Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/module.h>
46 #include <linux/gfp.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/fixmap.h>
51 #include <asm/mmu_context.h>
52 #include <asm/setup.h>
53 #include <asm/paravirt.h>
54 #include <asm/linkage.h>
55
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
58
59 #include <xen/page.h>
60 #include <xen/interface/xen.h>
61 #include <xen/interface/hvm/hvm_op.h>
62 #include <xen/interface/version.h>
63 #include <xen/hvc-console.h>
64
65 #include "multicalls.h"
66 #include "mmu.h"
67 #include "debugfs.h"
68
69 #define MMU_UPDATE_HISTO 30
70
71 #ifdef CONFIG_XEN_DEBUG_FS
72
73 static struct {
74 u32 pgd_update;
75 u32 pgd_update_pinned;
76 u32 pgd_update_batched;
77
78 u32 pud_update;
79 u32 pud_update_pinned;
80 u32 pud_update_batched;
81
82 u32 pmd_update;
83 u32 pmd_update_pinned;
84 u32 pmd_update_batched;
85
86 u32 pte_update;
87 u32 pte_update_pinned;
88 u32 pte_update_batched;
89
90 u32 mmu_update;
91 u32 mmu_update_extended;
92 u32 mmu_update_histo[MMU_UPDATE_HISTO];
93
94 u32 prot_commit;
95 u32 prot_commit_batched;
96
97 u32 set_pte_at;
98 u32 set_pte_at_batched;
99 u32 set_pte_at_pinned;
100 u32 set_pte_at_current;
101 u32 set_pte_at_kernel;
102 } mmu_stats;
103
104 static u8 zero_stats;
105
106 static inline void check_zero(void)
107 {
108 if (unlikely(zero_stats)) {
109 memset(&mmu_stats, 0, sizeof(mmu_stats));
110 zero_stats = 0;
111 }
112 }
113
114 #define ADD_STATS(elem, val) \
115 do { check_zero(); mmu_stats.elem += (val); } while(0)
116
117 #else /* !CONFIG_XEN_DEBUG_FS */
118
119 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
120
121 #endif /* CONFIG_XEN_DEBUG_FS */
122
123
124 /*
125 * Identity map, in addition to plain kernel map. This needs to be
126 * large enough to allocate page table pages to allocate the rest.
127 * Each page can map 2MB.
128 */
129 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
130
131 #ifdef CONFIG_X86_64
132 /* l3 pud for userspace vsyscall mapping */
133 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
134 #endif /* CONFIG_X86_64 */
135
136 /*
137 * Note about cr3 (pagetable base) values:
138 *
139 * xen_cr3 contains the current logical cr3 value; it contains the
140 * last set cr3. This may not be the current effective cr3, because
141 * its update may be being lazily deferred. However, a vcpu looking
142 * at its own cr3 can use this value knowing that it everything will
143 * be self-consistent.
144 *
145 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
146 * hypercall to set the vcpu cr3 is complete (so it may be a little
147 * out of date, but it will never be set early). If one vcpu is
148 * looking at another vcpu's cr3 value, it should use this variable.
149 */
150 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
151 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
152
153
154 /*
155 * Just beyond the highest usermode address. STACK_TOP_MAX has a
156 * redzone above it, so round it up to a PGD boundary.
157 */
158 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
159
160
161 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
162 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
163
164 /* Placeholder for holes in the address space */
165 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
166 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
167
168 /* Array of pointers to pages containing p2m entries */
169 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
170 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
171
172 /* Arrays of p2m arrays expressed in mfns used for save/restore */
173 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
174
175 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
176 __page_aligned_bss;
177
178 static inline unsigned p2m_top_index(unsigned long pfn)
179 {
180 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
181 return pfn / P2M_ENTRIES_PER_PAGE;
182 }
183
184 static inline unsigned p2m_index(unsigned long pfn)
185 {
186 return pfn % P2M_ENTRIES_PER_PAGE;
187 }
188
189 /* Build the parallel p2m_top_mfn structures */
190 void xen_build_mfn_list_list(void)
191 {
192 unsigned pfn, idx;
193
194 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
195 unsigned topidx = p2m_top_index(pfn);
196
197 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
198 }
199
200 for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
201 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
202 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
203 }
204 }
205
206 void xen_setup_mfn_list_list(void)
207 {
208 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
209
210 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
211 virt_to_mfn(p2m_top_mfn_list);
212 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
213 }
214
215 /* Set up p2m_top to point to the domain-builder provided p2m pages */
216 void __init xen_build_dynamic_phys_to_machine(void)
217 {
218 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
219 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
220 unsigned pfn;
221
222 for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
223 unsigned topidx = p2m_top_index(pfn);
224
225 p2m_top[topidx] = &mfn_list[pfn];
226 }
227
228 xen_build_mfn_list_list();
229 }
230
231 unsigned long get_phys_to_machine(unsigned long pfn)
232 {
233 unsigned topidx, idx;
234
235 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
236 return INVALID_P2M_ENTRY;
237
238 topidx = p2m_top_index(pfn);
239 idx = p2m_index(pfn);
240 return p2m_top[topidx][idx];
241 }
242 EXPORT_SYMBOL_GPL(get_phys_to_machine);
243
244 /* install a new p2m_top page */
245 bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
246 {
247 unsigned topidx = p2m_top_index(pfn);
248 unsigned long **pfnp, *mfnp;
249 unsigned i;
250
251 pfnp = &p2m_top[topidx];
252 mfnp = &p2m_top_mfn[topidx];
253
254 for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
255 p[i] = INVALID_P2M_ENTRY;
256
257 if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
258 *mfnp = virt_to_mfn(p);
259 return true;
260 }
261
262 return false;
263 }
264
265 static void alloc_p2m(unsigned long pfn)
266 {
267 unsigned long *p;
268
269 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
270 BUG_ON(p == NULL);
271
272 if (!install_p2mtop_page(pfn, p))
273 free_page((unsigned long)p);
274 }
275
276 /* Try to install p2m mapping; fail if intermediate bits missing */
277 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
278 {
279 unsigned topidx, idx;
280
281 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
282 BUG_ON(mfn != INVALID_P2M_ENTRY);
283 return true;
284 }
285
286 topidx = p2m_top_index(pfn);
287 if (p2m_top[topidx] == p2m_missing) {
288 if (mfn == INVALID_P2M_ENTRY)
289 return true;
290 return false;
291 }
292
293 idx = p2m_index(pfn);
294 p2m_top[topidx][idx] = mfn;
295
296 return true;
297 }
298
299 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
300 {
301 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
302 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
303 return;
304 }
305
306 if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
307 alloc_p2m(pfn);
308
309 if (!__set_phys_to_machine(pfn, mfn))
310 BUG();
311 }
312 }
313
314 unsigned long arbitrary_virt_to_mfn(void *vaddr)
315 {
316 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
317
318 return PFN_DOWN(maddr.maddr);
319 }
320
321 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
322 {
323 unsigned long address = (unsigned long)vaddr;
324 unsigned int level;
325 pte_t *pte;
326 unsigned offset;
327
328 /*
329 * if the PFN is in the linear mapped vaddr range, we can just use
330 * the (quick) virt_to_machine() p2m lookup
331 */
332 if (virt_addr_valid(vaddr))
333 return virt_to_machine(vaddr);
334
335 /* otherwise we have to do a (slower) full page-table walk */
336
337 pte = lookup_address(address, &level);
338 BUG_ON(pte == NULL);
339 offset = address & ~PAGE_MASK;
340 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
341 }
342
343 void make_lowmem_page_readonly(void *vaddr)
344 {
345 pte_t *pte, ptev;
346 unsigned long address = (unsigned long)vaddr;
347 unsigned int level;
348
349 pte = lookup_address(address, &level);
350 BUG_ON(pte == NULL);
351
352 ptev = pte_wrprotect(*pte);
353
354 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
355 BUG();
356 }
357
358 void make_lowmem_page_readwrite(void *vaddr)
359 {
360 pte_t *pte, ptev;
361 unsigned long address = (unsigned long)vaddr;
362 unsigned int level;
363
364 pte = lookup_address(address, &level);
365 BUG_ON(pte == NULL);
366
367 ptev = pte_mkwrite(*pte);
368
369 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
370 BUG();
371 }
372
373
374 static bool xen_page_pinned(void *ptr)
375 {
376 struct page *page = virt_to_page(ptr);
377
378 return PagePinned(page);
379 }
380
381 static void xen_extend_mmu_update(const struct mmu_update *update)
382 {
383 struct multicall_space mcs;
384 struct mmu_update *u;
385
386 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
387
388 if (mcs.mc != NULL) {
389 ADD_STATS(mmu_update_extended, 1);
390 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
391
392 mcs.mc->args[1]++;
393
394 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
395 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
396 else
397 ADD_STATS(mmu_update_histo[0], 1);
398 } else {
399 ADD_STATS(mmu_update, 1);
400 mcs = __xen_mc_entry(sizeof(*u));
401 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
402 ADD_STATS(mmu_update_histo[1], 1);
403 }
404
405 u = mcs.args;
406 *u = *update;
407 }
408
409 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
410 {
411 struct mmu_update u;
412
413 preempt_disable();
414
415 xen_mc_batch();
416
417 /* ptr may be ioremapped for 64-bit pagetable setup */
418 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
419 u.val = pmd_val_ma(val);
420 xen_extend_mmu_update(&u);
421
422 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
423
424 xen_mc_issue(PARAVIRT_LAZY_MMU);
425
426 preempt_enable();
427 }
428
429 void xen_set_pmd(pmd_t *ptr, pmd_t val)
430 {
431 ADD_STATS(pmd_update, 1);
432
433 /* If page is not pinned, we can just update the entry
434 directly */
435 if (!xen_page_pinned(ptr)) {
436 *ptr = val;
437 return;
438 }
439
440 ADD_STATS(pmd_update_pinned, 1);
441
442 xen_set_pmd_hyper(ptr, val);
443 }
444
445 /*
446 * Associate a virtual page frame with a given physical page frame
447 * and protection flags for that frame.
448 */
449 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
450 {
451 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
452 }
453
454 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
455 pte_t *ptep, pte_t pteval)
456 {
457 ADD_STATS(set_pte_at, 1);
458 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
459 ADD_STATS(set_pte_at_current, mm == current->mm);
460 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
461
462 if (mm == current->mm || mm == &init_mm) {
463 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
464 struct multicall_space mcs;
465 mcs = xen_mc_entry(0);
466
467 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
468 ADD_STATS(set_pte_at_batched, 1);
469 xen_mc_issue(PARAVIRT_LAZY_MMU);
470 goto out;
471 } else
472 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
473 goto out;
474 }
475 xen_set_pte(ptep, pteval);
476
477 out: return;
478 }
479
480 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
481 unsigned long addr, pte_t *ptep)
482 {
483 /* Just return the pte as-is. We preserve the bits on commit */
484 return *ptep;
485 }
486
487 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
488 pte_t *ptep, pte_t pte)
489 {
490 struct mmu_update u;
491
492 xen_mc_batch();
493
494 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
495 u.val = pte_val_ma(pte);
496 xen_extend_mmu_update(&u);
497
498 ADD_STATS(prot_commit, 1);
499 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
500
501 xen_mc_issue(PARAVIRT_LAZY_MMU);
502 }
503
504 /* Assume pteval_t is equivalent to all the other *val_t types. */
505 static pteval_t pte_mfn_to_pfn(pteval_t val)
506 {
507 if (val & _PAGE_PRESENT) {
508 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
509 pteval_t flags = val & PTE_FLAGS_MASK;
510 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
511 }
512
513 return val;
514 }
515
516 static pteval_t pte_pfn_to_mfn(pteval_t val)
517 {
518 if (val & _PAGE_PRESENT) {
519 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
520 pteval_t flags = val & PTE_FLAGS_MASK;
521 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
522 }
523
524 return val;
525 }
526
527 pteval_t xen_pte_val(pte_t pte)
528 {
529 return pte_mfn_to_pfn(pte.pte);
530 }
531 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
532
533 pgdval_t xen_pgd_val(pgd_t pgd)
534 {
535 return pte_mfn_to_pfn(pgd.pgd);
536 }
537 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
538
539 pte_t xen_make_pte(pteval_t pte)
540 {
541 pte = pte_pfn_to_mfn(pte);
542 return native_make_pte(pte);
543 }
544 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
545
546 pgd_t xen_make_pgd(pgdval_t pgd)
547 {
548 pgd = pte_pfn_to_mfn(pgd);
549 return native_make_pgd(pgd);
550 }
551 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
552
553 pmdval_t xen_pmd_val(pmd_t pmd)
554 {
555 return pte_mfn_to_pfn(pmd.pmd);
556 }
557 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
558
559 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
560 {
561 struct mmu_update u;
562
563 preempt_disable();
564
565 xen_mc_batch();
566
567 /* ptr may be ioremapped for 64-bit pagetable setup */
568 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
569 u.val = pud_val_ma(val);
570 xen_extend_mmu_update(&u);
571
572 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
573
574 xen_mc_issue(PARAVIRT_LAZY_MMU);
575
576 preempt_enable();
577 }
578
579 void xen_set_pud(pud_t *ptr, pud_t val)
580 {
581 ADD_STATS(pud_update, 1);
582
583 /* If page is not pinned, we can just update the entry
584 directly */
585 if (!xen_page_pinned(ptr)) {
586 *ptr = val;
587 return;
588 }
589
590 ADD_STATS(pud_update_pinned, 1);
591
592 xen_set_pud_hyper(ptr, val);
593 }
594
595 void xen_set_pte(pte_t *ptep, pte_t pte)
596 {
597 ADD_STATS(pte_update, 1);
598 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
599 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
600
601 #ifdef CONFIG_X86_PAE
602 ptep->pte_high = pte.pte_high;
603 smp_wmb();
604 ptep->pte_low = pte.pte_low;
605 #else
606 *ptep = pte;
607 #endif
608 }
609
610 #ifdef CONFIG_X86_PAE
611 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
612 {
613 set_64bit((u64 *)ptep, native_pte_val(pte));
614 }
615
616 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
617 {
618 ptep->pte_low = 0;
619 smp_wmb(); /* make sure low gets written first */
620 ptep->pte_high = 0;
621 }
622
623 void xen_pmd_clear(pmd_t *pmdp)
624 {
625 set_pmd(pmdp, __pmd(0));
626 }
627 #endif /* CONFIG_X86_PAE */
628
629 pmd_t xen_make_pmd(pmdval_t pmd)
630 {
631 pmd = pte_pfn_to_mfn(pmd);
632 return native_make_pmd(pmd);
633 }
634 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
635
636 #if PAGETABLE_LEVELS == 4
637 pudval_t xen_pud_val(pud_t pud)
638 {
639 return pte_mfn_to_pfn(pud.pud);
640 }
641 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
642
643 pud_t xen_make_pud(pudval_t pud)
644 {
645 pud = pte_pfn_to_mfn(pud);
646
647 return native_make_pud(pud);
648 }
649 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
650
651 pgd_t *xen_get_user_pgd(pgd_t *pgd)
652 {
653 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
654 unsigned offset = pgd - pgd_page;
655 pgd_t *user_ptr = NULL;
656
657 if (offset < pgd_index(USER_LIMIT)) {
658 struct page *page = virt_to_page(pgd_page);
659 user_ptr = (pgd_t *)page->private;
660 if (user_ptr)
661 user_ptr += offset;
662 }
663
664 return user_ptr;
665 }
666
667 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
668 {
669 struct mmu_update u;
670
671 u.ptr = virt_to_machine(ptr).maddr;
672 u.val = pgd_val_ma(val);
673 xen_extend_mmu_update(&u);
674 }
675
676 /*
677 * Raw hypercall-based set_pgd, intended for in early boot before
678 * there's a page structure. This implies:
679 * 1. The only existing pagetable is the kernel's
680 * 2. It is always pinned
681 * 3. It has no user pagetable attached to it
682 */
683 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
684 {
685 preempt_disable();
686
687 xen_mc_batch();
688
689 __xen_set_pgd_hyper(ptr, val);
690
691 xen_mc_issue(PARAVIRT_LAZY_MMU);
692
693 preempt_enable();
694 }
695
696 void xen_set_pgd(pgd_t *ptr, pgd_t val)
697 {
698 pgd_t *user_ptr = xen_get_user_pgd(ptr);
699
700 ADD_STATS(pgd_update, 1);
701
702 /* If page is not pinned, we can just update the entry
703 directly */
704 if (!xen_page_pinned(ptr)) {
705 *ptr = val;
706 if (user_ptr) {
707 WARN_ON(xen_page_pinned(user_ptr));
708 *user_ptr = val;
709 }
710 return;
711 }
712
713 ADD_STATS(pgd_update_pinned, 1);
714 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
715
716 /* If it's pinned, then we can at least batch the kernel and
717 user updates together. */
718 xen_mc_batch();
719
720 __xen_set_pgd_hyper(ptr, val);
721 if (user_ptr)
722 __xen_set_pgd_hyper(user_ptr, val);
723
724 xen_mc_issue(PARAVIRT_LAZY_MMU);
725 }
726 #endif /* PAGETABLE_LEVELS == 4 */
727
728 /*
729 * (Yet another) pagetable walker. This one is intended for pinning a
730 * pagetable. This means that it walks a pagetable and calls the
731 * callback function on each page it finds making up the page table,
732 * at every level. It walks the entire pagetable, but it only bothers
733 * pinning pte pages which are below limit. In the normal case this
734 * will be STACK_TOP_MAX, but at boot we need to pin up to
735 * FIXADDR_TOP.
736 *
737 * For 32-bit the important bit is that we don't pin beyond there,
738 * because then we start getting into Xen's ptes.
739 *
740 * For 64-bit, we must skip the Xen hole in the middle of the address
741 * space, just after the big x86-64 virtual hole.
742 */
743 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
744 int (*func)(struct mm_struct *mm, struct page *,
745 enum pt_level),
746 unsigned long limit)
747 {
748 int flush = 0;
749 unsigned hole_low, hole_high;
750 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
751 unsigned pgdidx, pudidx, pmdidx;
752
753 /* The limit is the last byte to be touched */
754 limit--;
755 BUG_ON(limit >= FIXADDR_TOP);
756
757 if (xen_feature(XENFEAT_auto_translated_physmap))
758 return 0;
759
760 /*
761 * 64-bit has a great big hole in the middle of the address
762 * space, which contains the Xen mappings. On 32-bit these
763 * will end up making a zero-sized hole and so is a no-op.
764 */
765 hole_low = pgd_index(USER_LIMIT);
766 hole_high = pgd_index(PAGE_OFFSET);
767
768 pgdidx_limit = pgd_index(limit);
769 #if PTRS_PER_PUD > 1
770 pudidx_limit = pud_index(limit);
771 #else
772 pudidx_limit = 0;
773 #endif
774 #if PTRS_PER_PMD > 1
775 pmdidx_limit = pmd_index(limit);
776 #else
777 pmdidx_limit = 0;
778 #endif
779
780 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
781 pud_t *pud;
782
783 if (pgdidx >= hole_low && pgdidx < hole_high)
784 continue;
785
786 if (!pgd_val(pgd[pgdidx]))
787 continue;
788
789 pud = pud_offset(&pgd[pgdidx], 0);
790
791 if (PTRS_PER_PUD > 1) /* not folded */
792 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
793
794 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
795 pmd_t *pmd;
796
797 if (pgdidx == pgdidx_limit &&
798 pudidx > pudidx_limit)
799 goto out;
800
801 if (pud_none(pud[pudidx]))
802 continue;
803
804 pmd = pmd_offset(&pud[pudidx], 0);
805
806 if (PTRS_PER_PMD > 1) /* not folded */
807 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
808
809 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
810 struct page *pte;
811
812 if (pgdidx == pgdidx_limit &&
813 pudidx == pudidx_limit &&
814 pmdidx > pmdidx_limit)
815 goto out;
816
817 if (pmd_none(pmd[pmdidx]))
818 continue;
819
820 pte = pmd_page(pmd[pmdidx]);
821 flush |= (*func)(mm, pte, PT_PTE);
822 }
823 }
824 }
825
826 out:
827 /* Do the top level last, so that the callbacks can use it as
828 a cue to do final things like tlb flushes. */
829 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
830
831 return flush;
832 }
833
834 static int xen_pgd_walk(struct mm_struct *mm,
835 int (*func)(struct mm_struct *mm, struct page *,
836 enum pt_level),
837 unsigned long limit)
838 {
839 return __xen_pgd_walk(mm, mm->pgd, func, limit);
840 }
841
842 /* If we're using split pte locks, then take the page's lock and
843 return a pointer to it. Otherwise return NULL. */
844 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
845 {
846 spinlock_t *ptl = NULL;
847
848 #if USE_SPLIT_PTLOCKS
849 ptl = __pte_lockptr(page);
850 spin_lock_nest_lock(ptl, &mm->page_table_lock);
851 #endif
852
853 return ptl;
854 }
855
856 static void xen_pte_unlock(void *v)
857 {
858 spinlock_t *ptl = v;
859 spin_unlock(ptl);
860 }
861
862 static void xen_do_pin(unsigned level, unsigned long pfn)
863 {
864 struct mmuext_op *op;
865 struct multicall_space mcs;
866
867 mcs = __xen_mc_entry(sizeof(*op));
868 op = mcs.args;
869 op->cmd = level;
870 op->arg1.mfn = pfn_to_mfn(pfn);
871 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
872 }
873
874 static int xen_pin_page(struct mm_struct *mm, struct page *page,
875 enum pt_level level)
876 {
877 unsigned pgfl = TestSetPagePinned(page);
878 int flush;
879
880 if (pgfl)
881 flush = 0; /* already pinned */
882 else if (PageHighMem(page))
883 /* kmaps need flushing if we found an unpinned
884 highpage */
885 flush = 1;
886 else {
887 void *pt = lowmem_page_address(page);
888 unsigned long pfn = page_to_pfn(page);
889 struct multicall_space mcs = __xen_mc_entry(0);
890 spinlock_t *ptl;
891
892 flush = 0;
893
894 /*
895 * We need to hold the pagetable lock between the time
896 * we make the pagetable RO and when we actually pin
897 * it. If we don't, then other users may come in and
898 * attempt to update the pagetable by writing it,
899 * which will fail because the memory is RO but not
900 * pinned, so Xen won't do the trap'n'emulate.
901 *
902 * If we're using split pte locks, we can't hold the
903 * entire pagetable's worth of locks during the
904 * traverse, because we may wrap the preempt count (8
905 * bits). The solution is to mark RO and pin each PTE
906 * page while holding the lock. This means the number
907 * of locks we end up holding is never more than a
908 * batch size (~32 entries, at present).
909 *
910 * If we're not using split pte locks, we needn't pin
911 * the PTE pages independently, because we're
912 * protected by the overall pagetable lock.
913 */
914 ptl = NULL;
915 if (level == PT_PTE)
916 ptl = xen_pte_lock(page, mm);
917
918 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
919 pfn_pte(pfn, PAGE_KERNEL_RO),
920 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
921
922 if (ptl) {
923 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
924
925 /* Queue a deferred unlock for when this batch
926 is completed. */
927 xen_mc_callback(xen_pte_unlock, ptl);
928 }
929 }
930
931 return flush;
932 }
933
934 /* This is called just after a mm has been created, but it has not
935 been used yet. We need to make sure that its pagetable is all
936 read-only, and can be pinned. */
937 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
938 {
939 vm_unmap_aliases();
940
941 xen_mc_batch();
942
943 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
944 /* re-enable interrupts for flushing */
945 xen_mc_issue(0);
946
947 kmap_flush_unused();
948
949 xen_mc_batch();
950 }
951
952 #ifdef CONFIG_X86_64
953 {
954 pgd_t *user_pgd = xen_get_user_pgd(pgd);
955
956 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
957
958 if (user_pgd) {
959 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
960 xen_do_pin(MMUEXT_PIN_L4_TABLE,
961 PFN_DOWN(__pa(user_pgd)));
962 }
963 }
964 #else /* CONFIG_X86_32 */
965 #ifdef CONFIG_X86_PAE
966 /* Need to make sure unshared kernel PMD is pinnable */
967 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
968 PT_PMD);
969 #endif
970 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
971 #endif /* CONFIG_X86_64 */
972 xen_mc_issue(0);
973 }
974
975 static void xen_pgd_pin(struct mm_struct *mm)
976 {
977 __xen_pgd_pin(mm, mm->pgd);
978 }
979
980 /*
981 * On save, we need to pin all pagetables to make sure they get their
982 * mfns turned into pfns. Search the list for any unpinned pgds and pin
983 * them (unpinned pgds are not currently in use, probably because the
984 * process is under construction or destruction).
985 *
986 * Expected to be called in stop_machine() ("equivalent to taking
987 * every spinlock in the system"), so the locking doesn't really
988 * matter all that much.
989 */
990 void xen_mm_pin_all(void)
991 {
992 unsigned long flags;
993 struct page *page;
994
995 spin_lock_irqsave(&pgd_lock, flags);
996
997 list_for_each_entry(page, &pgd_list, lru) {
998 if (!PagePinned(page)) {
999 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1000 SetPageSavePinned(page);
1001 }
1002 }
1003
1004 spin_unlock_irqrestore(&pgd_lock, flags);
1005 }
1006
1007 /*
1008 * The init_mm pagetable is really pinned as soon as its created, but
1009 * that's before we have page structures to store the bits. So do all
1010 * the book-keeping now.
1011 */
1012 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1013 enum pt_level level)
1014 {
1015 SetPagePinned(page);
1016 return 0;
1017 }
1018
1019 static void __init xen_mark_init_mm_pinned(void)
1020 {
1021 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1022 }
1023
1024 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1025 enum pt_level level)
1026 {
1027 unsigned pgfl = TestClearPagePinned(page);
1028
1029 if (pgfl && !PageHighMem(page)) {
1030 void *pt = lowmem_page_address(page);
1031 unsigned long pfn = page_to_pfn(page);
1032 spinlock_t *ptl = NULL;
1033 struct multicall_space mcs;
1034
1035 /*
1036 * Do the converse to pin_page. If we're using split
1037 * pte locks, we must be holding the lock for while
1038 * the pte page is unpinned but still RO to prevent
1039 * concurrent updates from seeing it in this
1040 * partially-pinned state.
1041 */
1042 if (level == PT_PTE) {
1043 ptl = xen_pte_lock(page, mm);
1044
1045 if (ptl)
1046 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1047 }
1048
1049 mcs = __xen_mc_entry(0);
1050
1051 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1052 pfn_pte(pfn, PAGE_KERNEL),
1053 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1054
1055 if (ptl) {
1056 /* unlock when batch completed */
1057 xen_mc_callback(xen_pte_unlock, ptl);
1058 }
1059 }
1060
1061 return 0; /* never need to flush on unpin */
1062 }
1063
1064 /* Release a pagetables pages back as normal RW */
1065 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1066 {
1067 xen_mc_batch();
1068
1069 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1070
1071 #ifdef CONFIG_X86_64
1072 {
1073 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1074
1075 if (user_pgd) {
1076 xen_do_pin(MMUEXT_UNPIN_TABLE,
1077 PFN_DOWN(__pa(user_pgd)));
1078 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1079 }
1080 }
1081 #endif
1082
1083 #ifdef CONFIG_X86_PAE
1084 /* Need to make sure unshared kernel PMD is unpinned */
1085 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1086 PT_PMD);
1087 #endif
1088
1089 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1090
1091 xen_mc_issue(0);
1092 }
1093
1094 static void xen_pgd_unpin(struct mm_struct *mm)
1095 {
1096 __xen_pgd_unpin(mm, mm->pgd);
1097 }
1098
1099 /*
1100 * On resume, undo any pinning done at save, so that the rest of the
1101 * kernel doesn't see any unexpected pinned pagetables.
1102 */
1103 void xen_mm_unpin_all(void)
1104 {
1105 unsigned long flags;
1106 struct page *page;
1107
1108 spin_lock_irqsave(&pgd_lock, flags);
1109
1110 list_for_each_entry(page, &pgd_list, lru) {
1111 if (PageSavePinned(page)) {
1112 BUG_ON(!PagePinned(page));
1113 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1114 ClearPageSavePinned(page);
1115 }
1116 }
1117
1118 spin_unlock_irqrestore(&pgd_lock, flags);
1119 }
1120
1121 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1122 {
1123 spin_lock(&next->page_table_lock);
1124 xen_pgd_pin(next);
1125 spin_unlock(&next->page_table_lock);
1126 }
1127
1128 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1129 {
1130 spin_lock(&mm->page_table_lock);
1131 xen_pgd_pin(mm);
1132 spin_unlock(&mm->page_table_lock);
1133 }
1134
1135
1136 #ifdef CONFIG_SMP
1137 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1138 we need to repoint it somewhere else before we can unpin it. */
1139 static void drop_other_mm_ref(void *info)
1140 {
1141 struct mm_struct *mm = info;
1142 struct mm_struct *active_mm;
1143
1144 active_mm = percpu_read(cpu_tlbstate.active_mm);
1145
1146 if (active_mm == mm)
1147 leave_mm(smp_processor_id());
1148
1149 /* If this cpu still has a stale cr3 reference, then make sure
1150 it has been flushed. */
1151 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1152 load_cr3(swapper_pg_dir);
1153 }
1154
1155 static void xen_drop_mm_ref(struct mm_struct *mm)
1156 {
1157 cpumask_var_t mask;
1158 unsigned cpu;
1159
1160 if (current->active_mm == mm) {
1161 if (current->mm == mm)
1162 load_cr3(swapper_pg_dir);
1163 else
1164 leave_mm(smp_processor_id());
1165 }
1166
1167 /* Get the "official" set of cpus referring to our pagetable. */
1168 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1169 for_each_online_cpu(cpu) {
1170 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1171 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1172 continue;
1173 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1174 }
1175 return;
1176 }
1177 cpumask_copy(mask, mm_cpumask(mm));
1178
1179 /* It's possible that a vcpu may have a stale reference to our
1180 cr3, because its in lazy mode, and it hasn't yet flushed
1181 its set of pending hypercalls yet. In this case, we can
1182 look at its actual current cr3 value, and force it to flush
1183 if needed. */
1184 for_each_online_cpu(cpu) {
1185 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1186 cpumask_set_cpu(cpu, mask);
1187 }
1188
1189 if (!cpumask_empty(mask))
1190 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1191 free_cpumask_var(mask);
1192 }
1193 #else
1194 static void xen_drop_mm_ref(struct mm_struct *mm)
1195 {
1196 if (current->active_mm == mm)
1197 load_cr3(swapper_pg_dir);
1198 }
1199 #endif
1200
1201 /*
1202 * While a process runs, Xen pins its pagetables, which means that the
1203 * hypervisor forces it to be read-only, and it controls all updates
1204 * to it. This means that all pagetable updates have to go via the
1205 * hypervisor, which is moderately expensive.
1206 *
1207 * Since we're pulling the pagetable down, we switch to use init_mm,
1208 * unpin old process pagetable and mark it all read-write, which
1209 * allows further operations on it to be simple memory accesses.
1210 *
1211 * The only subtle point is that another CPU may be still using the
1212 * pagetable because of lazy tlb flushing. This means we need need to
1213 * switch all CPUs off this pagetable before we can unpin it.
1214 */
1215 void xen_exit_mmap(struct mm_struct *mm)
1216 {
1217 get_cpu(); /* make sure we don't move around */
1218 xen_drop_mm_ref(mm);
1219 put_cpu();
1220
1221 spin_lock(&mm->page_table_lock);
1222
1223 /* pgd may not be pinned in the error exit path of execve */
1224 if (xen_page_pinned(mm->pgd))
1225 xen_pgd_unpin(mm);
1226
1227 spin_unlock(&mm->page_table_lock);
1228 }
1229
1230 static __init void xen_pagetable_setup_start(pgd_t *base)
1231 {
1232 }
1233
1234 static void xen_post_allocator_init(void);
1235
1236 static __init void xen_pagetable_setup_done(pgd_t *base)
1237 {
1238 xen_setup_shared_info();
1239 xen_post_allocator_init();
1240 }
1241
1242 static void xen_write_cr2(unsigned long cr2)
1243 {
1244 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1245 }
1246
1247 static unsigned long xen_read_cr2(void)
1248 {
1249 return percpu_read(xen_vcpu)->arch.cr2;
1250 }
1251
1252 unsigned long xen_read_cr2_direct(void)
1253 {
1254 return percpu_read(xen_vcpu_info.arch.cr2);
1255 }
1256
1257 static void xen_flush_tlb(void)
1258 {
1259 struct mmuext_op *op;
1260 struct multicall_space mcs;
1261
1262 preempt_disable();
1263
1264 mcs = xen_mc_entry(sizeof(*op));
1265
1266 op = mcs.args;
1267 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1268 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1269
1270 xen_mc_issue(PARAVIRT_LAZY_MMU);
1271
1272 preempt_enable();
1273 }
1274
1275 static void xen_flush_tlb_single(unsigned long addr)
1276 {
1277 struct mmuext_op *op;
1278 struct multicall_space mcs;
1279
1280 preempt_disable();
1281
1282 mcs = xen_mc_entry(sizeof(*op));
1283 op = mcs.args;
1284 op->cmd = MMUEXT_INVLPG_LOCAL;
1285 op->arg1.linear_addr = addr & PAGE_MASK;
1286 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1287
1288 xen_mc_issue(PARAVIRT_LAZY_MMU);
1289
1290 preempt_enable();
1291 }
1292
1293 static void xen_flush_tlb_others(const struct cpumask *cpus,
1294 struct mm_struct *mm, unsigned long va)
1295 {
1296 struct {
1297 struct mmuext_op op;
1298 DECLARE_BITMAP(mask, NR_CPUS);
1299 } *args;
1300 struct multicall_space mcs;
1301
1302 if (cpumask_empty(cpus))
1303 return; /* nothing to do */
1304
1305 mcs = xen_mc_entry(sizeof(*args));
1306 args = mcs.args;
1307 args->op.arg2.vcpumask = to_cpumask(args->mask);
1308
1309 /* Remove us, and any offline CPUS. */
1310 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1311 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1312
1313 if (va == TLB_FLUSH_ALL) {
1314 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1315 } else {
1316 args->op.cmd = MMUEXT_INVLPG_MULTI;
1317 args->op.arg1.linear_addr = va;
1318 }
1319
1320 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1321
1322 xen_mc_issue(PARAVIRT_LAZY_MMU);
1323 }
1324
1325 static unsigned long xen_read_cr3(void)
1326 {
1327 return percpu_read(xen_cr3);
1328 }
1329
1330 static void set_current_cr3(void *v)
1331 {
1332 percpu_write(xen_current_cr3, (unsigned long)v);
1333 }
1334
1335 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1336 {
1337 struct mmuext_op *op;
1338 struct multicall_space mcs;
1339 unsigned long mfn;
1340
1341 if (cr3)
1342 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1343 else
1344 mfn = 0;
1345
1346 WARN_ON(mfn == 0 && kernel);
1347
1348 mcs = __xen_mc_entry(sizeof(*op));
1349
1350 op = mcs.args;
1351 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1352 op->arg1.mfn = mfn;
1353
1354 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1355
1356 if (kernel) {
1357 percpu_write(xen_cr3, cr3);
1358
1359 /* Update xen_current_cr3 once the batch has actually
1360 been submitted. */
1361 xen_mc_callback(set_current_cr3, (void *)cr3);
1362 }
1363 }
1364
1365 static void xen_write_cr3(unsigned long cr3)
1366 {
1367 BUG_ON(preemptible());
1368
1369 xen_mc_batch(); /* disables interrupts */
1370
1371 /* Update while interrupts are disabled, so its atomic with
1372 respect to ipis */
1373 percpu_write(xen_cr3, cr3);
1374
1375 __xen_write_cr3(true, cr3);
1376
1377 #ifdef CONFIG_X86_64
1378 {
1379 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1380 if (user_pgd)
1381 __xen_write_cr3(false, __pa(user_pgd));
1382 else
1383 __xen_write_cr3(false, 0);
1384 }
1385 #endif
1386
1387 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1388 }
1389
1390 static int xen_pgd_alloc(struct mm_struct *mm)
1391 {
1392 pgd_t *pgd = mm->pgd;
1393 int ret = 0;
1394
1395 BUG_ON(PagePinned(virt_to_page(pgd)));
1396
1397 #ifdef CONFIG_X86_64
1398 {
1399 struct page *page = virt_to_page(pgd);
1400 pgd_t *user_pgd;
1401
1402 BUG_ON(page->private != 0);
1403
1404 ret = -ENOMEM;
1405
1406 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1407 page->private = (unsigned long)user_pgd;
1408
1409 if (user_pgd != NULL) {
1410 user_pgd[pgd_index(VSYSCALL_START)] =
1411 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1412 ret = 0;
1413 }
1414
1415 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1416 }
1417 #endif
1418
1419 return ret;
1420 }
1421
1422 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1423 {
1424 #ifdef CONFIG_X86_64
1425 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1426
1427 if (user_pgd)
1428 free_page((unsigned long)user_pgd);
1429 #endif
1430 }
1431
1432 #ifdef CONFIG_X86_32
1433 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1434 {
1435 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1436 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1437 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1438 pte_val_ma(pte));
1439
1440 return pte;
1441 }
1442
1443 /* Init-time set_pte while constructing initial pagetables, which
1444 doesn't allow RO pagetable pages to be remapped RW */
1445 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1446 {
1447 pte = mask_rw_pte(ptep, pte);
1448
1449 xen_set_pte(ptep, pte);
1450 }
1451 #endif
1452
1453 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1454 {
1455 struct mmuext_op op;
1456 op.cmd = cmd;
1457 op.arg1.mfn = pfn_to_mfn(pfn);
1458 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1459 BUG();
1460 }
1461
1462 /* Early in boot, while setting up the initial pagetable, assume
1463 everything is pinned. */
1464 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1465 {
1466 #ifdef CONFIG_FLATMEM
1467 BUG_ON(mem_map); /* should only be used early */
1468 #endif
1469 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1470 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1471 }
1472
1473 /* Used for pmd and pud */
1474 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1475 {
1476 #ifdef CONFIG_FLATMEM
1477 BUG_ON(mem_map); /* should only be used early */
1478 #endif
1479 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1480 }
1481
1482 /* Early release_pte assumes that all pts are pinned, since there's
1483 only init_mm and anything attached to that is pinned. */
1484 static __init void xen_release_pte_init(unsigned long pfn)
1485 {
1486 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1487 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1488 }
1489
1490 static __init void xen_release_pmd_init(unsigned long pfn)
1491 {
1492 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1493 }
1494
1495 /* This needs to make sure the new pte page is pinned iff its being
1496 attached to a pinned pagetable. */
1497 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1498 {
1499 struct page *page = pfn_to_page(pfn);
1500
1501 if (PagePinned(virt_to_page(mm->pgd))) {
1502 SetPagePinned(page);
1503
1504 vm_unmap_aliases();
1505 if (!PageHighMem(page)) {
1506 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1507 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1508 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1509 } else {
1510 /* make sure there are no stray mappings of
1511 this page */
1512 kmap_flush_unused();
1513 }
1514 }
1515 }
1516
1517 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1518 {
1519 xen_alloc_ptpage(mm, pfn, PT_PTE);
1520 }
1521
1522 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1523 {
1524 xen_alloc_ptpage(mm, pfn, PT_PMD);
1525 }
1526
1527 /* This should never happen until we're OK to use struct page */
1528 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1529 {
1530 struct page *page = pfn_to_page(pfn);
1531
1532 if (PagePinned(page)) {
1533 if (!PageHighMem(page)) {
1534 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1535 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1536 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1537 }
1538 ClearPagePinned(page);
1539 }
1540 }
1541
1542 static void xen_release_pte(unsigned long pfn)
1543 {
1544 xen_release_ptpage(pfn, PT_PTE);
1545 }
1546
1547 static void xen_release_pmd(unsigned long pfn)
1548 {
1549 xen_release_ptpage(pfn, PT_PMD);
1550 }
1551
1552 #if PAGETABLE_LEVELS == 4
1553 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1554 {
1555 xen_alloc_ptpage(mm, pfn, PT_PUD);
1556 }
1557
1558 static void xen_release_pud(unsigned long pfn)
1559 {
1560 xen_release_ptpage(pfn, PT_PUD);
1561 }
1562 #endif
1563
1564 void __init xen_reserve_top(void)
1565 {
1566 #ifdef CONFIG_X86_32
1567 unsigned long top = HYPERVISOR_VIRT_START;
1568 struct xen_platform_parameters pp;
1569
1570 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1571 top = pp.virt_start;
1572
1573 reserve_top_address(-top);
1574 #endif /* CONFIG_X86_32 */
1575 }
1576
1577 /*
1578 * Like __va(), but returns address in the kernel mapping (which is
1579 * all we have until the physical memory mapping has been set up.
1580 */
1581 static void *__ka(phys_addr_t paddr)
1582 {
1583 #ifdef CONFIG_X86_64
1584 return (void *)(paddr + __START_KERNEL_map);
1585 #else
1586 return __va(paddr);
1587 #endif
1588 }
1589
1590 /* Convert a machine address to physical address */
1591 static unsigned long m2p(phys_addr_t maddr)
1592 {
1593 phys_addr_t paddr;
1594
1595 maddr &= PTE_PFN_MASK;
1596 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1597
1598 return paddr;
1599 }
1600
1601 /* Convert a machine address to kernel virtual */
1602 static void *m2v(phys_addr_t maddr)
1603 {
1604 return __ka(m2p(maddr));
1605 }
1606
1607 static void set_page_prot(void *addr, pgprot_t prot)
1608 {
1609 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1610 pte_t pte = pfn_pte(pfn, prot);
1611
1612 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1613 BUG();
1614 }
1615
1616 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1617 {
1618 unsigned pmdidx, pteidx;
1619 unsigned ident_pte;
1620 unsigned long pfn;
1621
1622 ident_pte = 0;
1623 pfn = 0;
1624 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1625 pte_t *pte_page;
1626
1627 /* Reuse or allocate a page of ptes */
1628 if (pmd_present(pmd[pmdidx]))
1629 pte_page = m2v(pmd[pmdidx].pmd);
1630 else {
1631 /* Check for free pte pages */
1632 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1633 break;
1634
1635 pte_page = &level1_ident_pgt[ident_pte];
1636 ident_pte += PTRS_PER_PTE;
1637
1638 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1639 }
1640
1641 /* Install mappings */
1642 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1643 pte_t pte;
1644
1645 if (pfn > max_pfn_mapped)
1646 max_pfn_mapped = pfn;
1647
1648 if (!pte_none(pte_page[pteidx]))
1649 continue;
1650
1651 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1652 pte_page[pteidx] = pte;
1653 }
1654 }
1655
1656 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1657 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1658
1659 set_page_prot(pmd, PAGE_KERNEL_RO);
1660 }
1661
1662 #ifdef CONFIG_X86_64
1663 static void convert_pfn_mfn(void *v)
1664 {
1665 pte_t *pte = v;
1666 int i;
1667
1668 /* All levels are converted the same way, so just treat them
1669 as ptes. */
1670 for (i = 0; i < PTRS_PER_PTE; i++)
1671 pte[i] = xen_make_pte(pte[i].pte);
1672 }
1673
1674 /*
1675 * Set up the inital kernel pagetable.
1676 *
1677 * We can construct this by grafting the Xen provided pagetable into
1678 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1679 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1680 * means that only the kernel has a physical mapping to start with -
1681 * but that's enough to get __va working. We need to fill in the rest
1682 * of the physical mapping once some sort of allocator has been set
1683 * up.
1684 */
1685 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1686 unsigned long max_pfn)
1687 {
1688 pud_t *l3;
1689 pmd_t *l2;
1690
1691 /* Zap identity mapping */
1692 init_level4_pgt[0] = __pgd(0);
1693
1694 /* Pre-constructed entries are in pfn, so convert to mfn */
1695 convert_pfn_mfn(init_level4_pgt);
1696 convert_pfn_mfn(level3_ident_pgt);
1697 convert_pfn_mfn(level3_kernel_pgt);
1698
1699 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1700 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1701
1702 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1703 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1704
1705 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1706 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1707 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1708
1709 /* Set up identity map */
1710 xen_map_identity_early(level2_ident_pgt, max_pfn);
1711
1712 /* Make pagetable pieces RO */
1713 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1714 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1715 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1716 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1717 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1718 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1719
1720 /* Pin down new L4 */
1721 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1722 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1723
1724 /* Unpin Xen-provided one */
1725 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1726
1727 /* Switch over */
1728 pgd = init_level4_pgt;
1729
1730 /*
1731 * At this stage there can be no user pgd, and no page
1732 * structure to attach it to, so make sure we just set kernel
1733 * pgd.
1734 */
1735 xen_mc_batch();
1736 __xen_write_cr3(true, __pa(pgd));
1737 xen_mc_issue(PARAVIRT_LAZY_CPU);
1738
1739 reserve_early(__pa(xen_start_info->pt_base),
1740 __pa(xen_start_info->pt_base +
1741 xen_start_info->nr_pt_frames * PAGE_SIZE),
1742 "XEN PAGETABLES");
1743
1744 return pgd;
1745 }
1746 #else /* !CONFIG_X86_64 */
1747 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1748
1749 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1750 unsigned long max_pfn)
1751 {
1752 pmd_t *kernel_pmd;
1753
1754 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1755 xen_start_info->nr_pt_frames * PAGE_SIZE +
1756 512*1024);
1757
1758 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1759 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1760
1761 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1762
1763 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1764 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1765 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1766
1767 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1768 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1769 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1770
1771 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1772
1773 xen_write_cr3(__pa(swapper_pg_dir));
1774
1775 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1776
1777 reserve_early(__pa(xen_start_info->pt_base),
1778 __pa(xen_start_info->pt_base +
1779 xen_start_info->nr_pt_frames * PAGE_SIZE),
1780 "XEN PAGETABLES");
1781
1782 return swapper_pg_dir;
1783 }
1784 #endif /* CONFIG_X86_64 */
1785
1786 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1787 {
1788 pte_t pte;
1789
1790 phys >>= PAGE_SHIFT;
1791
1792 switch (idx) {
1793 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1794 #ifdef CONFIG_X86_F00F_BUG
1795 case FIX_F00F_IDT:
1796 #endif
1797 #ifdef CONFIG_X86_32
1798 case FIX_WP_TEST:
1799 case FIX_VDSO:
1800 # ifdef CONFIG_HIGHMEM
1801 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1802 # endif
1803 #else
1804 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1805 #endif
1806 #ifdef CONFIG_X86_LOCAL_APIC
1807 case FIX_APIC_BASE: /* maps dummy local APIC */
1808 #endif
1809 case FIX_TEXT_POKE0:
1810 case FIX_TEXT_POKE1:
1811 /* All local page mappings */
1812 pte = pfn_pte(phys, prot);
1813 break;
1814
1815 default:
1816 pte = mfn_pte(phys, prot);
1817 break;
1818 }
1819
1820 __native_set_fixmap(idx, pte);
1821
1822 #ifdef CONFIG_X86_64
1823 /* Replicate changes to map the vsyscall page into the user
1824 pagetable vsyscall mapping. */
1825 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1826 unsigned long vaddr = __fix_to_virt(idx);
1827 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1828 }
1829 #endif
1830 }
1831
1832 static __init void xen_post_allocator_init(void)
1833 {
1834 pv_mmu_ops.set_pte = xen_set_pte;
1835 pv_mmu_ops.set_pmd = xen_set_pmd;
1836 pv_mmu_ops.set_pud = xen_set_pud;
1837 #if PAGETABLE_LEVELS == 4
1838 pv_mmu_ops.set_pgd = xen_set_pgd;
1839 #endif
1840
1841 /* This will work as long as patching hasn't happened yet
1842 (which it hasn't) */
1843 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1844 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1845 pv_mmu_ops.release_pte = xen_release_pte;
1846 pv_mmu_ops.release_pmd = xen_release_pmd;
1847 #if PAGETABLE_LEVELS == 4
1848 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1849 pv_mmu_ops.release_pud = xen_release_pud;
1850 #endif
1851
1852 #ifdef CONFIG_X86_64
1853 SetPagePinned(virt_to_page(level3_user_vsyscall));
1854 #endif
1855 xen_mark_init_mm_pinned();
1856 }
1857
1858 static void xen_leave_lazy_mmu(void)
1859 {
1860 preempt_disable();
1861 xen_mc_flush();
1862 paravirt_leave_lazy_mmu();
1863 preempt_enable();
1864 }
1865
1866 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1867 .read_cr2 = xen_read_cr2,
1868 .write_cr2 = xen_write_cr2,
1869
1870 .read_cr3 = xen_read_cr3,
1871 .write_cr3 = xen_write_cr3,
1872
1873 .flush_tlb_user = xen_flush_tlb,
1874 .flush_tlb_kernel = xen_flush_tlb,
1875 .flush_tlb_single = xen_flush_tlb_single,
1876 .flush_tlb_others = xen_flush_tlb_others,
1877
1878 .pte_update = paravirt_nop,
1879 .pte_update_defer = paravirt_nop,
1880
1881 .pgd_alloc = xen_pgd_alloc,
1882 .pgd_free = xen_pgd_free,
1883
1884 .alloc_pte = xen_alloc_pte_init,
1885 .release_pte = xen_release_pte_init,
1886 .alloc_pmd = xen_alloc_pmd_init,
1887 .alloc_pmd_clone = paravirt_nop,
1888 .release_pmd = xen_release_pmd_init,
1889
1890 #ifdef CONFIG_X86_64
1891 .set_pte = xen_set_pte,
1892 #else
1893 .set_pte = xen_set_pte_init,
1894 #endif
1895 .set_pte_at = xen_set_pte_at,
1896 .set_pmd = xen_set_pmd_hyper,
1897
1898 .ptep_modify_prot_start = __ptep_modify_prot_start,
1899 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1900
1901 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
1902 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1903
1904 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
1905 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1906
1907 #ifdef CONFIG_X86_PAE
1908 .set_pte_atomic = xen_set_pte_atomic,
1909 .pte_clear = xen_pte_clear,
1910 .pmd_clear = xen_pmd_clear,
1911 #endif /* CONFIG_X86_PAE */
1912 .set_pud = xen_set_pud_hyper,
1913
1914 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
1915 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
1916
1917 #if PAGETABLE_LEVELS == 4
1918 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
1919 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
1920 .set_pgd = xen_set_pgd_hyper,
1921
1922 .alloc_pud = xen_alloc_pmd_init,
1923 .release_pud = xen_release_pmd_init,
1924 #endif /* PAGETABLE_LEVELS == 4 */
1925
1926 .activate_mm = xen_activate_mm,
1927 .dup_mmap = xen_dup_mmap,
1928 .exit_mmap = xen_exit_mmap,
1929
1930 .lazy_mode = {
1931 .enter = paravirt_enter_lazy_mmu,
1932 .leave = xen_leave_lazy_mmu,
1933 },
1934
1935 .set_fixmap = xen_set_fixmap,
1936 };
1937
1938 void __init xen_init_mmu_ops(void)
1939 {
1940 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
1941 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
1942 pv_mmu_ops = xen_mmu_ops;
1943 }
1944
1945 #ifdef CONFIG_XEN_PVHVM
1946 static void xen_hvm_exit_mmap(struct mm_struct *mm)
1947 {
1948 struct xen_hvm_pagetable_dying a;
1949 int rc;
1950
1951 a.domid = DOMID_SELF;
1952 a.gpa = __pa(mm->pgd);
1953 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
1954 WARN_ON_ONCE(rc < 0);
1955 }
1956
1957 static int is_pagetable_dying_supported(void)
1958 {
1959 struct xen_hvm_pagetable_dying a;
1960 int rc = 0;
1961
1962 a.domid = DOMID_SELF;
1963 a.gpa = 0x00;
1964 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
1965 if (rc < 0) {
1966 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
1967 return 0;
1968 }
1969 return 1;
1970 }
1971
1972 void __init xen_hvm_init_mmu_ops(void)
1973 {
1974 if (is_pagetable_dying_supported())
1975 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
1976 }
1977 #endif
1978
1979 #ifdef CONFIG_XEN_DEBUG_FS
1980
1981 static struct dentry *d_mmu_debug;
1982
1983 static int __init xen_mmu_debugfs(void)
1984 {
1985 struct dentry *d_xen = xen_init_debugfs();
1986
1987 if (d_xen == NULL)
1988 return -ENOMEM;
1989
1990 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1991
1992 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1993
1994 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1995 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1996 &mmu_stats.pgd_update_pinned);
1997 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1998 &mmu_stats.pgd_update_pinned);
1999
2000 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2001 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2002 &mmu_stats.pud_update_pinned);
2003 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2004 &mmu_stats.pud_update_pinned);
2005
2006 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2007 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2008 &mmu_stats.pmd_update_pinned);
2009 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2010 &mmu_stats.pmd_update_pinned);
2011
2012 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2013 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2014 // &mmu_stats.pte_update_pinned);
2015 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2016 &mmu_stats.pte_update_pinned);
2017
2018 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2019 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2020 &mmu_stats.mmu_update_extended);
2021 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2022 mmu_stats.mmu_update_histo, 20);
2023
2024 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2025 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2026 &mmu_stats.set_pte_at_batched);
2027 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2028 &mmu_stats.set_pte_at_current);
2029 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2030 &mmu_stats.set_pte_at_kernel);
2031
2032 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2033 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2034 &mmu_stats.prot_commit_batched);
2035
2036 return 0;
2037 }
2038 fs_initcall(xen_mmu_debugfs);
2039
2040 #endif /* CONFIG_XEN_DEBUG_FS */
This page took 0.113783 seconds and 6 git commands to generate.