Merge branch 'core/softlockup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
44
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/fixmap.h>
48 #include <asm/mmu_context.h>
49 #include <asm/paravirt.h>
50 #include <asm/linkage.h>
51
52 #include <asm/xen/hypercall.h>
53 #include <asm/xen/hypervisor.h>
54
55 #include <xen/page.h>
56 #include <xen/interface/xen.h>
57
58 #include "multicalls.h"
59 #include "mmu.h"
60
61 /*
62 * Just beyond the highest usermode address. STACK_TOP_MAX has a
63 * redzone above it, so round it up to a PGD boundary.
64 */
65 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
66
67
68 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
69 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
70
71 /* Placeholder for holes in the address space */
72 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
73 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
74
75 /* Array of pointers to pages containing p2m entries */
76 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
77 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
78
79 /* Arrays of p2m arrays expressed in mfns used for save/restore */
80 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
81
82 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
83 __page_aligned_bss;
84
85 static inline unsigned p2m_top_index(unsigned long pfn)
86 {
87 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
88 return pfn / P2M_ENTRIES_PER_PAGE;
89 }
90
91 static inline unsigned p2m_index(unsigned long pfn)
92 {
93 return pfn % P2M_ENTRIES_PER_PAGE;
94 }
95
96 /* Build the parallel p2m_top_mfn structures */
97 void xen_setup_mfn_list_list(void)
98 {
99 unsigned pfn, idx;
100
101 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
102 unsigned topidx = p2m_top_index(pfn);
103
104 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
105 }
106
107 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
108 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
109 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
110 }
111
112 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
113
114 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
115 virt_to_mfn(p2m_top_mfn_list);
116 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
117 }
118
119 /* Set up p2m_top to point to the domain-builder provided p2m pages */
120 void __init xen_build_dynamic_phys_to_machine(void)
121 {
122 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
123 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
124 unsigned pfn;
125
126 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
127 unsigned topidx = p2m_top_index(pfn);
128
129 p2m_top[topidx] = &mfn_list[pfn];
130 }
131 }
132
133 unsigned long get_phys_to_machine(unsigned long pfn)
134 {
135 unsigned topidx, idx;
136
137 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
138 return INVALID_P2M_ENTRY;
139
140 topidx = p2m_top_index(pfn);
141 idx = p2m_index(pfn);
142 return p2m_top[topidx][idx];
143 }
144 EXPORT_SYMBOL_GPL(get_phys_to_machine);
145
146 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
147 {
148 unsigned long *p;
149 unsigned i;
150
151 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
152 BUG_ON(p == NULL);
153
154 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
155 p[i] = INVALID_P2M_ENTRY;
156
157 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
158 free_page((unsigned long)p);
159 else
160 *mfnp = virt_to_mfn(p);
161 }
162
163 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
164 {
165 unsigned topidx, idx;
166
167 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
168 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
169 return;
170 }
171
172 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
173 BUG_ON(mfn != INVALID_P2M_ENTRY);
174 return;
175 }
176
177 topidx = p2m_top_index(pfn);
178 if (p2m_top[topidx] == p2m_missing) {
179 /* no need to allocate a page to store an invalid entry */
180 if (mfn == INVALID_P2M_ENTRY)
181 return;
182 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
183 }
184
185 idx = p2m_index(pfn);
186 p2m_top[topidx][idx] = mfn;
187 }
188
189 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
190 {
191 unsigned long address = (unsigned long)vaddr;
192 unsigned int level;
193 pte_t *pte = lookup_address(address, &level);
194 unsigned offset = address & ~PAGE_MASK;
195
196 BUG_ON(pte == NULL);
197
198 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
199 }
200
201 void make_lowmem_page_readonly(void *vaddr)
202 {
203 pte_t *pte, ptev;
204 unsigned long address = (unsigned long)vaddr;
205 unsigned int level;
206
207 pte = lookup_address(address, &level);
208 BUG_ON(pte == NULL);
209
210 ptev = pte_wrprotect(*pte);
211
212 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
213 BUG();
214 }
215
216 void make_lowmem_page_readwrite(void *vaddr)
217 {
218 pte_t *pte, ptev;
219 unsigned long address = (unsigned long)vaddr;
220 unsigned int level;
221
222 pte = lookup_address(address, &level);
223 BUG_ON(pte == NULL);
224
225 ptev = pte_mkwrite(*pte);
226
227 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
228 BUG();
229 }
230
231
232 static bool page_pinned(void *ptr)
233 {
234 struct page *page = virt_to_page(ptr);
235
236 return PagePinned(page);
237 }
238
239 static void extend_mmu_update(const struct mmu_update *update)
240 {
241 struct multicall_space mcs;
242 struct mmu_update *u;
243
244 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
245
246 if (mcs.mc != NULL)
247 mcs.mc->args[1]++;
248 else {
249 mcs = __xen_mc_entry(sizeof(*u));
250 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
251 }
252
253 u = mcs.args;
254 *u = *update;
255 }
256
257 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
258 {
259 struct mmu_update u;
260
261 preempt_disable();
262
263 xen_mc_batch();
264
265 /* ptr may be ioremapped for 64-bit pagetable setup */
266 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
267 u.val = pmd_val_ma(val);
268 extend_mmu_update(&u);
269
270 xen_mc_issue(PARAVIRT_LAZY_MMU);
271
272 preempt_enable();
273 }
274
275 void xen_set_pmd(pmd_t *ptr, pmd_t val)
276 {
277 /* If page is not pinned, we can just update the entry
278 directly */
279 if (!page_pinned(ptr)) {
280 *ptr = val;
281 return;
282 }
283
284 xen_set_pmd_hyper(ptr, val);
285 }
286
287 /*
288 * Associate a virtual page frame with a given physical page frame
289 * and protection flags for that frame.
290 */
291 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
292 {
293 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
294 }
295
296 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
297 pte_t *ptep, pte_t pteval)
298 {
299 /* updates to init_mm may be done without lock */
300 if (mm == &init_mm)
301 preempt_disable();
302
303 if (mm == current->mm || mm == &init_mm) {
304 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
305 struct multicall_space mcs;
306 mcs = xen_mc_entry(0);
307
308 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
309 xen_mc_issue(PARAVIRT_LAZY_MMU);
310 goto out;
311 } else
312 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
313 goto out;
314 }
315 xen_set_pte(ptep, pteval);
316
317 out:
318 if (mm == &init_mm)
319 preempt_enable();
320 }
321
322 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
323 {
324 /* Just return the pte as-is. We preserve the bits on commit */
325 return *ptep;
326 }
327
328 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
329 pte_t *ptep, pte_t pte)
330 {
331 struct mmu_update u;
332
333 xen_mc_batch();
334
335 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
336 u.val = pte_val_ma(pte);
337 extend_mmu_update(&u);
338
339 xen_mc_issue(PARAVIRT_LAZY_MMU);
340 }
341
342 /* Assume pteval_t is equivalent to all the other *val_t types. */
343 static pteval_t pte_mfn_to_pfn(pteval_t val)
344 {
345 if (val & _PAGE_PRESENT) {
346 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
347 pteval_t flags = val & PTE_FLAGS_MASK;
348 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
349 }
350
351 return val;
352 }
353
354 static pteval_t pte_pfn_to_mfn(pteval_t val)
355 {
356 if (val & _PAGE_PRESENT) {
357 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
358 pteval_t flags = val & PTE_FLAGS_MASK;
359 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
360 }
361
362 return val;
363 }
364
365 pteval_t xen_pte_val(pte_t pte)
366 {
367 return pte_mfn_to_pfn(pte.pte);
368 }
369
370 pgdval_t xen_pgd_val(pgd_t pgd)
371 {
372 return pte_mfn_to_pfn(pgd.pgd);
373 }
374
375 pte_t xen_make_pte(pteval_t pte)
376 {
377 pte = pte_pfn_to_mfn(pte);
378 return native_make_pte(pte);
379 }
380
381 pgd_t xen_make_pgd(pgdval_t pgd)
382 {
383 pgd = pte_pfn_to_mfn(pgd);
384 return native_make_pgd(pgd);
385 }
386
387 pmdval_t xen_pmd_val(pmd_t pmd)
388 {
389 return pte_mfn_to_pfn(pmd.pmd);
390 }
391
392 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
393 {
394 struct mmu_update u;
395
396 preempt_disable();
397
398 xen_mc_batch();
399
400 /* ptr may be ioremapped for 64-bit pagetable setup */
401 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
402 u.val = pud_val_ma(val);
403 extend_mmu_update(&u);
404
405 xen_mc_issue(PARAVIRT_LAZY_MMU);
406
407 preempt_enable();
408 }
409
410 void xen_set_pud(pud_t *ptr, pud_t val)
411 {
412 /* If page is not pinned, we can just update the entry
413 directly */
414 if (!page_pinned(ptr)) {
415 *ptr = val;
416 return;
417 }
418
419 xen_set_pud_hyper(ptr, val);
420 }
421
422 void xen_set_pte(pte_t *ptep, pte_t pte)
423 {
424 #ifdef CONFIG_X86_PAE
425 ptep->pte_high = pte.pte_high;
426 smp_wmb();
427 ptep->pte_low = pte.pte_low;
428 #else
429 *ptep = pte;
430 #endif
431 }
432
433 #ifdef CONFIG_X86_PAE
434 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
435 {
436 set_64bit((u64 *)ptep, native_pte_val(pte));
437 }
438
439 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
440 {
441 ptep->pte_low = 0;
442 smp_wmb(); /* make sure low gets written first */
443 ptep->pte_high = 0;
444 }
445
446 void xen_pmd_clear(pmd_t *pmdp)
447 {
448 set_pmd(pmdp, __pmd(0));
449 }
450 #endif /* CONFIG_X86_PAE */
451
452 pmd_t xen_make_pmd(pmdval_t pmd)
453 {
454 pmd = pte_pfn_to_mfn(pmd);
455 return native_make_pmd(pmd);
456 }
457
458 #if PAGETABLE_LEVELS == 4
459 pudval_t xen_pud_val(pud_t pud)
460 {
461 return pte_mfn_to_pfn(pud.pud);
462 }
463
464 pud_t xen_make_pud(pudval_t pud)
465 {
466 pud = pte_pfn_to_mfn(pud);
467
468 return native_make_pud(pud);
469 }
470
471 pgd_t *xen_get_user_pgd(pgd_t *pgd)
472 {
473 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
474 unsigned offset = pgd - pgd_page;
475 pgd_t *user_ptr = NULL;
476
477 if (offset < pgd_index(USER_LIMIT)) {
478 struct page *page = virt_to_page(pgd_page);
479 user_ptr = (pgd_t *)page->private;
480 if (user_ptr)
481 user_ptr += offset;
482 }
483
484 return user_ptr;
485 }
486
487 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
488 {
489 struct mmu_update u;
490
491 u.ptr = virt_to_machine(ptr).maddr;
492 u.val = pgd_val_ma(val);
493 extend_mmu_update(&u);
494 }
495
496 /*
497 * Raw hypercall-based set_pgd, intended for in early boot before
498 * there's a page structure. This implies:
499 * 1. The only existing pagetable is the kernel's
500 * 2. It is always pinned
501 * 3. It has no user pagetable attached to it
502 */
503 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
504 {
505 preempt_disable();
506
507 xen_mc_batch();
508
509 __xen_set_pgd_hyper(ptr, val);
510
511 xen_mc_issue(PARAVIRT_LAZY_MMU);
512
513 preempt_enable();
514 }
515
516 void xen_set_pgd(pgd_t *ptr, pgd_t val)
517 {
518 pgd_t *user_ptr = xen_get_user_pgd(ptr);
519
520 /* If page is not pinned, we can just update the entry
521 directly */
522 if (!page_pinned(ptr)) {
523 *ptr = val;
524 if (user_ptr) {
525 WARN_ON(page_pinned(user_ptr));
526 *user_ptr = val;
527 }
528 return;
529 }
530
531 /* If it's pinned, then we can at least batch the kernel and
532 user updates together. */
533 xen_mc_batch();
534
535 __xen_set_pgd_hyper(ptr, val);
536 if (user_ptr)
537 __xen_set_pgd_hyper(user_ptr, val);
538
539 xen_mc_issue(PARAVIRT_LAZY_MMU);
540 }
541 #endif /* PAGETABLE_LEVELS == 4 */
542
543 /*
544 * (Yet another) pagetable walker. This one is intended for pinning a
545 * pagetable. This means that it walks a pagetable and calls the
546 * callback function on each page it finds making up the page table,
547 * at every level. It walks the entire pagetable, but it only bothers
548 * pinning pte pages which are below limit. In the normal case this
549 * will be STACK_TOP_MAX, but at boot we need to pin up to
550 * FIXADDR_TOP.
551 *
552 * For 32-bit the important bit is that we don't pin beyond there,
553 * because then we start getting into Xen's ptes.
554 *
555 * For 64-bit, we must skip the Xen hole in the middle of the address
556 * space, just after the big x86-64 virtual hole.
557 */
558 static int pgd_walk(pgd_t *pgd, int (*func)(struct page *, enum pt_level),
559 unsigned long limit)
560 {
561 int flush = 0;
562 unsigned hole_low, hole_high;
563 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
564 unsigned pgdidx, pudidx, pmdidx;
565
566 /* The limit is the last byte to be touched */
567 limit--;
568 BUG_ON(limit >= FIXADDR_TOP);
569
570 if (xen_feature(XENFEAT_auto_translated_physmap))
571 return 0;
572
573 /*
574 * 64-bit has a great big hole in the middle of the address
575 * space, which contains the Xen mappings. On 32-bit these
576 * will end up making a zero-sized hole and so is a no-op.
577 */
578 hole_low = pgd_index(USER_LIMIT);
579 hole_high = pgd_index(PAGE_OFFSET);
580
581 pgdidx_limit = pgd_index(limit);
582 #if PTRS_PER_PUD > 1
583 pudidx_limit = pud_index(limit);
584 #else
585 pudidx_limit = 0;
586 #endif
587 #if PTRS_PER_PMD > 1
588 pmdidx_limit = pmd_index(limit);
589 #else
590 pmdidx_limit = 0;
591 #endif
592
593 flush |= (*func)(virt_to_page(pgd), PT_PGD);
594
595 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
596 pud_t *pud;
597
598 if (pgdidx >= hole_low && pgdidx < hole_high)
599 continue;
600
601 if (!pgd_val(pgd[pgdidx]))
602 continue;
603
604 pud = pud_offset(&pgd[pgdidx], 0);
605
606 if (PTRS_PER_PUD > 1) /* not folded */
607 flush |= (*func)(virt_to_page(pud), PT_PUD);
608
609 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
610 pmd_t *pmd;
611
612 if (pgdidx == pgdidx_limit &&
613 pudidx > pudidx_limit)
614 goto out;
615
616 if (pud_none(pud[pudidx]))
617 continue;
618
619 pmd = pmd_offset(&pud[pudidx], 0);
620
621 if (PTRS_PER_PMD > 1) /* not folded */
622 flush |= (*func)(virt_to_page(pmd), PT_PMD);
623
624 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
625 struct page *pte;
626
627 if (pgdidx == pgdidx_limit &&
628 pudidx == pudidx_limit &&
629 pmdidx > pmdidx_limit)
630 goto out;
631
632 if (pmd_none(pmd[pmdidx]))
633 continue;
634
635 pte = pmd_page(pmd[pmdidx]);
636 flush |= (*func)(pte, PT_PTE);
637 }
638 }
639 }
640 out:
641
642 return flush;
643 }
644
645 static spinlock_t *lock_pte(struct page *page)
646 {
647 spinlock_t *ptl = NULL;
648
649 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
650 ptl = __pte_lockptr(page);
651 spin_lock(ptl);
652 #endif
653
654 return ptl;
655 }
656
657 static void do_unlock(void *v)
658 {
659 spinlock_t *ptl = v;
660 spin_unlock(ptl);
661 }
662
663 static void xen_do_pin(unsigned level, unsigned long pfn)
664 {
665 struct mmuext_op *op;
666 struct multicall_space mcs;
667
668 mcs = __xen_mc_entry(sizeof(*op));
669 op = mcs.args;
670 op->cmd = level;
671 op->arg1.mfn = pfn_to_mfn(pfn);
672 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
673 }
674
675 static int pin_page(struct page *page, enum pt_level level)
676 {
677 unsigned pgfl = TestSetPagePinned(page);
678 int flush;
679
680 if (pgfl)
681 flush = 0; /* already pinned */
682 else if (PageHighMem(page))
683 /* kmaps need flushing if we found an unpinned
684 highpage */
685 flush = 1;
686 else {
687 void *pt = lowmem_page_address(page);
688 unsigned long pfn = page_to_pfn(page);
689 struct multicall_space mcs = __xen_mc_entry(0);
690 spinlock_t *ptl;
691
692 flush = 0;
693
694 ptl = NULL;
695 if (level == PT_PTE)
696 ptl = lock_pte(page);
697
698 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
699 pfn_pte(pfn, PAGE_KERNEL_RO),
700 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
701
702 if (level == PT_PTE)
703 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
704
705 if (ptl) {
706 /* Queue a deferred unlock for when this batch
707 is completed. */
708 xen_mc_callback(do_unlock, ptl);
709 }
710 }
711
712 return flush;
713 }
714
715 /* This is called just after a mm has been created, but it has not
716 been used yet. We need to make sure that its pagetable is all
717 read-only, and can be pinned. */
718 void xen_pgd_pin(pgd_t *pgd)
719 {
720 xen_mc_batch();
721
722 if (pgd_walk(pgd, pin_page, USER_LIMIT)) {
723 /* re-enable interrupts for kmap_flush_unused */
724 xen_mc_issue(0);
725 kmap_flush_unused();
726 xen_mc_batch();
727 }
728
729 #ifdef CONFIG_X86_64
730 {
731 pgd_t *user_pgd = xen_get_user_pgd(pgd);
732
733 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
734
735 if (user_pgd) {
736 pin_page(virt_to_page(user_pgd), PT_PGD);
737 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(user_pgd)));
738 }
739 }
740 #else /* CONFIG_X86_32 */
741 #ifdef CONFIG_X86_PAE
742 /* Need to make sure unshared kernel PMD is pinnable */
743 pin_page(virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])), PT_PMD);
744 #endif
745 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
746 #endif /* CONFIG_X86_64 */
747 xen_mc_issue(0);
748 }
749
750 /*
751 * On save, we need to pin all pagetables to make sure they get their
752 * mfns turned into pfns. Search the list for any unpinned pgds and pin
753 * them (unpinned pgds are not currently in use, probably because the
754 * process is under construction or destruction).
755 */
756 void xen_mm_pin_all(void)
757 {
758 unsigned long flags;
759 struct page *page;
760
761 spin_lock_irqsave(&pgd_lock, flags);
762
763 list_for_each_entry(page, &pgd_list, lru) {
764 if (!PagePinned(page)) {
765 xen_pgd_pin((pgd_t *)page_address(page));
766 SetPageSavePinned(page);
767 }
768 }
769
770 spin_unlock_irqrestore(&pgd_lock, flags);
771 }
772
773 /*
774 * The init_mm pagetable is really pinned as soon as its created, but
775 * that's before we have page structures to store the bits. So do all
776 * the book-keeping now.
777 */
778 static __init int mark_pinned(struct page *page, enum pt_level level)
779 {
780 SetPagePinned(page);
781 return 0;
782 }
783
784 void __init xen_mark_init_mm_pinned(void)
785 {
786 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
787 }
788
789 static int unpin_page(struct page *page, enum pt_level level)
790 {
791 unsigned pgfl = TestClearPagePinned(page);
792
793 if (pgfl && !PageHighMem(page)) {
794 void *pt = lowmem_page_address(page);
795 unsigned long pfn = page_to_pfn(page);
796 spinlock_t *ptl = NULL;
797 struct multicall_space mcs;
798
799 if (level == PT_PTE) {
800 ptl = lock_pte(page);
801
802 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
803 }
804
805 mcs = __xen_mc_entry(0);
806
807 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
808 pfn_pte(pfn, PAGE_KERNEL),
809 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
810
811 if (ptl) {
812 /* unlock when batch completed */
813 xen_mc_callback(do_unlock, ptl);
814 }
815 }
816
817 return 0; /* never need to flush on unpin */
818 }
819
820 /* Release a pagetables pages back as normal RW */
821 static void xen_pgd_unpin(pgd_t *pgd)
822 {
823 xen_mc_batch();
824
825 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
826
827 #ifdef CONFIG_X86_64
828 {
829 pgd_t *user_pgd = xen_get_user_pgd(pgd);
830
831 if (user_pgd) {
832 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(user_pgd)));
833 unpin_page(virt_to_page(user_pgd), PT_PGD);
834 }
835 }
836 #endif
837
838 #ifdef CONFIG_X86_PAE
839 /* Need to make sure unshared kernel PMD is unpinned */
840 pin_page(virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])), PT_PMD);
841 #endif
842
843 pgd_walk(pgd, unpin_page, USER_LIMIT);
844
845 xen_mc_issue(0);
846 }
847
848 /*
849 * On resume, undo any pinning done at save, so that the rest of the
850 * kernel doesn't see any unexpected pinned pagetables.
851 */
852 void xen_mm_unpin_all(void)
853 {
854 unsigned long flags;
855 struct page *page;
856
857 spin_lock_irqsave(&pgd_lock, flags);
858
859 list_for_each_entry(page, &pgd_list, lru) {
860 if (PageSavePinned(page)) {
861 BUG_ON(!PagePinned(page));
862 xen_pgd_unpin((pgd_t *)page_address(page));
863 ClearPageSavePinned(page);
864 }
865 }
866
867 spin_unlock_irqrestore(&pgd_lock, flags);
868 }
869
870 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
871 {
872 spin_lock(&next->page_table_lock);
873 xen_pgd_pin(next->pgd);
874 spin_unlock(&next->page_table_lock);
875 }
876
877 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
878 {
879 spin_lock(&mm->page_table_lock);
880 xen_pgd_pin(mm->pgd);
881 spin_unlock(&mm->page_table_lock);
882 }
883
884
885 #ifdef CONFIG_SMP
886 /* Another cpu may still have their %cr3 pointing at the pagetable, so
887 we need to repoint it somewhere else before we can unpin it. */
888 static void drop_other_mm_ref(void *info)
889 {
890 struct mm_struct *mm = info;
891 struct mm_struct *active_mm;
892
893 #ifdef CONFIG_X86_64
894 active_mm = read_pda(active_mm);
895 #else
896 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
897 #endif
898
899 if (active_mm == mm)
900 leave_mm(smp_processor_id());
901
902 /* If this cpu still has a stale cr3 reference, then make sure
903 it has been flushed. */
904 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
905 load_cr3(swapper_pg_dir);
906 arch_flush_lazy_cpu_mode();
907 }
908 }
909
910 static void drop_mm_ref(struct mm_struct *mm)
911 {
912 cpumask_t mask;
913 unsigned cpu;
914
915 if (current->active_mm == mm) {
916 if (current->mm == mm)
917 load_cr3(swapper_pg_dir);
918 else
919 leave_mm(smp_processor_id());
920 arch_flush_lazy_cpu_mode();
921 }
922
923 /* Get the "official" set of cpus referring to our pagetable. */
924 mask = mm->cpu_vm_mask;
925
926 /* It's possible that a vcpu may have a stale reference to our
927 cr3, because its in lazy mode, and it hasn't yet flushed
928 its set of pending hypercalls yet. In this case, we can
929 look at its actual current cr3 value, and force it to flush
930 if needed. */
931 for_each_online_cpu(cpu) {
932 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
933 cpu_set(cpu, mask);
934 }
935
936 if (!cpus_empty(mask))
937 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
938 }
939 #else
940 static void drop_mm_ref(struct mm_struct *mm)
941 {
942 if (current->active_mm == mm)
943 load_cr3(swapper_pg_dir);
944 }
945 #endif
946
947 /*
948 * While a process runs, Xen pins its pagetables, which means that the
949 * hypervisor forces it to be read-only, and it controls all updates
950 * to it. This means that all pagetable updates have to go via the
951 * hypervisor, which is moderately expensive.
952 *
953 * Since we're pulling the pagetable down, we switch to use init_mm,
954 * unpin old process pagetable and mark it all read-write, which
955 * allows further operations on it to be simple memory accesses.
956 *
957 * The only subtle point is that another CPU may be still using the
958 * pagetable because of lazy tlb flushing. This means we need need to
959 * switch all CPUs off this pagetable before we can unpin it.
960 */
961 void xen_exit_mmap(struct mm_struct *mm)
962 {
963 get_cpu(); /* make sure we don't move around */
964 drop_mm_ref(mm);
965 put_cpu();
966
967 spin_lock(&mm->page_table_lock);
968
969 /* pgd may not be pinned in the error exit path of execve */
970 if (page_pinned(mm->pgd))
971 xen_pgd_unpin(mm->pgd);
972
973 spin_unlock(&mm->page_table_lock);
974 }
This page took 0.052439 seconds and 6 git commands to generate.