xen: fix truncation of machine address
[deliverable/linux.git] / arch / x86 / xen / mmu.c
1 /*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
44
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/mmu_context.h>
48 #include <asm/paravirt.h>
49 #include <asm/linkage.h>
50
51 #include <asm/xen/hypercall.h>
52 #include <asm/xen/hypervisor.h>
53
54 #include <xen/page.h>
55 #include <xen/interface/xen.h>
56
57 #include "multicalls.h"
58 #include "mmu.h"
59
60 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
61 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
62
63 /* Placeholder for holes in the address space */
64 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
65 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
66
67 /* Array of pointers to pages containing p2m entries */
68 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
69 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
70
71 /* Arrays of p2m arrays expressed in mfns used for save/restore */
72 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
73
74 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
75 __page_aligned_bss;
76
77 static inline unsigned p2m_top_index(unsigned long pfn)
78 {
79 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
80 return pfn / P2M_ENTRIES_PER_PAGE;
81 }
82
83 static inline unsigned p2m_index(unsigned long pfn)
84 {
85 return pfn % P2M_ENTRIES_PER_PAGE;
86 }
87
88 /* Build the parallel p2m_top_mfn structures */
89 void xen_setup_mfn_list_list(void)
90 {
91 unsigned pfn, idx;
92
93 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
94 unsigned topidx = p2m_top_index(pfn);
95
96 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
97 }
98
99 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
100 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
101 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
102 }
103
104 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
105
106 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
107 virt_to_mfn(p2m_top_mfn_list);
108 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
109 }
110
111 /* Set up p2m_top to point to the domain-builder provided p2m pages */
112 void __init xen_build_dynamic_phys_to_machine(void)
113 {
114 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
115 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
116 unsigned pfn;
117
118 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
119 unsigned topidx = p2m_top_index(pfn);
120
121 p2m_top[topidx] = &mfn_list[pfn];
122 }
123 }
124
125 unsigned long get_phys_to_machine(unsigned long pfn)
126 {
127 unsigned topidx, idx;
128
129 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
130 return INVALID_P2M_ENTRY;
131
132 topidx = p2m_top_index(pfn);
133 idx = p2m_index(pfn);
134 return p2m_top[topidx][idx];
135 }
136 EXPORT_SYMBOL_GPL(get_phys_to_machine);
137
138 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
139 {
140 unsigned long *p;
141 unsigned i;
142
143 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
144 BUG_ON(p == NULL);
145
146 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
147 p[i] = INVALID_P2M_ENTRY;
148
149 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
150 free_page((unsigned long)p);
151 else
152 *mfnp = virt_to_mfn(p);
153 }
154
155 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
156 {
157 unsigned topidx, idx;
158
159 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
160 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
161 return;
162 }
163
164 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
165 BUG_ON(mfn != INVALID_P2M_ENTRY);
166 return;
167 }
168
169 topidx = p2m_top_index(pfn);
170 if (p2m_top[topidx] == p2m_missing) {
171 /* no need to allocate a page to store an invalid entry */
172 if (mfn == INVALID_P2M_ENTRY)
173 return;
174 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
175 }
176
177 idx = p2m_index(pfn);
178 p2m_top[topidx][idx] = mfn;
179 }
180
181 xmaddr_t arbitrary_virt_to_machine(unsigned long address)
182 {
183 unsigned int level;
184 pte_t *pte = lookup_address(address, &level);
185 unsigned offset = address & ~PAGE_MASK;
186
187 BUG_ON(pte == NULL);
188
189 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
190 }
191
192 void make_lowmem_page_readonly(void *vaddr)
193 {
194 pte_t *pte, ptev;
195 unsigned long address = (unsigned long)vaddr;
196 unsigned int level;
197
198 pte = lookup_address(address, &level);
199 BUG_ON(pte == NULL);
200
201 ptev = pte_wrprotect(*pte);
202
203 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
204 BUG();
205 }
206
207 void make_lowmem_page_readwrite(void *vaddr)
208 {
209 pte_t *pte, ptev;
210 unsigned long address = (unsigned long)vaddr;
211 unsigned int level;
212
213 pte = lookup_address(address, &level);
214 BUG_ON(pte == NULL);
215
216 ptev = pte_mkwrite(*pte);
217
218 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
219 BUG();
220 }
221
222
223 static bool page_pinned(void *ptr)
224 {
225 struct page *page = virt_to_page(ptr);
226
227 return PagePinned(page);
228 }
229
230 static void extend_mmu_update(const struct mmu_update *update)
231 {
232 struct multicall_space mcs;
233 struct mmu_update *u;
234
235 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
236
237 if (mcs.mc != NULL)
238 mcs.mc->args[1]++;
239 else {
240 mcs = __xen_mc_entry(sizeof(*u));
241 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
242 }
243
244 u = mcs.args;
245 *u = *update;
246 }
247
248 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
249 {
250 struct mmu_update u;
251
252 preempt_disable();
253
254 xen_mc_batch();
255
256 u.ptr = virt_to_machine(ptr).maddr;
257 u.val = pmd_val_ma(val);
258 extend_mmu_update(&u);
259
260 xen_mc_issue(PARAVIRT_LAZY_MMU);
261
262 preempt_enable();
263 }
264
265 void xen_set_pmd(pmd_t *ptr, pmd_t val)
266 {
267 /* If page is not pinned, we can just update the entry
268 directly */
269 if (!page_pinned(ptr)) {
270 *ptr = val;
271 return;
272 }
273
274 xen_set_pmd_hyper(ptr, val);
275 }
276
277 /*
278 * Associate a virtual page frame with a given physical page frame
279 * and protection flags for that frame.
280 */
281 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
282 {
283 pgd_t *pgd;
284 pud_t *pud;
285 pmd_t *pmd;
286 pte_t *pte;
287
288 pgd = swapper_pg_dir + pgd_index(vaddr);
289 if (pgd_none(*pgd)) {
290 BUG();
291 return;
292 }
293 pud = pud_offset(pgd, vaddr);
294 if (pud_none(*pud)) {
295 BUG();
296 return;
297 }
298 pmd = pmd_offset(pud, vaddr);
299 if (pmd_none(*pmd)) {
300 BUG();
301 return;
302 }
303 pte = pte_offset_kernel(pmd, vaddr);
304 /* <mfn,flags> stored as-is, to permit clearing entries */
305 xen_set_pte(pte, mfn_pte(mfn, flags));
306
307 /*
308 * It's enough to flush this one mapping.
309 * (PGE mappings get flushed as well)
310 */
311 __flush_tlb_one(vaddr);
312 }
313
314 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
315 pte_t *ptep, pte_t pteval)
316 {
317 /* updates to init_mm may be done without lock */
318 if (mm == &init_mm)
319 preempt_disable();
320
321 if (mm == current->mm || mm == &init_mm) {
322 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
323 struct multicall_space mcs;
324 mcs = xen_mc_entry(0);
325
326 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
327 xen_mc_issue(PARAVIRT_LAZY_MMU);
328 goto out;
329 } else
330 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
331 goto out;
332 }
333 xen_set_pte(ptep, pteval);
334
335 out:
336 if (mm == &init_mm)
337 preempt_enable();
338 }
339
340 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
341 {
342 /* Just return the pte as-is. We preserve the bits on commit */
343 return *ptep;
344 }
345
346 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
347 pte_t *ptep, pte_t pte)
348 {
349 struct mmu_update u;
350
351 xen_mc_batch();
352
353 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
354 u.val = pte_val_ma(pte);
355 extend_mmu_update(&u);
356
357 xen_mc_issue(PARAVIRT_LAZY_MMU);
358 }
359
360 /* Assume pteval_t is equivalent to all the other *val_t types. */
361 static pteval_t pte_mfn_to_pfn(pteval_t val)
362 {
363 if (val & _PAGE_PRESENT) {
364 unsigned long mfn = (val & PTE_MASK) >> PAGE_SHIFT;
365 pteval_t flags = val & ~PTE_MASK;
366 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
367 }
368
369 return val;
370 }
371
372 static pteval_t pte_pfn_to_mfn(pteval_t val)
373 {
374 if (val & _PAGE_PRESENT) {
375 unsigned long pfn = (val & PTE_MASK) >> PAGE_SHIFT;
376 pteval_t flags = val & ~PTE_MASK;
377 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
378 }
379
380 return val;
381 }
382
383 pteval_t xen_pte_val(pte_t pte)
384 {
385 return pte_mfn_to_pfn(pte.pte);
386 }
387
388 pgdval_t xen_pgd_val(pgd_t pgd)
389 {
390 return pte_mfn_to_pfn(pgd.pgd);
391 }
392
393 pte_t xen_make_pte(pteval_t pte)
394 {
395 pte = pte_pfn_to_mfn(pte);
396 return native_make_pte(pte);
397 }
398
399 pgd_t xen_make_pgd(pgdval_t pgd)
400 {
401 pgd = pte_pfn_to_mfn(pgd);
402 return native_make_pgd(pgd);
403 }
404
405 pmdval_t xen_pmd_val(pmd_t pmd)
406 {
407 return pte_mfn_to_pfn(pmd.pmd);
408 }
409
410 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
411 {
412 struct mmu_update u;
413
414 preempt_disable();
415
416 xen_mc_batch();
417
418 u.ptr = virt_to_machine(ptr).maddr;
419 u.val = pud_val_ma(val);
420 extend_mmu_update(&u);
421
422 xen_mc_issue(PARAVIRT_LAZY_MMU);
423
424 preempt_enable();
425 }
426
427 void xen_set_pud(pud_t *ptr, pud_t val)
428 {
429 /* If page is not pinned, we can just update the entry
430 directly */
431 if (!page_pinned(ptr)) {
432 *ptr = val;
433 return;
434 }
435
436 xen_set_pud_hyper(ptr, val);
437 }
438
439 void xen_set_pte(pte_t *ptep, pte_t pte)
440 {
441 #ifdef CONFIG_X86_PAE
442 ptep->pte_high = pte.pte_high;
443 smp_wmb();
444 ptep->pte_low = pte.pte_low;
445 #else
446 *ptep = pte;
447 #endif
448 }
449
450 #ifdef CONFIG_X86_PAE
451 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
452 {
453 set_64bit((u64 *)ptep, native_pte_val(pte));
454 }
455
456 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
457 {
458 ptep->pte_low = 0;
459 smp_wmb(); /* make sure low gets written first */
460 ptep->pte_high = 0;
461 }
462
463 void xen_pmd_clear(pmd_t *pmdp)
464 {
465 set_pmd(pmdp, __pmd(0));
466 }
467 #endif /* CONFIG_X86_PAE */
468
469 pmd_t xen_make_pmd(pmdval_t pmd)
470 {
471 pmd = pte_pfn_to_mfn(pmd);
472 return native_make_pmd(pmd);
473 }
474
475 #if PAGETABLE_LEVELS == 4
476 pudval_t xen_pud_val(pud_t pud)
477 {
478 return pte_mfn_to_pfn(pud.pud);
479 }
480
481 pud_t xen_make_pud(pudval_t pud)
482 {
483 pud = pte_pfn_to_mfn(pud);
484
485 return native_make_pud(pud);
486 }
487
488 void xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
489 {
490 struct mmu_update u;
491
492 preempt_disable();
493
494 xen_mc_batch();
495
496 u.ptr = virt_to_machine(ptr).maddr;
497 u.val = pgd_val_ma(val);
498 extend_mmu_update(&u);
499
500 xen_mc_issue(PARAVIRT_LAZY_MMU);
501
502 preempt_enable();
503 }
504
505 void xen_set_pgd(pgd_t *ptr, pgd_t val)
506 {
507 /* If page is not pinned, we can just update the entry
508 directly */
509 if (!page_pinned(ptr)) {
510 *ptr = val;
511 return;
512 }
513
514 xen_set_pgd_hyper(ptr, val);
515 }
516 #endif /* PAGETABLE_LEVELS == 4 */
517
518 /*
519 (Yet another) pagetable walker. This one is intended for pinning a
520 pagetable. This means that it walks a pagetable and calls the
521 callback function on each page it finds making up the page table,
522 at every level. It walks the entire pagetable, but it only bothers
523 pinning pte pages which are below pte_limit. In the normal case
524 this will be TASK_SIZE, but at boot we need to pin up to
525 FIXADDR_TOP. But the important bit is that we don't pin beyond
526 there, because then we start getting into Xen's ptes.
527 */
528 static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level),
529 unsigned long limit)
530 {
531 pgd_t *pgd = pgd_base;
532 int flush = 0;
533 unsigned long addr = 0;
534 unsigned long pgd_next;
535
536 BUG_ON(limit > FIXADDR_TOP);
537
538 if (xen_feature(XENFEAT_auto_translated_physmap))
539 return 0;
540
541 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
542 pud_t *pud;
543 unsigned long pud_limit, pud_next;
544
545 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
546
547 if (!pgd_val(*pgd))
548 continue;
549
550 pud = pud_offset(pgd, 0);
551
552 if (PTRS_PER_PUD > 1) /* not folded */
553 flush |= (*func)(virt_to_page(pud), PT_PUD);
554
555 for (; addr != pud_limit; pud++, addr = pud_next) {
556 pmd_t *pmd;
557 unsigned long pmd_limit;
558
559 pud_next = pud_addr_end(addr, pud_limit);
560
561 if (pud_next < limit)
562 pmd_limit = pud_next;
563 else
564 pmd_limit = limit;
565
566 if (pud_none(*pud))
567 continue;
568
569 pmd = pmd_offset(pud, 0);
570
571 if (PTRS_PER_PMD > 1) /* not folded */
572 flush |= (*func)(virt_to_page(pmd), PT_PMD);
573
574 for (; addr != pmd_limit; pmd++) {
575 addr += (PAGE_SIZE * PTRS_PER_PTE);
576 if ((pmd_limit-1) < (addr-1)) {
577 addr = pmd_limit;
578 break;
579 }
580
581 if (pmd_none(*pmd))
582 continue;
583
584 flush |= (*func)(pmd_page(*pmd), PT_PTE);
585 }
586 }
587 }
588
589 flush |= (*func)(virt_to_page(pgd_base), PT_PGD);
590
591 return flush;
592 }
593
594 static spinlock_t *lock_pte(struct page *page)
595 {
596 spinlock_t *ptl = NULL;
597
598 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
599 ptl = __pte_lockptr(page);
600 spin_lock(ptl);
601 #endif
602
603 return ptl;
604 }
605
606 static void do_unlock(void *v)
607 {
608 spinlock_t *ptl = v;
609 spin_unlock(ptl);
610 }
611
612 static void xen_do_pin(unsigned level, unsigned long pfn)
613 {
614 struct mmuext_op *op;
615 struct multicall_space mcs;
616
617 mcs = __xen_mc_entry(sizeof(*op));
618 op = mcs.args;
619 op->cmd = level;
620 op->arg1.mfn = pfn_to_mfn(pfn);
621 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
622 }
623
624 static int pin_page(struct page *page, enum pt_level level)
625 {
626 unsigned pgfl = TestSetPagePinned(page);
627 int flush;
628
629 if (pgfl)
630 flush = 0; /* already pinned */
631 else if (PageHighMem(page))
632 /* kmaps need flushing if we found an unpinned
633 highpage */
634 flush = 1;
635 else {
636 void *pt = lowmem_page_address(page);
637 unsigned long pfn = page_to_pfn(page);
638 struct multicall_space mcs = __xen_mc_entry(0);
639 spinlock_t *ptl;
640
641 flush = 0;
642
643 ptl = NULL;
644 if (level == PT_PTE)
645 ptl = lock_pte(page);
646
647 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
648 pfn_pte(pfn, PAGE_KERNEL_RO),
649 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
650
651 if (level == PT_PTE)
652 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
653
654 if (ptl) {
655 /* Queue a deferred unlock for when this batch
656 is completed. */
657 xen_mc_callback(do_unlock, ptl);
658 }
659 }
660
661 return flush;
662 }
663
664 /* This is called just after a mm has been created, but it has not
665 been used yet. We need to make sure that its pagetable is all
666 read-only, and can be pinned. */
667 void xen_pgd_pin(pgd_t *pgd)
668 {
669 xen_mc_batch();
670
671 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
672 /* re-enable interrupts for kmap_flush_unused */
673 xen_mc_issue(0);
674 kmap_flush_unused();
675 xen_mc_batch();
676 }
677
678 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
679 xen_mc_issue(0);
680 }
681
682 /*
683 * On save, we need to pin all pagetables to make sure they get their
684 * mfns turned into pfns. Search the list for any unpinned pgds and pin
685 * them (unpinned pgds are not currently in use, probably because the
686 * process is under construction or destruction).
687 */
688 void xen_mm_pin_all(void)
689 {
690 unsigned long flags;
691 struct page *page;
692
693 spin_lock_irqsave(&pgd_lock, flags);
694
695 list_for_each_entry(page, &pgd_list, lru) {
696 if (!PagePinned(page)) {
697 xen_pgd_pin((pgd_t *)page_address(page));
698 SetPageSavePinned(page);
699 }
700 }
701
702 spin_unlock_irqrestore(&pgd_lock, flags);
703 }
704
705 /*
706 * The init_mm pagetable is really pinned as soon as its created, but
707 * that's before we have page structures to store the bits. So do all
708 * the book-keeping now.
709 */
710 static __init int mark_pinned(struct page *page, enum pt_level level)
711 {
712 SetPagePinned(page);
713 return 0;
714 }
715
716 void __init xen_mark_init_mm_pinned(void)
717 {
718 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
719 }
720
721 static int unpin_page(struct page *page, enum pt_level level)
722 {
723 unsigned pgfl = TestClearPagePinned(page);
724
725 if (pgfl && !PageHighMem(page)) {
726 void *pt = lowmem_page_address(page);
727 unsigned long pfn = page_to_pfn(page);
728 spinlock_t *ptl = NULL;
729 struct multicall_space mcs;
730
731 if (level == PT_PTE) {
732 ptl = lock_pte(page);
733
734 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
735 }
736
737 mcs = __xen_mc_entry(0);
738
739 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
740 pfn_pte(pfn, PAGE_KERNEL),
741 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
742
743 if (ptl) {
744 /* unlock when batch completed */
745 xen_mc_callback(do_unlock, ptl);
746 }
747 }
748
749 return 0; /* never need to flush on unpin */
750 }
751
752 /* Release a pagetables pages back as normal RW */
753 static void xen_pgd_unpin(pgd_t *pgd)
754 {
755 xen_mc_batch();
756
757 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
758
759 pgd_walk(pgd, unpin_page, TASK_SIZE);
760
761 xen_mc_issue(0);
762 }
763
764 /*
765 * On resume, undo any pinning done at save, so that the rest of the
766 * kernel doesn't see any unexpected pinned pagetables.
767 */
768 void xen_mm_unpin_all(void)
769 {
770 unsigned long flags;
771 struct page *page;
772
773 spin_lock_irqsave(&pgd_lock, flags);
774
775 list_for_each_entry(page, &pgd_list, lru) {
776 if (PageSavePinned(page)) {
777 BUG_ON(!PagePinned(page));
778 printk("unpinning pinned %p\n", page_address(page));
779 xen_pgd_unpin((pgd_t *)page_address(page));
780 ClearPageSavePinned(page);
781 }
782 }
783
784 spin_unlock_irqrestore(&pgd_lock, flags);
785 }
786
787 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
788 {
789 spin_lock(&next->page_table_lock);
790 xen_pgd_pin(next->pgd);
791 spin_unlock(&next->page_table_lock);
792 }
793
794 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
795 {
796 spin_lock(&mm->page_table_lock);
797 xen_pgd_pin(mm->pgd);
798 spin_unlock(&mm->page_table_lock);
799 }
800
801
802 #ifdef CONFIG_SMP
803 /* Another cpu may still have their %cr3 pointing at the pagetable, so
804 we need to repoint it somewhere else before we can unpin it. */
805 static void drop_other_mm_ref(void *info)
806 {
807 struct mm_struct *mm = info;
808 struct mm_struct *active_mm;
809
810 #ifdef CONFIG_X86_64
811 active_mm = read_pda(active_mm);
812 #else
813 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
814 #endif
815
816 if (active_mm == mm)
817 leave_mm(smp_processor_id());
818
819 /* If this cpu still has a stale cr3 reference, then make sure
820 it has been flushed. */
821 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
822 load_cr3(swapper_pg_dir);
823 arch_flush_lazy_cpu_mode();
824 }
825 }
826
827 static void drop_mm_ref(struct mm_struct *mm)
828 {
829 cpumask_t mask;
830 unsigned cpu;
831
832 if (current->active_mm == mm) {
833 if (current->mm == mm)
834 load_cr3(swapper_pg_dir);
835 else
836 leave_mm(smp_processor_id());
837 arch_flush_lazy_cpu_mode();
838 }
839
840 /* Get the "official" set of cpus referring to our pagetable. */
841 mask = mm->cpu_vm_mask;
842
843 /* It's possible that a vcpu may have a stale reference to our
844 cr3, because its in lazy mode, and it hasn't yet flushed
845 its set of pending hypercalls yet. In this case, we can
846 look at its actual current cr3 value, and force it to flush
847 if needed. */
848 for_each_online_cpu(cpu) {
849 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
850 cpu_set(cpu, mask);
851 }
852
853 if (!cpus_empty(mask))
854 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
855 }
856 #else
857 static void drop_mm_ref(struct mm_struct *mm)
858 {
859 if (current->active_mm == mm)
860 load_cr3(swapper_pg_dir);
861 }
862 #endif
863
864 /*
865 * While a process runs, Xen pins its pagetables, which means that the
866 * hypervisor forces it to be read-only, and it controls all updates
867 * to it. This means that all pagetable updates have to go via the
868 * hypervisor, which is moderately expensive.
869 *
870 * Since we're pulling the pagetable down, we switch to use init_mm,
871 * unpin old process pagetable and mark it all read-write, which
872 * allows further operations on it to be simple memory accesses.
873 *
874 * The only subtle point is that another CPU may be still using the
875 * pagetable because of lazy tlb flushing. This means we need need to
876 * switch all CPUs off this pagetable before we can unpin it.
877 */
878 void xen_exit_mmap(struct mm_struct *mm)
879 {
880 get_cpu(); /* make sure we don't move around */
881 drop_mm_ref(mm);
882 put_cpu();
883
884 spin_lock(&mm->page_table_lock);
885
886 /* pgd may not be pinned in the error exit path of execve */
887 if (page_pinned(mm->pgd))
888 xen_pgd_unpin(mm->pgd);
889
890 spin_unlock(&mm->page_table_lock);
891 }
This page took 0.049485 seconds and 6 git commands to generate.