x86: use __page_aligned_data/bss
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
44
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/mmu_context.h>
48 #include <asm/paravirt.h>
49 #include <asm/linkage.h>
50
51 #include <asm/xen/hypercall.h>
52 #include <asm/xen/hypervisor.h>
53
54 #include <xen/page.h>
55 #include <xen/interface/xen.h>
56
57 #include "multicalls.h"
58 #include "mmu.h"
59
60 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
61 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
62
63 /* Placeholder for holes in the address space */
64 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
65 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
66
67 /* Array of pointers to pages containing p2m entries */
68 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
69 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
70
71 /* Arrays of p2m arrays expressed in mfns used for save/restore */
72 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
73
74 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
75 __page_aligned_bss;
76
77 static inline unsigned p2m_top_index(unsigned long pfn)
78 {
79 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
80 return pfn / P2M_ENTRIES_PER_PAGE;
81 }
82
83 static inline unsigned p2m_index(unsigned long pfn)
84 {
85 return pfn % P2M_ENTRIES_PER_PAGE;
86 }
87
88 /* Build the parallel p2m_top_mfn structures */
89 void xen_setup_mfn_list_list(void)
90 {
91 unsigned pfn, idx;
92
93 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
94 unsigned topidx = p2m_top_index(pfn);
95
96 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
97 }
98
99 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
100 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
101 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
102 }
103
104 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
105
106 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
107 virt_to_mfn(p2m_top_mfn_list);
108 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
109 }
110
111 /* Set up p2m_top to point to the domain-builder provided p2m pages */
112 void __init xen_build_dynamic_phys_to_machine(void)
113 {
114 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
115 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
116 unsigned pfn;
117
118 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
119 unsigned topidx = p2m_top_index(pfn);
120
121 p2m_top[topidx] = &mfn_list[pfn];
122 }
123 }
124
125 unsigned long get_phys_to_machine(unsigned long pfn)
126 {
127 unsigned topidx, idx;
128
129 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
130 return INVALID_P2M_ENTRY;
131
132 topidx = p2m_top_index(pfn);
133 idx = p2m_index(pfn);
134 return p2m_top[topidx][idx];
135 }
136 EXPORT_SYMBOL_GPL(get_phys_to_machine);
137
138 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
139 {
140 unsigned long *p;
141 unsigned i;
142
143 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
144 BUG_ON(p == NULL);
145
146 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
147 p[i] = INVALID_P2M_ENTRY;
148
149 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
150 free_page((unsigned long)p);
151 else
152 *mfnp = virt_to_mfn(p);
153 }
154
155 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
156 {
157 unsigned topidx, idx;
158
159 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
160 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
161 return;
162 }
163
164 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
165 BUG_ON(mfn != INVALID_P2M_ENTRY);
166 return;
167 }
168
169 topidx = p2m_top_index(pfn);
170 if (p2m_top[topidx] == p2m_missing) {
171 /* no need to allocate a page to store an invalid entry */
172 if (mfn == INVALID_P2M_ENTRY)
173 return;
174 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
175 }
176
177 idx = p2m_index(pfn);
178 p2m_top[topidx][idx] = mfn;
179 }
180
181 xmaddr_t arbitrary_virt_to_machine(unsigned long address)
182 {
183 unsigned int level;
184 pte_t *pte = lookup_address(address, &level);
185 unsigned offset = address & ~PAGE_MASK;
186
187 BUG_ON(pte == NULL);
188
189 return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset);
190 }
191
192 void make_lowmem_page_readonly(void *vaddr)
193 {
194 pte_t *pte, ptev;
195 unsigned long address = (unsigned long)vaddr;
196 unsigned int level;
197
198 pte = lookup_address(address, &level);
199 BUG_ON(pte == NULL);
200
201 ptev = pte_wrprotect(*pte);
202
203 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
204 BUG();
205 }
206
207 void make_lowmem_page_readwrite(void *vaddr)
208 {
209 pte_t *pte, ptev;
210 unsigned long address = (unsigned long)vaddr;
211 unsigned int level;
212
213 pte = lookup_address(address, &level);
214 BUG_ON(pte == NULL);
215
216 ptev = pte_mkwrite(*pte);
217
218 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
219 BUG();
220 }
221
222
223 static bool page_pinned(void *ptr)
224 {
225 struct page *page = virt_to_page(ptr);
226
227 return PagePinned(page);
228 }
229
230 static void extend_mmu_update(const struct mmu_update *update)
231 {
232 struct multicall_space mcs;
233 struct mmu_update *u;
234
235 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
236
237 if (mcs.mc != NULL)
238 mcs.mc->args[1]++;
239 else {
240 mcs = __xen_mc_entry(sizeof(*u));
241 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
242 }
243
244 u = mcs.args;
245 *u = *update;
246 }
247
248 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
249 {
250 struct mmu_update u;
251
252 preempt_disable();
253
254 xen_mc_batch();
255
256 u.ptr = virt_to_machine(ptr).maddr;
257 u.val = pmd_val_ma(val);
258 extend_mmu_update(&u);
259
260 xen_mc_issue(PARAVIRT_LAZY_MMU);
261
262 preempt_enable();
263 }
264
265 void xen_set_pmd(pmd_t *ptr, pmd_t val)
266 {
267 /* If page is not pinned, we can just update the entry
268 directly */
269 if (!page_pinned(ptr)) {
270 *ptr = val;
271 return;
272 }
273
274 xen_set_pmd_hyper(ptr, val);
275 }
276
277 /*
278 * Associate a virtual page frame with a given physical page frame
279 * and protection flags for that frame.
280 */
281 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
282 {
283 pgd_t *pgd;
284 pud_t *pud;
285 pmd_t *pmd;
286 pte_t *pte;
287
288 pgd = swapper_pg_dir + pgd_index(vaddr);
289 if (pgd_none(*pgd)) {
290 BUG();
291 return;
292 }
293 pud = pud_offset(pgd, vaddr);
294 if (pud_none(*pud)) {
295 BUG();
296 return;
297 }
298 pmd = pmd_offset(pud, vaddr);
299 if (pmd_none(*pmd)) {
300 BUG();
301 return;
302 }
303 pte = pte_offset_kernel(pmd, vaddr);
304 /* <mfn,flags> stored as-is, to permit clearing entries */
305 xen_set_pte(pte, mfn_pte(mfn, flags));
306
307 /*
308 * It's enough to flush this one mapping.
309 * (PGE mappings get flushed as well)
310 */
311 __flush_tlb_one(vaddr);
312 }
313
314 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
315 pte_t *ptep, pte_t pteval)
316 {
317 /* updates to init_mm may be done without lock */
318 if (mm == &init_mm)
319 preempt_disable();
320
321 if (mm == current->mm || mm == &init_mm) {
322 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
323 struct multicall_space mcs;
324 mcs = xen_mc_entry(0);
325
326 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
327 xen_mc_issue(PARAVIRT_LAZY_MMU);
328 goto out;
329 } else
330 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
331 goto out;
332 }
333 xen_set_pte(ptep, pteval);
334
335 out:
336 if (mm == &init_mm)
337 preempt_enable();
338 }
339
340 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
341 {
342 /* Just return the pte as-is. We preserve the bits on commit */
343 return *ptep;
344 }
345
346 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
347 pte_t *ptep, pte_t pte)
348 {
349 struct mmu_update u;
350
351 xen_mc_batch();
352
353 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
354 u.val = pte_val_ma(pte);
355 extend_mmu_update(&u);
356
357 xen_mc_issue(PARAVIRT_LAZY_MMU);
358 }
359
360 /* Assume pteval_t is equivalent to all the other *val_t types. */
361 static pteval_t pte_mfn_to_pfn(pteval_t val)
362 {
363 if (val & _PAGE_PRESENT) {
364 unsigned long mfn = (val & PTE_MASK) >> PAGE_SHIFT;
365 pteval_t flags = val & ~PTE_MASK;
366 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
367 }
368
369 return val;
370 }
371
372 static pteval_t pte_pfn_to_mfn(pteval_t val)
373 {
374 if (val & _PAGE_PRESENT) {
375 unsigned long pfn = (val & PTE_MASK) >> PAGE_SHIFT;
376 pteval_t flags = val & ~PTE_MASK;
377 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
378 }
379
380 return val;
381 }
382
383 pteval_t xen_pte_val(pte_t pte)
384 {
385 return pte_mfn_to_pfn(pte.pte);
386 }
387
388 pgdval_t xen_pgd_val(pgd_t pgd)
389 {
390 return pte_mfn_to_pfn(pgd.pgd);
391 }
392
393 pte_t xen_make_pte(pteval_t pte)
394 {
395 pte = pte_pfn_to_mfn(pte);
396 return native_make_pte(pte);
397 }
398
399 pgd_t xen_make_pgd(pgdval_t pgd)
400 {
401 pgd = pte_pfn_to_mfn(pgd);
402 return native_make_pgd(pgd);
403 }
404
405 pmdval_t xen_pmd_val(pmd_t pmd)
406 {
407 return pte_mfn_to_pfn(pmd.pmd);
408 }
409
410 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
411 {
412 struct mmu_update u;
413
414 preempt_disable();
415
416 xen_mc_batch();
417
418 u.ptr = virt_to_machine(ptr).maddr;
419 u.val = pud_val_ma(val);
420 extend_mmu_update(&u);
421
422 xen_mc_issue(PARAVIRT_LAZY_MMU);
423
424 preempt_enable();
425 }
426
427 void xen_set_pud(pud_t *ptr, pud_t val)
428 {
429 /* If page is not pinned, we can just update the entry
430 directly */
431 if (!page_pinned(ptr)) {
432 *ptr = val;
433 return;
434 }
435
436 xen_set_pud_hyper(ptr, val);
437 }
438
439 void xen_set_pte(pte_t *ptep, pte_t pte)
440 {
441 ptep->pte_high = pte.pte_high;
442 smp_wmb();
443 ptep->pte_low = pte.pte_low;
444 }
445
446 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
447 {
448 set_64bit((u64 *)ptep, pte_val_ma(pte));
449 }
450
451 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
452 {
453 ptep->pte_low = 0;
454 smp_wmb(); /* make sure low gets written first */
455 ptep->pte_high = 0;
456 }
457
458 void xen_pmd_clear(pmd_t *pmdp)
459 {
460 set_pmd(pmdp, __pmd(0));
461 }
462
463 pmd_t xen_make_pmd(pmdval_t pmd)
464 {
465 pmd = pte_pfn_to_mfn(pmd);
466 return native_make_pmd(pmd);
467 }
468
469 /*
470 (Yet another) pagetable walker. This one is intended for pinning a
471 pagetable. This means that it walks a pagetable and calls the
472 callback function on each page it finds making up the page table,
473 at every level. It walks the entire pagetable, but it only bothers
474 pinning pte pages which are below pte_limit. In the normal case
475 this will be TASK_SIZE, but at boot we need to pin up to
476 FIXADDR_TOP. But the important bit is that we don't pin beyond
477 there, because then we start getting into Xen's ptes.
478 */
479 static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level),
480 unsigned long limit)
481 {
482 pgd_t *pgd = pgd_base;
483 int flush = 0;
484 unsigned long addr = 0;
485 unsigned long pgd_next;
486
487 BUG_ON(limit > FIXADDR_TOP);
488
489 if (xen_feature(XENFEAT_auto_translated_physmap))
490 return 0;
491
492 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
493 pud_t *pud;
494 unsigned long pud_limit, pud_next;
495
496 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
497
498 if (!pgd_val(*pgd))
499 continue;
500
501 pud = pud_offset(pgd, 0);
502
503 if (PTRS_PER_PUD > 1) /* not folded */
504 flush |= (*func)(virt_to_page(pud), PT_PUD);
505
506 for (; addr != pud_limit; pud++, addr = pud_next) {
507 pmd_t *pmd;
508 unsigned long pmd_limit;
509
510 pud_next = pud_addr_end(addr, pud_limit);
511
512 if (pud_next < limit)
513 pmd_limit = pud_next;
514 else
515 pmd_limit = limit;
516
517 if (pud_none(*pud))
518 continue;
519
520 pmd = pmd_offset(pud, 0);
521
522 if (PTRS_PER_PMD > 1) /* not folded */
523 flush |= (*func)(virt_to_page(pmd), PT_PMD);
524
525 for (; addr != pmd_limit; pmd++) {
526 addr += (PAGE_SIZE * PTRS_PER_PTE);
527 if ((pmd_limit-1) < (addr-1)) {
528 addr = pmd_limit;
529 break;
530 }
531
532 if (pmd_none(*pmd))
533 continue;
534
535 flush |= (*func)(pmd_page(*pmd), PT_PTE);
536 }
537 }
538 }
539
540 flush |= (*func)(virt_to_page(pgd_base), PT_PGD);
541
542 return flush;
543 }
544
545 static spinlock_t *lock_pte(struct page *page)
546 {
547 spinlock_t *ptl = NULL;
548
549 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
550 ptl = __pte_lockptr(page);
551 spin_lock(ptl);
552 #endif
553
554 return ptl;
555 }
556
557 static void do_unlock(void *v)
558 {
559 spinlock_t *ptl = v;
560 spin_unlock(ptl);
561 }
562
563 static void xen_do_pin(unsigned level, unsigned long pfn)
564 {
565 struct mmuext_op *op;
566 struct multicall_space mcs;
567
568 mcs = __xen_mc_entry(sizeof(*op));
569 op = mcs.args;
570 op->cmd = level;
571 op->arg1.mfn = pfn_to_mfn(pfn);
572 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
573 }
574
575 static int pin_page(struct page *page, enum pt_level level)
576 {
577 unsigned pgfl = TestSetPagePinned(page);
578 int flush;
579
580 if (pgfl)
581 flush = 0; /* already pinned */
582 else if (PageHighMem(page))
583 /* kmaps need flushing if we found an unpinned
584 highpage */
585 flush = 1;
586 else {
587 void *pt = lowmem_page_address(page);
588 unsigned long pfn = page_to_pfn(page);
589 struct multicall_space mcs = __xen_mc_entry(0);
590 spinlock_t *ptl;
591
592 flush = 0;
593
594 ptl = NULL;
595 if (level == PT_PTE)
596 ptl = lock_pte(page);
597
598 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
599 pfn_pte(pfn, PAGE_KERNEL_RO),
600 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
601
602 if (level == PT_PTE)
603 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
604
605 if (ptl) {
606 /* Queue a deferred unlock for when this batch
607 is completed. */
608 xen_mc_callback(do_unlock, ptl);
609 }
610 }
611
612 return flush;
613 }
614
615 /* This is called just after a mm has been created, but it has not
616 been used yet. We need to make sure that its pagetable is all
617 read-only, and can be pinned. */
618 void xen_pgd_pin(pgd_t *pgd)
619 {
620 xen_mc_batch();
621
622 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
623 /* re-enable interrupts for kmap_flush_unused */
624 xen_mc_issue(0);
625 kmap_flush_unused();
626 xen_mc_batch();
627 }
628
629 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
630 xen_mc_issue(0);
631 }
632
633 /*
634 * On save, we need to pin all pagetables to make sure they get their
635 * mfns turned into pfns. Search the list for any unpinned pgds and pin
636 * them (unpinned pgds are not currently in use, probably because the
637 * process is under construction or destruction).
638 */
639 void xen_mm_pin_all(void)
640 {
641 unsigned long flags;
642 struct page *page;
643
644 spin_lock_irqsave(&pgd_lock, flags);
645
646 list_for_each_entry(page, &pgd_list, lru) {
647 if (!PagePinned(page)) {
648 xen_pgd_pin((pgd_t *)page_address(page));
649 SetPageSavePinned(page);
650 }
651 }
652
653 spin_unlock_irqrestore(&pgd_lock, flags);
654 }
655
656 /*
657 * The init_mm pagetable is really pinned as soon as its created, but
658 * that's before we have page structures to store the bits. So do all
659 * the book-keeping now.
660 */
661 static __init int mark_pinned(struct page *page, enum pt_level level)
662 {
663 SetPagePinned(page);
664 return 0;
665 }
666
667 void __init xen_mark_init_mm_pinned(void)
668 {
669 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
670 }
671
672 static int unpin_page(struct page *page, enum pt_level level)
673 {
674 unsigned pgfl = TestClearPagePinned(page);
675
676 if (pgfl && !PageHighMem(page)) {
677 void *pt = lowmem_page_address(page);
678 unsigned long pfn = page_to_pfn(page);
679 spinlock_t *ptl = NULL;
680 struct multicall_space mcs;
681
682 if (level == PT_PTE) {
683 ptl = lock_pte(page);
684
685 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
686 }
687
688 mcs = __xen_mc_entry(0);
689
690 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
691 pfn_pte(pfn, PAGE_KERNEL),
692 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
693
694 if (ptl) {
695 /* unlock when batch completed */
696 xen_mc_callback(do_unlock, ptl);
697 }
698 }
699
700 return 0; /* never need to flush on unpin */
701 }
702
703 /* Release a pagetables pages back as normal RW */
704 static void xen_pgd_unpin(pgd_t *pgd)
705 {
706 xen_mc_batch();
707
708 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
709
710 pgd_walk(pgd, unpin_page, TASK_SIZE);
711
712 xen_mc_issue(0);
713 }
714
715 /*
716 * On resume, undo any pinning done at save, so that the rest of the
717 * kernel doesn't see any unexpected pinned pagetables.
718 */
719 void xen_mm_unpin_all(void)
720 {
721 unsigned long flags;
722 struct page *page;
723
724 spin_lock_irqsave(&pgd_lock, flags);
725
726 list_for_each_entry(page, &pgd_list, lru) {
727 if (PageSavePinned(page)) {
728 BUG_ON(!PagePinned(page));
729 printk("unpinning pinned %p\n", page_address(page));
730 xen_pgd_unpin((pgd_t *)page_address(page));
731 ClearPageSavePinned(page);
732 }
733 }
734
735 spin_unlock_irqrestore(&pgd_lock, flags);
736 }
737
738 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
739 {
740 spin_lock(&next->page_table_lock);
741 xen_pgd_pin(next->pgd);
742 spin_unlock(&next->page_table_lock);
743 }
744
745 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
746 {
747 spin_lock(&mm->page_table_lock);
748 xen_pgd_pin(mm->pgd);
749 spin_unlock(&mm->page_table_lock);
750 }
751
752
753 #ifdef CONFIG_SMP
754 /* Another cpu may still have their %cr3 pointing at the pagetable, so
755 we need to repoint it somewhere else before we can unpin it. */
756 static void drop_other_mm_ref(void *info)
757 {
758 struct mm_struct *mm = info;
759
760 if (__get_cpu_var(cpu_tlbstate).active_mm == mm)
761 leave_mm(smp_processor_id());
762
763 /* If this cpu still has a stale cr3 reference, then make sure
764 it has been flushed. */
765 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
766 load_cr3(swapper_pg_dir);
767 arch_flush_lazy_cpu_mode();
768 }
769 }
770
771 static void drop_mm_ref(struct mm_struct *mm)
772 {
773 cpumask_t mask;
774 unsigned cpu;
775
776 if (current->active_mm == mm) {
777 if (current->mm == mm)
778 load_cr3(swapper_pg_dir);
779 else
780 leave_mm(smp_processor_id());
781 arch_flush_lazy_cpu_mode();
782 }
783
784 /* Get the "official" set of cpus referring to our pagetable. */
785 mask = mm->cpu_vm_mask;
786
787 /* It's possible that a vcpu may have a stale reference to our
788 cr3, because its in lazy mode, and it hasn't yet flushed
789 its set of pending hypercalls yet. In this case, we can
790 look at its actual current cr3 value, and force it to flush
791 if needed. */
792 for_each_online_cpu(cpu) {
793 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
794 cpu_set(cpu, mask);
795 }
796
797 if (!cpus_empty(mask))
798 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
799 }
800 #else
801 static void drop_mm_ref(struct mm_struct *mm)
802 {
803 if (current->active_mm == mm)
804 load_cr3(swapper_pg_dir);
805 }
806 #endif
807
808 /*
809 * While a process runs, Xen pins its pagetables, which means that the
810 * hypervisor forces it to be read-only, and it controls all updates
811 * to it. This means that all pagetable updates have to go via the
812 * hypervisor, which is moderately expensive.
813 *
814 * Since we're pulling the pagetable down, we switch to use init_mm,
815 * unpin old process pagetable and mark it all read-write, which
816 * allows further operations on it to be simple memory accesses.
817 *
818 * The only subtle point is that another CPU may be still using the
819 * pagetable because of lazy tlb flushing. This means we need need to
820 * switch all CPUs off this pagetable before we can unpin it.
821 */
822 void xen_exit_mmap(struct mm_struct *mm)
823 {
824 get_cpu(); /* make sure we don't move around */
825 drop_mm_ref(mm);
826 put_cpu();
827
828 spin_lock(&mm->page_table_lock);
829
830 /* pgd may not be pinned in the error exit path of execve */
831 if (page_pinned(mm->pgd))
832 xen_pgd_unpin(mm->pgd);
833
834 spin_unlock(&mm->page_table_lock);
835 }
This page took 0.047898 seconds and 6 git commands to generate.