ptr = NULL;
737
738 if (offset < pgd_index(USER_LIMIT)) {
739 struct page *page = virt_to_page(pgd_page);
740 user_ptr = (pgd_t *)page->private;
741 if (user_ptr)
742 user_ptr += offset;
743 }
744
745 return user_ptr;
746 }
747
748 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
749 {
750 struct mmu_update u;
751
752 u.ptr = virt_to_machine(ptr).maddr;
753 u.val = pgd_val_ma(val);
754 xen_extend_mmu_update(&u);
755 }
756
757 /*
758 * Raw hypercall-based set_pgd, intended for in early boot before
759 * there's a page structure. This implies:
760 * 1. The only existing pagetable is the kernel's
761 * 2. It is always pinned
762 * 3. It has no user pagetable attached to it
763 */
764 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
765 {
766 preempt_disable();
767
768 xen_mc_batch();
769
770 __xen_set_pgd_hyper(ptr, val);
771
772 xen_mc_issue(PARAVIRT_LAZY_MMU);
773
774 preempt_enable();
775 }
776
777 void xen_set_pgd(pgd_t *ptr, pgd_t val)
778 {
779 pgd_t *user_ptr = xen_get_user_pgd(ptr);
780
781 ADD_STATS(pgd_update, 1);
782
783 /* If page is not pinned, we can just update the entry
784 directly */
785 if (!xen_page_pinned(ptr)) {
786 *ptr = val;
787 if (user_ptr) {
788 WARN_ON(xen_page_pinned(user_ptr));
789 *user_ptr = val;
790 }
791 return;
792 }
793
794 ADD_STATS(pgd_update_pinned, 1);
795 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
796
797 /* If it's pinned, then we can at least batch the kernel and
798 user updates together. */
799 xen_mc_batch();
800
801 __xen_set_pgd_hyper(ptr, val);
802 if (user_ptr)
803 __xen_set_pgd_hyper(user_ptr, val);
804
805 xen_mc_issue(PARAVIRT_LAZY_MMU);
806 }
807 #endif /* PAGETABLE_LEVELS == 4 */
808
809 /*
810 * (Yet another) pagetable walker. This one is intended for pinning a
811 * pagetable. This means that it walks a pagetable and calls the
812 * callback function on each page it finds making up the page table,
813 * at every level. It walks the entire pagetable, but it only bothers
814 * pinning pte pages which are below limit. In the normal case this
815 * will be STACK_TOP_MAX, but at boot we need to pin up to
816 * FIXADDR_TOP.
817 *
818 * For 32-bit the important bit is that we don't pin beyond there,
819 * because then we start getting into Xen's ptes.
820 *
821 * For 64-bit, we must skip the Xen hole in the middle of the address
822 * space, just after the big x86-64 virtual hole.
823 */
824 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
825 int (*func)(struct mm_struct *mm, struct page *,
826 enum pt_level),
827 unsigned long limit)
828 {
829 int flush = 0;
830 unsigned hole_low, hole_high;
831 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
832 unsigned pgdidx, pudidx, pmdidx;
833
834 /* The limit is the last byte to be touched */
835 limit--;
836 BUG_ON(limit >= FIXADDR_TOP);
837
838 if (xen_feature(XENFEAT_auto_translated_physmap))
839 return 0;
840
841 /*
842 * 64-bit has a great big hole in the middle of the address
843 * space, which contains the Xen mappings. On 32-bit these
844 * will end up making a zero-sized hole and so is a no-op.
845 */
846 hole_low = pgd_index(USER_LIMIT);
847 hole_high = pgd_index(PAGE_OFFSET);
848
849 pgdidx_limit = pgd_index(limit);
850 #if PTRS_PER_PUD > 1
851 pudidx_limit = pud_index(limit);
852 #else
853 pudidx_limit = 0;
854 #endif
855 #if PTRS_PER_PMD > 1
856 pmdidx_limit = pmd_index(limit);
857 #else
858 pmdidx_limit = 0;
859 #endif
860
861 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
862 pud_t *pud;
863
864 if (pgdidx >= hole_low && pgdidx < hole_high)
865 continue;
866
867 if (!pgd_val(pgd[pgdidx]))
868 continue;
869
870 pud = pud_offset(&pgd[pgdidx], 0);
871
872 if (PTRS_PER_PUD > 1) /* not folded */
873 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
874
875 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
876 pmd_t *pmd;
877
878 if (pgdidx == pgdidx_limit &&
879 pudidx > pudidx_limit)
880 goto out;
881
882 if (pud_none(pud[pudidx]))
883 continue;
884
885 pmd = pmd_offset(&pud[pudidx], 0);
886
887 if (PTRS_PER_PMD > 1) /* not folded */
888 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
889
890 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
891 struct page *pte;
892
893 if (pgdidx == pgdidx_limit &&
894 pudidx == pudidx_limit &&
895 pmdidx > pmdidx_limit)
896 goto out;
897
898 if (pmd_none(pmd[pmdidx]))
899 continue;
900
901 pte = pmd_page(pmd[pmdidx]);
902 flush |= (*func)(mm, pte, PT_PTE);
903 }
904 }
905 }
906
907 out:
908 /* Do the top level last, so that the callbacks can use it as
909 a cue to do final things like tlb flushes. */
910 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
911
912 return flush;
913 }
914
915 static int xen_pgd_walk(struct mm_struct *mm,
916 int (*func)(struct mm_struct *mm, struct page *,
917 enum pt_level),
918 unsigned long limit)
919 {
920 return __xen_pgd_walk(mm, mm->pgd, func, limit);
921 }
922
923 /* If we're using split pte locks, then take the page's lock and
924 return a pointer to it. Otherwise return NULL. */
925 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
926 {
927 spinlock_t *ptl = NULL;
928
929 #if USE_SPLIT_PTLOCKS
930 ptl = __pte_lockptr(page);
931 spin_lock_nest_lock(ptl, &mm->page_table_lock);
932 #endif
933
934 return ptl;
935 }
936
937 static void xen_pte_unlock(void *v)
938 {
939 spinlock_t *ptl = v;
940 spin_unlock(ptl);
941 }
942
943 static void xen_do_pin(unsigned level, unsigned long pfn)
944 {
945 struct mmuext_op *op;
946 struct multicall_space mcs;
947
948 mcs = __xen_mc_entry(sizeof(*op));
949 op = mcs.args;
950 op->cmd = level;
951 op->arg1.mfn = pfn_to_mfn(pfn);
952 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
953 }
954
955 static int xen_pin_page(struct mm_struct *mm, struct page *page,
956 enum pt_level level)
957 {
958 unsigned pgfl = TestSetPagePinned(page);
959 int flush;
960
961 if (pgfl)
962 flush = 0; /* already pinned */
963 else if (PageHighMem(page))
964 /* kmaps need flushing if we found an unpinned
965 highpage */
966 flush = 1;
967 else {
968 void *pt = lowmem_page_address(page);
969 unsigned long pfn = page_to_pfn(page);
970 struct multicall_space mcs = __xen_mc_entry(0);
971 spinlock_t *ptl;
972
973 flush = 0;
974
975 /*
976 * We need to hold the pagetable lock between the time
977 * we make the pagetable RO and when we actually pin
978 * it. If we don't, then other users may come in and
979 * attempt to update the pagetable by writing it,
980 * which will fail because the memory is RO but not
981 * pinned, so Xen won't do the trap'n'emulate.
982 *
983 * If we're using split pte locks, we can't hold the
984 * entire pagetable's worth of locks during the
985 * traverse, because we may wrap the preempt count (8
986 * bits). The solution is to mark RO and pin each PTE
987 * page while holding the lock. This means the number
988 * of locks we end up holding is never more than a
989 * batch size (~32 entries, at present).
990 *
991 * If we're not using split pte locks, we needn't pin
992 * the PTE pages independently, because we're
993 * protected by the overall pagetable lock.
994 */
995 ptl = NULL;
996 if (level == PT_PTE)
997 ptl = xen_pte_lock(page, mm);
998
999 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000 pfn_pte(pfn, PAGE_KERNEL_RO),
1001 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002
1003 if (ptl) {
1004 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
1005
1006 /* Queue a deferred unlock for when this batch
1007 is completed. */
1008 xen_mc_callback(xen_pte_unlock, ptl);
1009 }
1010 }
1011
1012 return flush;
1013 }
1014
1015 /* This is called just after a mm has been created, but it has not
1016 been used yet. We need to make sure that its pagetable is all
1017 read-only, and can be pinned. */
1018 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
1019 {
1020 xen_mc_batch();
1021
1022 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
1023 /* re-enable interrupts for flushing */
1024 xen_mc_issue(0);
1025
1026 kmap_flush_unused();
1027
1028 xen_mc_batch();
1029 }
1030
1031 #ifdef CONFIG_X86_64
1032 {
1033 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1034
1035 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1036
1037 if (user_pgd) {
1038 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1039 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1040 PFN_DOWN(__pa(user_pgd)));
1041 }
1042 }
1043 #else /* CONFIG_X86_32 */
1044 #ifdef CONFIG_X86_PAE
1045 /* Need to make sure unshared kernel PMD is pinnable */
1046 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1047 PT_PMD);
1048 #endif
1049 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1050 #endif /* CONFIG_X86_64 */
1051 xen_mc_issue(0);
1052 }
1053
1054 static void xen_pgd_pin(struct mm_struct *mm)
1055 {
1056 __xen_pgd_pin(mm, mm->pgd);
1057 }
1058
1059 /*
1060 * On save, we need to pin all pagetables to make sure they get their
1061 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1062 * them (unpinned pgds are not currently in use, probably because the
1063 * process is under construction or destruction).
1064 *
1065 * Expected to be called in stop_machine() ("equivalent to taking
1066 * every spinlock in the system"), so the locking doesn't really
1067 * matter all that much.
1068 */
1069 void xen_mm_pin_all(void)
1070 {
1071 unsigned long flags;
1072 struct page *page;
1073
1074 spin_lock_irqsave(&pgd_lock, flags);
1075
1076 list_for_each_entry(page, &pgd_list, lru) {
1077 if (!PagePinned(page)) {
1078 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1079 SetPageSavePinned(page);
1080 }
1081 }
1082
1083 spin_unlock_irqrestore(&pgd_lock, flags);
1084 }
1085
1086 /*
1087 * The init_mm pagetable is really pinned as soon as its created, but
1088 * that's before we have page structures to store the bits. So do all
1089 * the book-keeping now.
1090 */
1091 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1092 enum pt_level level)
1093 {
1094 SetPagePinned(page);
1095 return 0;
1096 }
1097
1098 static void __init xen_mark_init_mm_pinned(void)
1099 {
1100 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1101 }
1102
1103 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1104 enum pt_level level)
1105 {
1106 unsigned pgfl = TestClearPagePinned(page);
1107
1108 if (pgfl && !PageHighMem(page)) {
1109 void *pt = lowmem_page_address(page);
1110 unsigned long pfn = page_to_pfn(page);
1111 spinlock_t *ptl = NULL;
1112 struct multicall_space mcs;
1113
1114 /*
1115 * Do the converse to pin_page. If we're using split
1116 * pte locks, we must be holding the lock for while
1117 * the pte page is unpinned but still RO to prevent
1118 * concurrent updates from seeing it in this
1119 * partially-pinned state.
1120 */
1121 if (level == PT_PTE) {
1122 ptl = xen_pte_lock(page, mm);
1123
1124 if (ptl)
1125 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1126 }
1127
1128 mcs = __xen_mc_entry(0);
1129
1130 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1131 pfn_pte(pfn, PAGE_KERNEL),
1132 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1133
1134 if (ptl) {
1135 /* unlock when batch completed */
1136 xen_mc_callback(xen_pte_unlock, ptl);
1137 }
1138 }
1139
1140 return 0; /* never need to flush on unpin */
1141 }
1142
1143 /* Release a pagetables pages back as normal RW */
1144 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1145 {
1146 xen_mc_batch();
1147
1148 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1149
1150 #ifdef CONFIG_X86_64
1151 {
1152 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1153
1154 if (user_pgd) {
1155 xen_do_pin(MMUEXT_UNPIN_TABLE,
1156 PFN_DOWN(__pa(user_pgd)));
1157 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1158 }
1159 }
1160 #endif
1161
1162 #ifdef CONFIG_X86_PAE
1163 /* Need to make sure unshared kernel PMD is unpinned */
1164 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1165 PT_PMD);
1166 #endif
1167
1168 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1169
1170 xen_mc_issue(0);
1171 }
1172
1173 static void xen_pgd_unpin(struct mm_struct *mm)
1174 {
1175 __xen_pgd_unpin(mm, mm->pgd);
1176 }
1177
1178 /*
1179 * On resume, undo any pinning done at save, so that the rest of the
1180 * kernel doesn't see any unexpected pinned pagetables.
1181 */
1182 void xen_mm_unpin_all(void)
1183 {
1184 unsigned long flags;
1185 struct page *page;
1186
1187 spin_lock_irqsave(&pgd_lock, flags);
1188
1189 list_for_each_entry(page, &pgd_list, lru) {
1190 if (PageSavePinned(page)) {
1191 BUG_ON(!PagePinned(page));
1192 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1193 ClearPageSavePinned(page);
1194 }
1195 }
1196
1197 spin_unlock_irqrestore(&pgd_lock, flags);
1198 }
1199
1200 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1201 {
1202 spin_lock(&next->page_table_lock);
1203 xen_pgd_pin(next);
1204 spin_unlock(&next->page_table_lock);
1205 }
1206
1207 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1208 {
1209 spin_lock(&mm->page_table_lock);
1210 xen_pgd_pin(mm);
1211 spin_unlock(&mm->page_table_lock);
1212 }
1213
1214
1215 #ifdef CONFIG_SMP
1216 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1217 we need to repoint it somewhere else before we can unpin it. */
1218 static void drop_other_mm_ref(void *info)
1219 {
1220 struct mm_struct *mm = info;
1221 struct mm_struct *active_mm;
1222
1223 active_mm = percpu_read(cpu_tlbstate.active_mm);
1224
1225 if (active_mm == mm)
1226 leave_mm(smp_processor_id());
1227
1228 /* If this cpu still has a stale cr3 reference, then make sure
1229 it has been flushed. */
1230 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1231 load_cr3(swapper_pg_dir);
1232 }
1233
1234 static void xen_drop_mm_ref(struct mm_struct *mm)
1235 {
1236 cpumask_var_t mask;
1237 unsigned cpu;
1238
1239 if (current->active_mm == mm) {
1240 if (current->mm == mm)
1241 load_cr3(swapper_pg_dir);
1242 else
1243 leave_mm(smp_processor_id());
1244 }
1245
1246 /* Get the "official" set of cpus referring to our pagetable. */
1247 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1248 for_each_online_cpu(cpu) {
1249 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1250 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1251 continue;
1252 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1253 }
1254 return;
1255 }
1256 cpumask_copy(mask, mm_cpumask(mm));
1257
1258 /* It's possible that a vcpu may have a stale reference to our
1259 cr3, because its in lazy mode, and it hasn't yet flushed
1260 its set of pending hypercalls yet. In this case, we can
1261 look at its actual current cr3 value, and force it to flush
1262 if needed. */
1263 for_each_online_cpu(cpu) {
1264 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1265 cpumask_set_cpu(cpu, mask);
1266 }
1267
1268 if (!cpumask_empty(mask))
1269 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1270 free_cpumask_var(mask);
1271 }
1272 #else
1273 static void xen_drop_mm_ref(struct mm_struct *mm)
1274 {
1275 if (current->active_mm == mm)
1276 load_cr3(swapper_pg_dir);
1277 }
1278 #endif
1279
1280 /*
1281 * While a process runs, Xen pins its pagetables, which means that the
1282 * hypervisor forces it to be read-only, and it controls all updates
1283 * to it. This means that all pagetable updates have to go via the
1284 * hypervisor, which is moderately expensive.
1285 *
1286 * Since we're pulling the pagetable down, we switch to use init_mm,
1287 * unpin old process pagetable and mark it all read-write, which
1288 * allows further operations on it to be simple memory accesses.
1289 *
1290 * The only subtle point is that another CPU may be still using the
1291 * pagetable because of lazy tlb flushing. This means we need need to
1292 * switch all CPUs off this pagetable before we can unpin it.
1293 */
1294 void xen_exit_mmap(struct mm_struct *mm)
1295 {
1296 get_cpu(); /* make sure we don't move around */
1297 xen_drop_mm_ref(mm);
1298 put_cpu();
1299
1300 spin_lock(&mm->page_table_lock);
1301
1302 /* pgd may not be pinned in the error exit path of execve */
1303 if (xen_page_pinned(mm->pgd))
1304 xen_pgd_unpin(mm);
1305
1306 spin_unlock(&mm->page_table_lock);
1307 }
1308
1309 static __init void xen_pagetable_setup_start(pgd_t *base)
1310 {
1311 }
1312
1313 static void xen_post_allocator_init(void);
1314
1315 static __init void xen_pagetable_setup_done(pgd_t *base)
1316 {
1317 xen_setup_shared_info();
1318 xen_post_allocator_init();
1319 }
1320
1321 static void xen_write_cr2(unsigned long cr2)
1322 {
1323 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1324 }
1325
1326 static unsigned long xen_read_cr2(void)
1327 {
1328 return percpu_read(xen_vcpu)->arch.cr2;
1329 }
1330
1331 unsigned long xen_read_cr2_direct(void)
1332 {
1333 return percpu_read(xen_vcpu_info.arch.cr2);
1334 }
1335
1336 static void xen_flush_tlb(void)
1337 {
1338 struct mmuext_op *op;
1339 struct multicall_space mcs;
1340
1341 preempt_disable();
1342
1343 mcs = xen_mc_entry(sizeof(*op));
1344
1345 op = mcs.args;
1346 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1347 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1348
1349 xen_mc_issue(PARAVIRT_LAZY_MMU);
1350
1351 preempt_enable();
1352 }
1353
1354 static void xen_flush_tlb_single(unsigned long addr)
1355 {
1356 struct mmuext_op *op;
1357 struct multicall_space mcs;
1358
1359 preempt_disable();
1360
1361 mcs = xen_mc_entry(sizeof(*op));
1362 op = mcs.args;
1363 op->cmd = MMUEXT_INVLPG_LOCAL;
1364 op->arg1.linear_addr = addr & PAGE_MASK;
1365 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1366
1367 xen_mc_issue(PARAVIRT_LAZY_MMU);
1368
1369 preempt_enable();
1370 }
1371
1372 static void xen_flush_tlb_others(const struct cpumask *cpus,
1373 struct mm_struct *mm, unsigned long va)
1374 {
1375 struct {
1376 struct mmuext_op op;
1377 DECLARE_BITMAP(mask, NR_CPUS);
1378 } *args;
1379 struct multicall_space mcs;
1380
1381 if (cpumask_empty(cpus))
1382 return; /* nothing to do */
1383
1384 mcs = xen_mc_entry(sizeof(*args));
1385 args = mcs.args;
1386 args->op.arg2.vcpumask = to_cpumask(args->mask);
1387
1388 /* Remove us, and any offline CPUS. */
1389 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1390 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1391
1392 if (va == TLB_FLUSH_ALL) {
1393 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1394 } else {
1395 args->op.cmd = MMUEXT_INVLPG_MULTI;
1396 args->op.arg1.linear_addr = va;
1397 }
1398
1399 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1400
1401 xen_mc_issue(PARAVIRT_LAZY_MMU);
1402 }
1403
1404 static unsigned long xen_read_cr3(void)
1405 {
1406 return percpu_read(xen_cr3);
1407 }
1408
1409 static void set_current_cr3(void *v)
1410 {
1411 percpu_write(xen_current_cr3, (unsigned long)v);
1412 }
1413
1414 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1415 {
1416 struct mmuext_op *op;
1417 struct multicall_space mcs;
1418 unsigned long mfn;
1419
1420 if (cr3)
1421 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1422 else
1423 mfn = 0;
1424
1425 WARN_ON(mfn == 0 && kernel);
1426
1427 mcs = __xen_mc_entry(sizeof(*op));
1428
1429 op = mcs.args;
1430 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1431 op->arg1.mfn = mfn;
1432
1433 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1434
1435 if (kernel) {
1436 percpu_write(xen_cr3, cr3);
1437
1438 /* Update xen_current_cr3 once the batch has actually
1439 been submitted. */
1440 xen_mc_callback(set_current_cr3, (void *)cr3);
1441 }
1442 }
1443
1444 static void xen_write_cr3(unsigned long cr3)
1445 {
1446 BUG_ON(preemptible());
1447
1448 xen_mc_batch(); /* disables interrupts */
1449
1450 /* Update while interrupts are disabled, so its atomic with
1451 respect to ipis */
1452 percpu_write(xen_cr3, cr3);
1453
1454 __xen_write_cr3(true, cr3);
1455
1456 #ifdef CONFIG_X86_64
1457 {
1458 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1459 if (user_pgd)
1460 __xen_write_cr3(false, __pa(user_pgd));
1461 else
1462 __xen_write_cr3(false, 0);
1463 }
1464 #endif
1465
1466 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1467 }
1468
1469 static int xen_pgd_alloc(struct mm_struct *mm)
1470 {
1471 pgd_t *pgd = mm->pgd;
1472 int ret = 0;
1473
1474 BUG_ON(PagePinned(virt_to_page(pgd)));
1475
1476 #ifdef CONFIG_X86_64
1477 {
1478 struct page *page = virt_to_page(pgd);
1479 pgd_t *user_pgd;
1480
1481 BUG_ON(page->private != 0);
1482
1483 ret = -ENOMEM;
1484
1485 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1486 page->private = (unsigned long)user_pgd;
1487
1488 if (user_pgd != NULL) {
1489 user_pgd[pgd_index(VSYSCALL_START)] =
1490 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1491 ret = 0;
1492 }
1493
1494 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1495 }
1496 #endif
1497
1498 return ret;
1499 }
1500
1501 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1502 {
1503 #ifdef CONFIG_X86_64
1504 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1505
1506 if (user_pgd)
1507 free_page((unsigned long)user_pgd);
1508 #endif
1509 }
1510
1511 #ifdef CONFIG_X86_32
1512 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1513 {
1514 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1515 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1516 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1517 pte_val_ma(pte));
1518
1519 return pte;
1520 }
1521
1522 /* Init-time set_pte while constructing initial pagetables, which
1523 doesn't allow RO pagetable pages to be remapped RW */
1524 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1525 {
1526 pte = mask_rw_pte(ptep, pte);
1527
1528 xen_set_pte(ptep, pte);
1529 }
1530 #endif
1531
1532 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1533 {
1534 struct mmuext_op op;
1535 op.cmd = cmd;
1536 op.arg1.mfn = pfn_to_mfn(pfn);
1537 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1538 BUG();
1539 }
1540
1541 /* Early in boot, while setting up the initial pagetable, assume
1542 everything is pinned. */
1543 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1544 {
1545 #ifdef CONFIG_FLATMEM
1546 BUG_ON(mem_map); /* should only be used early */
1547 #endif
1548 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1549 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1550 }
1551
1552 /* Used for pmd and pud */
1553 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1554 {
1555 #ifdef CONFIG_FLATMEM
1556 BUG_ON(mem_map); /* should only be used early */
1557 #endif
1558 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1559 }
1560
1561 /* Early release_pte assumes that all pts are pinned, since there's
1562 only init_mm and anything attached to that is pinned. */
1563 static __init void xen_release_pte_init(unsigned long pfn)
1564 {
1565 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1566 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1567 }
1568
1569 static __init void xen_release_pmd_init(unsigned long pfn)
1570 {
1571 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1572 }
1573
1574 /* This needs to make sure the new pte page is pinned iff its being
1575 attached to a pinned pagetable. */
1576 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1577 {
1578 struct page *page = pfn_to_page(pfn);
1579
1580 if (PagePinned(virt_to_page(mm->pgd))) {
1581 SetPagePinned(page);
1582
1583 if (!PageHighMem(page)) {
1584 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1585 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1586 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1587 } else {
1588 /* make sure there are no stray mappings of
1589 this page */
1590 kmap_flush_unused();
1591 }
1592 }
1593 }
1594
1595 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1596 {
1597 xen_alloc_ptpage(mm, pfn, PT_PTE);
1598 }
1599
1600 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1601 {
1602 xen_alloc_ptpage(mm, pfn, PT_PMD);
1603 }
1604
1605 /* This should never happen until we're OK to use struct page */
1606 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1607 {
1608 struct page *page = pfn_to_page(pfn);
1609
1610 if (PagePinned(page)) {
1611 if (!PageHighMem(page)) {
1612 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1613 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1614 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1615 }
1616 ClearPagePinned(page);
1617 }
1618 }
1619
1620 static void xen_release_pte(unsigned long pfn)
1621 {
1622 xen_release_ptpage(pfn, PT_PTE);
1623 }
1624
1625 static void xen_release_pmd(unsigned long pfn)
1626 {
1627 xen_release_ptpage(pfn, PT_PMD);
1628 }
1629
1630 #if PAGETABLE_LEVELS == 4
1631 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1632 {
1633 xen_alloc_ptpage(mm, pfn, PT_PUD);
1634 }
1635
1636 static void xen_release_pud(unsigned long pfn)
1637 {
1638 xen_release_ptpage(pfn, PT_PUD);
1639 }
1640 #endif
1641
1642 void __init xen_reserve_top(void)
1643 {
1644 #ifdef CONFIG_X86_32
1645 unsigned long top = HYPERVISOR_VIRT_START;
1646 struct xen_platform_parameters pp;
1647
1648 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1649 top = pp.virt_start;
1650
1651 reserve_top_address(-top);
1652 #endif /* CONFIG_X86_32 */
1653 }
1654
1655 /*
1656 * Like __va(), but returns address in the kernel mapping (which is
1657 * all we have until the physical memory mapping has been set up.
1658 */
1659 static void *__ka(phys_addr_t paddr)
1660 {
1661 #ifdef CONFIG_X86_64
1662 return (void *)(paddr + __START_KERNEL_map);
1663 #else
1664 return __va(paddr);
1665 #endif
1666 }
1667
1668 /* Convert a machine address to physical address */
1669 static unsigned long m2p(phys_addr_t maddr)
1670 {
1671 phys_addr_t paddr;
1672
1673 maddr &= PTE_PFN_MASK;
1674 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1675
1676 return paddr;
1677 }
1678
1679 /* Convert a machine address to kernel virtual */
1680 static void *m2v(phys_addr_t maddr)
1681 {
1682 return __ka(m2p(maddr));
1683 }
1684
1685 static void set_page_prot(void *addr, pgprot_t prot)
1686 {
1687 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1688 pte_t pte = pfn_pte(pfn, prot);
1689
1690 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1691 BUG();
1692 }
1693
1694 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1695 {
1696 unsigned pmdidx, pteidx;
1697 unsigned ident_pte;
1698 unsigned long pfn;
1699
1700 ident_pte = 0;
1701 pfn = 0;
1702 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1703 pte_t *pte_page;
1704
1705 /* Reuse or allocate a page of ptes */
1706 if (pmd_present(pmd[pmdidx]))
1707 pte_page = m2v(pmd[pmdidx].pmd);
1708 else {
1709 /* Check for free pte pages */
1710 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1711 break;
1712
1713 pte_page = &level1_ident_pgt[ident_pte];
1714 ident_pte += PTRS_PER_PTE;
1715
1716 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1717 }
1718
1719 /* Install mappings */
1720 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1721 pte_t pte;
1722
1723 if (pfn > max_pfn_mapped)
1724 max_pfn_mapped = pfn;
1725
1726 if (!pte_none(pte_page[pteidx]))
1727 continue;
1728
1729 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1730 pte_page[pteidx] = pte;
1731 }
1732 }
1733
1734 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1735 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1736
1737 set_page_prot(pmd, PAGE_KERNEL_RO);
1738 }
1739
1740 #ifdef CONFIG_X86_64
1741 static void convert_pfn_mfn(void *v)
1742 {
1743 pte_t *pte = v;
1744 int i;
1745
1746 /* All levels are converted the same way, so just treat them
1747 as ptes. */
1748 for (i = 0; i < PTRS_PER_PTE; i++)
1749 pte[i] = xen_make_pte(pte[i].pte);
1750 }
1751
1752 /*
1753 * Set up the inital kernel pagetable.
1754 *
1755 * We can construct this by grafting the Xen provided pagetable into
1756 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1757 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1758 * means that only the kernel has a physical mapping to start with -
1759 * but that's enough to get __va working. We need to fill in the rest
1760 * of the physical mapping once some sort of allocator has been set
1761 * up.
1762 */
1763 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1764 unsigned long max_pfn)
1765 {
1766 pud_t *l3;
1767 pmd_t *l2;
1768
1769 /* Zap identity mapping */
1770 init_level4_pgt[0] = __pgd(0);
1771
1772 /* Pre-constructed entries are in pfn, so convert to mfn */
1773 convert_pfn_mfn(init_level4_pgt);
1774 convert_pfn_mfn(level3_ident_pgt);
1775 convert_pfn_mfn(level3_kernel_pgt);
1776
1777 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1778 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1779
1780 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1781 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1782
1783 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1784 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1785 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1786
1787 /* Set up identity map */
1788 xen_map_identity_early(level2_ident_pgt, max_pfn);
1789
1790 /* Make pagetable pieces RO */
1791 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1792 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1793 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1794 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1795 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1796 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1797
1798 /* Pin down new L4 */
1799 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1800 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1801
1802 /* Unpin Xen-provided one */
1803 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1804
1805 /* Switch over */
1806 pgd = init_level4_pgt;
1807
1808 /*
1809 * At this stage there can be no user pgd, and no page
1810 * structure to attach it to, so make sure we just set kernel
1811 * pgd.
1812 */
1813 xen_mc_batch();
1814 __xen_write_cr3(true, __pa(pgd));
1815 xen_mc_issue(PARAVIRT_LAZY_CPU);
1816
1817 reserve_early(__pa(xen_start_info->pt_base),
1818 __pa(xen_start_info->pt_base +
1819 xen_start_info->nr_pt_frames * PAGE_SIZE),
1820 "XEN PAGETABLES");
1821
1822 return pgd;
1823 }
1824 #else /* !CONFIG_X86_64 */
1825 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1826
1827 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1828 unsigned long max_pfn)
1829 {
1830 pmd_t *kernel_pmd;
1831
1832 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1833 xen_start_info->nr_pt_frames * PAGE_SIZE +
1834 512*1024);
1835
1836 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1837 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1838
1839 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1840
1841 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1842 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1843 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1844
1845 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1846 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1847 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1848
1849 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1850
1851 xen_write_cr3(__pa(swapper_pg_dir));
1852
1853 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1854
1855 reserve_early(__pa(xen_start_info->pt_base),
1856 __pa(xen_start_info->pt_base +
1857 xen_start_info->nr_pt_frames * PAGE_SIZE),
1858 "XEN PAGETABLES");
1859
1860 return swapper_pg_dir;
1861 }
1862 #endif /* CONFIG_X86_64 */
1863
1864 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1865 {
1866 pte_t pte;
1867
1868 phys >>= PAGE_SHIFT;
1869
1870 switch (idx) {
1871 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1872 #ifdef CONFIG_X86_F00F_BUG
1873 case FIX_F00F_IDT:
1874 #endif
1875 #ifdef CONFIG_X86_32
1876 case FIX_WP_TEST:
1877 case FIX_VDSO:
1878 # ifdef CONFIG_HIGHMEM
1879 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1880 # endif
1881 #else
1882 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1883 #endif
1884 #ifdef CONFIG_X86_LOCAL_APIC
1885 case FIX_APIC_BASE: /* maps dummy local APIC */
1886 #endif
1887 case FIX_TEXT_POKE0:
1888 case FIX_TEXT_POKE1:
1889 /* All local page mappings */
1890 pte = pfn_pte(phys, prot);
1891 break;
1892
1893 case FIX_PARAVIRT_BOOTMAP:
1894 /* This is an MFN, but it isn't an IO mapping from the
1895 IO domain */
1896 pte = mfn_pte(phys, prot);
1897 break;
1898
1899 default:
1900 /* By default, set_fixmap is used for hardware mappings */
1901 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1902 break;
1903 }
1904
1905 __native_set_fixmap(idx, pte);
1906
1907 #ifdef CONFIG_X86_64
1908 /* Replicate changes to map the vsyscall page into the user
1909 pagetable vsyscall mapping. */
1910 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1911 unsigned long vaddr = __fix_to_virt(idx);
1912 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1913 }
1914 #endif
1915 }
1916
1917 static __init void xen_post_allocator_init(void)
1918 {
1919 pv_mmu_ops.set_pte = xen_set_pte;
1920 pv_mmu_ops.set_pmd = xen_set_pmd;
1921 pv_mmu_ops.set_pud = xen_set_pud;
1922 #if PAGETABLE_LEVELS == 4
1923 pv_mmu_ops.set_pgd = xen_set_pgd;
1924 #endif
1925
1926 /* This will work as long as patching hasn't happened yet
1927 (which it hasn't) */
1928 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1929 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1930 pv_mmu_ops.release_pte = xen_release_pte;
1931 pv_mmu_ops.release_pmd = xen_release_pmd;
1932 #if PAGETABLE_LEVELS == 4
1933 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1934 pv_mmu_ops.release_pud = xen_release_pud;
1935 #endif
1936
1937 #ifdef CONFIG_X86_64
1938 SetPagePinned(virt_to_page(level3_user_vsyscall));
1939 #endif
1940 xen_mark_init_mm_pinned();
1941 }
1942
1943 static void xen_leave_lazy_mmu(void)
1944 {
1945 preempt_disable();
1946 xen_mc_flush();
1947 paravirt_leave_lazy_mmu();
1948 preempt_enable();
1949 }
1950
1951 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1952 .read_cr2 = xen_read_cr2,
1953 .write_cr2 = xen_write_cr2,
1954
1955 .read_cr3 = xen_read_cr3,
1956 .write_cr3 = xen_write_cr3,
1957
1958 .flush_tlb_user = xen_flush_tlb,
1959 .flush_tlb_kernel = xen_flush_tlb,
1960 .flush_tlb_single = xen_flush_tlb_single,
1961 .flush_tlb_others = xen_flush_tlb_others,
1962
1963 .pte_update = paravirt_nop,
1964 .pte_update_defer = paravirt_nop,
1965
1966 .pgd_alloc = xen_pgd_alloc,
1967 .pgd_free = xen_pgd_free,
1968
1969 .alloc_pte = xen_alloc_pte_init,
1970 .release_pte = xen_release_pte_init,
1971 .alloc_pmd = xen_alloc_pmd_init,
1972 .alloc_pmd_clone = paravirt_nop,
1973 .release_pmd = xen_release_pmd_init,
1974
1975 #ifdef CONFIG_X86_64
1976 .set_pte = xen_set_pte,
1977 #else
1978 .set_pte = xen_set_pte_init,
1979 #endif
1980 .set_pte_at = xen_set_pte_at,
1981 .set_pmd = xen_set_pmd_hyper,
1982
1983 .ptep_modify_prot_start = __ptep_modify_prot_start,
1984 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1985
1986 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
1987 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1988
1989 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
1990 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1991
1992 #ifdef CONFIG_X86_PAE
1993 .set_pte_atomic = xen_set_pte_atomic,
1994 .pte_clear = xen_pte_clear,
1995 .pmd_clear = xen_pmd_clear,
1996 #endif /* CONFIG_X86_PAE */
1997 .set_pud = xen_set_pud_hyper,
1998
1999 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2000 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2001
2002 #if PAGETABLE_LEVELS == 4
2003 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2004 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2005 .set_pgd = xen_set_pgd_hyper,
2006
2007 .alloc_pud = xen_alloc_pmd_init,
2008 .release_pud = xen_release_pmd_init,
2009 #endif /* PAGETABLE_LEVELS == 4 */
2010
2011 .activate_mm = xen_activate_mm,
2012 .dup_mmap = xen_dup_mmap,
2013 .exit_mmap = xen_exit_mmap,
2014
2015 .lazy_mode = {
2016 .enter = paravirt_enter_lazy_mmu,
2017 .leave = xen_leave_lazy_mmu,
2018 },
2019
2020 .set_fixmap = xen_set_fixmap,
2021 };
2022
2023 void __init xen_init_mmu_ops(void)
2024 {
2025 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2026 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2027 pv_mmu_ops = xen_mmu_ops;
2028
2029 vmap_lazy_unmap = false;
2030 }
2031
2032 /* Protected by xen_reservation_lock. */
2033 #define MAX_CONTIG_ORDER 9 /* 2MB */
2034 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2035
2036 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2037 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2038 unsigned long *in_frames,
2039 unsigned long *out_frames)
2040 {
2041 int i;
2042 struct multicall_space mcs;
2043
2044 xen_mc_batch();
2045 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2046 mcs = __xen_mc_entry(0);
2047
2048 if (in_frames)
2049 in_frames[i] = virt_to_mfn(vaddr);
2050
2051 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2052 set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2053
2054 if (out_frames)
2055 out_frames[i] = virt_to_pfn(vaddr);
2056 }
2057 xen_mc_issue(0);
2058 }
2059
2060 /*
2061 * Update the pfn-to-mfn mappings for a virtual address range, either to
2062 * point to an array of mfns, or contiguously from a single starting
2063 * mfn.
2064 */
2065 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2066 unsigned long *mfns,
2067 unsigned long first_mfn)
2068 {
2069 unsigned i, limit;
2070 unsigned long mfn;
2071
2072 xen_mc_batch();
2073
2074 limit = 1u << order;
2075 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2076 struct multicall_space mcs;
2077 unsigned flags;
2078
2079 mcs = __xen_mc_entry(0);
2080 if (mfns)
2081 mfn = mfns[i];
2082 else
2083 mfn = first_mfn + i;
2084
2085 if (i < (limit - 1))
2086 flags = 0;
2087 else {
2088 if (order == 0)
2089 flags = UVMF_INVLPG | UVMF_ALL;
2090 else
2091 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2092 }
2093
2094 MULTI_update_va_mapping(mcs.mc, vaddr,
2095 mfn_pte(mfn, PAGE_KERNEL), flags);
2096
2097 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2098 }
2099
2100 xen_mc_issue(0);
2101 }
2102
2103 /*
2104 * Perform the hypercall to exchange a region of our pfns to point to
2105 * memory with the required contiguous alignment. Takes the pfns as
2106 * input, and populates mfns as output.
2107 *
2108 * Returns a success code indicating whether the hypervisor was able to
2109 * satisfy the request or not.
2110 */
2111 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2112 unsigned long *pfns_in,
2113 unsigned long extents_out,
2114 unsigned int order_out,
2115 unsigned long *mfns_out,
2116 unsigned int address_bits)
2117 {
2118 long rc;
2119 int success;
2120
2121 struct xen_memory_exchange exchange = {
2122 .in = {
2123 .nr_extents = extents_in,
2124 .extent_order = order_in,
2125 .extent_start = pfns_in,
2126 .domid = DOMID_SELF
2127 },
2128 .out = {
2129 .nr_extents = extents_out,
2130 .extent_order = order_out,
2131 .extent_start = mfns_out,
2132 .address_bits = address_bits,
2133 .domid = DOMID_SELF
2134 }
2135 };
2136
2137 BUG_ON(extents_in << order_in != extents_out << order_out);
2138
2139 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2140 success = (exchange.nr_exchanged == extents_in);
2141
2142 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2143 BUG_ON(success && (rc != 0));
2144
2145 return success;
2146 }
2147
2148 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2149 unsigned int address_bits)
2150 {
2151 unsigned long *in_frames = discontig_frames, out_frame;
2152 unsigned long flags;
2153 int success;
2154
2155 /*
2156 * Currently an auto-translated guest will not perform I/O, nor will
2157 * it require PAE page directories below 4GB. Therefore any calls to
2158 * this function are redundant and can be ignored.
2159 */
2160
2161 if (xen_feature(XENFEAT_auto_translated_physmap))
2162 return 0;
2163
2164 if (unlikely(order > MAX_CONTIG_ORDER))
2165 return -ENOMEM;
2166
2167 memset((void *) vstart, 0, PAGE_SIZE << order);
2168
2169 spin_lock_irqsave(&xen_reservation_lock, flags);
2170
2171 /* 1. Zap current PTEs, remembering MFNs. */
2172 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2173
2174 /* 2. Get a new contiguous memory extent. */
2175 out_frame = virt_to_pfn(vstart);
2176 success = xen_exchange_memory(1UL << order, 0, in_frames,
2177 1, order, &out_frame,
2178 address_bits);
2179
2180 /* 3. Map the new extent in place of old pages. */
2181 if (success)
2182 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2183 else
2184 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2185
2186 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2187
2188 return success ? 0 : -ENOMEM;
2189 }
2190 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2191
2192 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2193 {
2194 unsigned long *out_frames = discontig_frames, in_frame;
2195 unsigned long flags;
2196 int success;
2197
2198 if (xen_feature(XENFEAT_auto_translated_physmap))
2199 return;
2200
2201 if (unlikely(order > MAX_CONTIG_ORDER))
2202 return;
2203
2204 memset((void *) vstart, 0, PAGE_SIZE << order);
2205
2206 spin_lock_irqsave(&xen_reservation_lock, flags);
2207
2208 /* 1. Find start MFN of contiguous extent. */
2209 in_frame = virt_to_mfn(vstart);
2210
2211 /* 2. Zap current PTEs. */
2212 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2213
2214 /* 3. Do the exchange for non-contiguous MFNs. */
2215 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2216 0, out_frames, 0);
2217
2218 /* 4. Map new pages in place of old pages. */
2219 if (success)
2220 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2221 else
2222 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2223
2224 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2225 }
2226 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2227
2228 #ifdef CONFIG_XEN_PVHVM
2229 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2230 {
2231 struct xen_hvm_pagetable_dying a;
2232 int rc;
2233
2234 a.domid = DOMID_SELF;
2235 a.gpa = __pa(mm->pgd);
2236 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2237 WARN_ON_ONCE(rc < 0);
2238 }
2239
2240 static int is_pagetable_dying_supported(void)
2241 {
2242 struct xen_hvm_pagetable_dying a;
2243 int rc = 0;
2244
2245 a.domid = DOMID_SELF;
2246 a.gpa = 0x00;
2247 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2248 if (rc < 0) {
2249 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2250 return 0;
2251 }
2252 return 1;
2253 }
2254
2255 void __init xen_hvm_init_mmu_ops(void)
2256 {
2257 if (is_pagetable_dying_supported())
2258 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2259 }
2260 #endif
2261
2262 #ifdef CONFIG_XEN_DEBUG_FS
2263
2264 static struct dentry *d_mmu_debug;
2265
2266 static int __init xen_mmu_debugfs(void)
2267 {
2268 struct dentry *d_xen = xen_init_debugfs();
2269
2270 if (d_xen == NULL)
2271 return -ENOMEM;
2272
2273 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2274
2275 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2276
2277 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2278 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2279 &mmu_stats.pgd_update_pinned);
2280 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2281 &mmu_stats.pgd_update_pinned);
2282
2283 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2284 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2285 &mmu_stats.pud_update_pinned);
2286 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2287 &mmu_stats.pud_update_pinned);
2288
2289 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2290 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2291 &mmu_stats.pmd_update_pinned);
2292 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2293 &mmu_stats.pmd_update_pinned);
2294
2295 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2296 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2297 // &mmu_stats.pte_update_pinned);
2298 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2299 &mmu_stats.pte_update_pinned);
2300
2301 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2302 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2303 &mmu_stats.mmu_update_extended);
2304 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2305 mmu_stats.mmu_update_histo, 20);
2306
2307 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2308 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2309 &mmu_stats.set_pte_at_batched);
2310 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2311 &mmu_stats.set_pte_at_current);
2312 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2313 &mmu_stats.set_pte_at_kernel);
2314
2315 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2316 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2317 &mmu_stats.prot_commit_batched);
2318
2319 return 0;
2320 }
2321 fs_initcall(xen_mmu_debugfs);
2322
2323 #endif /* CONFIG_XEN_DEBUG_FS */
This page took 0.076103 seconds and 6 git commands to generate.