xen: avoid early crash of memory limited dom0
[deliverable/linux.git] / arch / x86 / xen / setup.c
1 /*
2 * Machine specific setup for xen
3 *
4 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
5 */
6
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pm.h>
11 #include <linux/memblock.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpufreq.h>
14
15 #include <asm/elf.h>
16 #include <asm/vdso.h>
17 #include <asm/e820.h>
18 #include <asm/setup.h>
19 #include <asm/acpi.h>
20 #include <asm/numa.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23
24 #include <xen/xen.h>
25 #include <xen/page.h>
26 #include <xen/interface/callback.h>
27 #include <xen/interface/memory.h>
28 #include <xen/interface/physdev.h>
29 #include <xen/features.h>
30 #include <xen/hvc-console.h>
31 #include "xen-ops.h"
32 #include "vdso.h"
33 #include "mmu.h"
34
35 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024)
36
37 /* Amount of extra memory space we add to the e820 ranges */
38 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
39
40 /* Number of pages released from the initial allocation. */
41 unsigned long xen_released_pages;
42
43 /* E820 map used during setting up memory. */
44 static struct e820entry xen_e820_map[E820MAX] __initdata;
45 static u32 xen_e820_map_entries __initdata;
46
47 /*
48 * Buffer used to remap identity mapped pages. We only need the virtual space.
49 * The physical page behind this address is remapped as needed to different
50 * buffer pages.
51 */
52 #define REMAP_SIZE (P2M_PER_PAGE - 3)
53 static struct {
54 unsigned long next_area_mfn;
55 unsigned long target_pfn;
56 unsigned long size;
57 unsigned long mfns[REMAP_SIZE];
58 } xen_remap_buf __initdata __aligned(PAGE_SIZE);
59 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
60
61 /*
62 * The maximum amount of extra memory compared to the base size. The
63 * main scaling factor is the size of struct page. At extreme ratios
64 * of base:extra, all the base memory can be filled with page
65 * structures for the extra memory, leaving no space for anything
66 * else.
67 *
68 * 10x seems like a reasonable balance between scaling flexibility and
69 * leaving a practically usable system.
70 */
71 #define EXTRA_MEM_RATIO (10)
72
73 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB);
74
75 static void __init xen_parse_512gb(void)
76 {
77 bool val = false;
78 char *arg;
79
80 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit");
81 if (!arg)
82 return;
83
84 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit=");
85 if (!arg)
86 val = true;
87 else if (strtobool(arg + strlen("xen_512gb_limit="), &val))
88 return;
89
90 xen_512gb_limit = val;
91 }
92
93 static void __init xen_add_extra_mem(phys_addr_t start, phys_addr_t size)
94 {
95 int i;
96
97 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
98 /* Add new region. */
99 if (xen_extra_mem[i].size == 0) {
100 xen_extra_mem[i].start = start;
101 xen_extra_mem[i].size = size;
102 break;
103 }
104 /* Append to existing region. */
105 if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
106 xen_extra_mem[i].size += size;
107 break;
108 }
109 }
110 if (i == XEN_EXTRA_MEM_MAX_REGIONS)
111 printk(KERN_WARNING "Warning: not enough extra memory regions\n");
112
113 memblock_reserve(start, size);
114 }
115
116 static void __init xen_del_extra_mem(phys_addr_t start, phys_addr_t size)
117 {
118 int i;
119 phys_addr_t start_r, size_r;
120
121 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
122 start_r = xen_extra_mem[i].start;
123 size_r = xen_extra_mem[i].size;
124
125 /* Start of region. */
126 if (start_r == start) {
127 BUG_ON(size > size_r);
128 xen_extra_mem[i].start += size;
129 xen_extra_mem[i].size -= size;
130 break;
131 }
132 /* End of region. */
133 if (start_r + size_r == start + size) {
134 BUG_ON(size > size_r);
135 xen_extra_mem[i].size -= size;
136 break;
137 }
138 /* Mid of region. */
139 if (start > start_r && start < start_r + size_r) {
140 BUG_ON(start + size > start_r + size_r);
141 xen_extra_mem[i].size = start - start_r;
142 /* Calling memblock_reserve() again is okay. */
143 xen_add_extra_mem(start + size, start_r + size_r -
144 (start + size));
145 break;
146 }
147 }
148 memblock_free(start, size);
149 }
150
151 /*
152 * Called during boot before the p2m list can take entries beyond the
153 * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
154 * invalid.
155 */
156 unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
157 {
158 int i;
159 phys_addr_t addr = PFN_PHYS(pfn);
160
161 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
162 if (addr >= xen_extra_mem[i].start &&
163 addr < xen_extra_mem[i].start + xen_extra_mem[i].size)
164 return INVALID_P2M_ENTRY;
165 }
166
167 return IDENTITY_FRAME(pfn);
168 }
169
170 /*
171 * Mark all pfns of extra mem as invalid in p2m list.
172 */
173 void __init xen_inv_extra_mem(void)
174 {
175 unsigned long pfn, pfn_s, pfn_e;
176 int i;
177
178 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
179 if (!xen_extra_mem[i].size)
180 continue;
181 pfn_s = PFN_DOWN(xen_extra_mem[i].start);
182 pfn_e = PFN_UP(xen_extra_mem[i].start + xen_extra_mem[i].size);
183 for (pfn = pfn_s; pfn < pfn_e; pfn++)
184 set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
185 }
186 }
187
188 /*
189 * Finds the next RAM pfn available in the E820 map after min_pfn.
190 * This function updates min_pfn with the pfn found and returns
191 * the size of that range or zero if not found.
192 */
193 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
194 {
195 const struct e820entry *entry = xen_e820_map;
196 unsigned int i;
197 unsigned long done = 0;
198
199 for (i = 0; i < xen_e820_map_entries; i++, entry++) {
200 unsigned long s_pfn;
201 unsigned long e_pfn;
202
203 if (entry->type != E820_RAM)
204 continue;
205
206 e_pfn = PFN_DOWN(entry->addr + entry->size);
207
208 /* We only care about E820 after this */
209 if (e_pfn < *min_pfn)
210 continue;
211
212 s_pfn = PFN_UP(entry->addr);
213
214 /* If min_pfn falls within the E820 entry, we want to start
215 * at the min_pfn PFN.
216 */
217 if (s_pfn <= *min_pfn) {
218 done = e_pfn - *min_pfn;
219 } else {
220 done = e_pfn - s_pfn;
221 *min_pfn = s_pfn;
222 }
223 break;
224 }
225
226 return done;
227 }
228
229 static int __init xen_free_mfn(unsigned long mfn)
230 {
231 struct xen_memory_reservation reservation = {
232 .address_bits = 0,
233 .extent_order = 0,
234 .domid = DOMID_SELF
235 };
236
237 set_xen_guest_handle(reservation.extent_start, &mfn);
238 reservation.nr_extents = 1;
239
240 return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
241 }
242
243 /*
244 * This releases a chunk of memory and then does the identity map. It's used
245 * as a fallback if the remapping fails.
246 */
247 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
248 unsigned long end_pfn, unsigned long nr_pages)
249 {
250 unsigned long pfn, end;
251 int ret;
252
253 WARN_ON(start_pfn > end_pfn);
254
255 /* Release pages first. */
256 end = min(end_pfn, nr_pages);
257 for (pfn = start_pfn; pfn < end; pfn++) {
258 unsigned long mfn = pfn_to_mfn(pfn);
259
260 /* Make sure pfn exists to start with */
261 if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
262 continue;
263
264 ret = xen_free_mfn(mfn);
265 WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
266
267 if (ret == 1) {
268 xen_released_pages++;
269 if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
270 break;
271 } else
272 break;
273 }
274
275 set_phys_range_identity(start_pfn, end_pfn);
276 }
277
278 /*
279 * Helper function to update the p2m and m2p tables and kernel mapping.
280 */
281 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
282 {
283 struct mmu_update update = {
284 .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
285 .val = pfn
286 };
287
288 /* Update p2m */
289 if (!set_phys_to_machine(pfn, mfn)) {
290 WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
291 pfn, mfn);
292 BUG();
293 }
294
295 /* Update m2p */
296 if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
297 WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
298 mfn, pfn);
299 BUG();
300 }
301
302 /* Update kernel mapping, but not for highmem. */
303 if (pfn >= PFN_UP(__pa(high_memory - 1)))
304 return;
305
306 if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
307 mfn_pte(mfn, PAGE_KERNEL), 0)) {
308 WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
309 mfn, pfn);
310 BUG();
311 }
312 }
313
314 /*
315 * This function updates the p2m and m2p tables with an identity map from
316 * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
317 * original allocation at remap_pfn. The information needed for remapping is
318 * saved in the memory itself to avoid the need for allocating buffers. The
319 * complete remap information is contained in a list of MFNs each containing
320 * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
321 * This enables us to preserve the original mfn sequence while doing the
322 * remapping at a time when the memory management is capable of allocating
323 * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
324 * its callers.
325 */
326 static void __init xen_do_set_identity_and_remap_chunk(
327 unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
328 {
329 unsigned long buf = (unsigned long)&xen_remap_buf;
330 unsigned long mfn_save, mfn;
331 unsigned long ident_pfn_iter, remap_pfn_iter;
332 unsigned long ident_end_pfn = start_pfn + size;
333 unsigned long left = size;
334 unsigned int i, chunk;
335
336 WARN_ON(size == 0);
337
338 BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
339
340 mfn_save = virt_to_mfn(buf);
341
342 for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
343 ident_pfn_iter < ident_end_pfn;
344 ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
345 chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
346
347 /* Map first pfn to xen_remap_buf */
348 mfn = pfn_to_mfn(ident_pfn_iter);
349 set_pte_mfn(buf, mfn, PAGE_KERNEL);
350
351 /* Save mapping information in page */
352 xen_remap_buf.next_area_mfn = xen_remap_mfn;
353 xen_remap_buf.target_pfn = remap_pfn_iter;
354 xen_remap_buf.size = chunk;
355 for (i = 0; i < chunk; i++)
356 xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
357
358 /* Put remap buf into list. */
359 xen_remap_mfn = mfn;
360
361 /* Set identity map */
362 set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
363
364 left -= chunk;
365 }
366
367 /* Restore old xen_remap_buf mapping */
368 set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
369 }
370
371 /*
372 * This function takes a contiguous pfn range that needs to be identity mapped
373 * and:
374 *
375 * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
376 * 2) Calls the do_ function to actually do the mapping/remapping work.
377 *
378 * The goal is to not allocate additional memory but to remap the existing
379 * pages. In the case of an error the underlying memory is simply released back
380 * to Xen and not remapped.
381 */
382 static unsigned long __init xen_set_identity_and_remap_chunk(
383 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
384 unsigned long remap_pfn)
385 {
386 unsigned long pfn;
387 unsigned long i = 0;
388 unsigned long n = end_pfn - start_pfn;
389
390 while (i < n) {
391 unsigned long cur_pfn = start_pfn + i;
392 unsigned long left = n - i;
393 unsigned long size = left;
394 unsigned long remap_range_size;
395
396 /* Do not remap pages beyond the current allocation */
397 if (cur_pfn >= nr_pages) {
398 /* Identity map remaining pages */
399 set_phys_range_identity(cur_pfn, cur_pfn + size);
400 break;
401 }
402 if (cur_pfn + size > nr_pages)
403 size = nr_pages - cur_pfn;
404
405 remap_range_size = xen_find_pfn_range(&remap_pfn);
406 if (!remap_range_size) {
407 pr_warning("Unable to find available pfn range, not remapping identity pages\n");
408 xen_set_identity_and_release_chunk(cur_pfn,
409 cur_pfn + left, nr_pages);
410 break;
411 }
412 /* Adjust size to fit in current e820 RAM region */
413 if (size > remap_range_size)
414 size = remap_range_size;
415
416 xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
417
418 /* Update variables to reflect new mappings. */
419 i += size;
420 remap_pfn += size;
421 }
422
423 /*
424 * If the PFNs are currently mapped, the VA mapping also needs
425 * to be updated to be 1:1.
426 */
427 for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
428 (void)HYPERVISOR_update_va_mapping(
429 (unsigned long)__va(pfn << PAGE_SHIFT),
430 mfn_pte(pfn, PAGE_KERNEL_IO), 0);
431
432 return remap_pfn;
433 }
434
435 static void __init xen_set_identity_and_remap(unsigned long nr_pages)
436 {
437 phys_addr_t start = 0;
438 unsigned long last_pfn = nr_pages;
439 const struct e820entry *entry = xen_e820_map;
440 int i;
441
442 /*
443 * Combine non-RAM regions and gaps until a RAM region (or the
444 * end of the map) is reached, then set the 1:1 map and
445 * remap the memory in those non-RAM regions.
446 *
447 * The combined non-RAM regions are rounded to a whole number
448 * of pages so any partial pages are accessible via the 1:1
449 * mapping. This is needed for some BIOSes that put (for
450 * example) the DMI tables in a reserved region that begins on
451 * a non-page boundary.
452 */
453 for (i = 0; i < xen_e820_map_entries; i++, entry++) {
454 phys_addr_t end = entry->addr + entry->size;
455 if (entry->type == E820_RAM || i == xen_e820_map_entries - 1) {
456 unsigned long start_pfn = PFN_DOWN(start);
457 unsigned long end_pfn = PFN_UP(end);
458
459 if (entry->type == E820_RAM)
460 end_pfn = PFN_UP(entry->addr);
461
462 if (start_pfn < end_pfn)
463 last_pfn = xen_set_identity_and_remap_chunk(
464 start_pfn, end_pfn, nr_pages,
465 last_pfn);
466 start = end;
467 }
468 }
469
470 pr_info("Released %ld page(s)\n", xen_released_pages);
471 }
472
473 /*
474 * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
475 * The remap information (which mfn remap to which pfn) is contained in the
476 * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
477 * This scheme allows to remap the different chunks in arbitrary order while
478 * the resulting mapping will be independant from the order.
479 */
480 void __init xen_remap_memory(void)
481 {
482 unsigned long buf = (unsigned long)&xen_remap_buf;
483 unsigned long mfn_save, mfn, pfn;
484 unsigned long remapped = 0;
485 unsigned int i;
486 unsigned long pfn_s = ~0UL;
487 unsigned long len = 0;
488
489 mfn_save = virt_to_mfn(buf);
490
491 while (xen_remap_mfn != INVALID_P2M_ENTRY) {
492 /* Map the remap information */
493 set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
494
495 BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
496
497 pfn = xen_remap_buf.target_pfn;
498 for (i = 0; i < xen_remap_buf.size; i++) {
499 mfn = xen_remap_buf.mfns[i];
500 xen_update_mem_tables(pfn, mfn);
501 remapped++;
502 pfn++;
503 }
504 if (pfn_s == ~0UL || pfn == pfn_s) {
505 pfn_s = xen_remap_buf.target_pfn;
506 len += xen_remap_buf.size;
507 } else if (pfn_s + len == xen_remap_buf.target_pfn) {
508 len += xen_remap_buf.size;
509 } else {
510 xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len));
511 pfn_s = xen_remap_buf.target_pfn;
512 len = xen_remap_buf.size;
513 }
514
515 mfn = xen_remap_mfn;
516 xen_remap_mfn = xen_remap_buf.next_area_mfn;
517 }
518
519 if (pfn_s != ~0UL && len)
520 xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len));
521
522 set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
523
524 pr_info("Remapped %ld page(s)\n", remapped);
525 }
526
527 static unsigned long __init xen_get_pages_limit(void)
528 {
529 unsigned long limit;
530
531 #ifdef CONFIG_X86_32
532 limit = GB(64) / PAGE_SIZE;
533 #else
534 limit = ~0ul;
535 if (!xen_initial_domain() && xen_512gb_limit)
536 limit = GB(512) / PAGE_SIZE;
537 #endif
538 return limit;
539 }
540
541 static unsigned long __init xen_get_max_pages(void)
542 {
543 unsigned long max_pages, limit;
544 domid_t domid = DOMID_SELF;
545 int ret;
546
547 limit = xen_get_pages_limit();
548 max_pages = limit;
549
550 /*
551 * For the initial domain we use the maximum reservation as
552 * the maximum page.
553 *
554 * For guest domains the current maximum reservation reflects
555 * the current maximum rather than the static maximum. In this
556 * case the e820 map provided to us will cover the static
557 * maximum region.
558 */
559 if (xen_initial_domain()) {
560 ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
561 if (ret > 0)
562 max_pages = ret;
563 }
564
565 return min(max_pages, limit);
566 }
567
568 static void __init xen_align_and_add_e820_region(phys_addr_t start,
569 phys_addr_t size, int type)
570 {
571 phys_addr_t end = start + size;
572
573 /* Align RAM regions to page boundaries. */
574 if (type == E820_RAM) {
575 start = PAGE_ALIGN(start);
576 end &= ~((phys_addr_t)PAGE_SIZE - 1);
577 }
578
579 e820_add_region(start, end - start, type);
580 }
581
582 static void __init xen_ignore_unusable(void)
583 {
584 struct e820entry *entry = xen_e820_map;
585 unsigned int i;
586
587 for (i = 0; i < xen_e820_map_entries; i++, entry++) {
588 if (entry->type == E820_UNUSABLE)
589 entry->type = E820_RAM;
590 }
591 }
592
593 static unsigned long __init xen_count_remap_pages(unsigned long max_pfn)
594 {
595 unsigned long extra = 0;
596 const struct e820entry *entry = xen_e820_map;
597 int i;
598
599 for (i = 0; i < xen_e820_map_entries; i++, entry++) {
600 unsigned long start_pfn = PFN_DOWN(entry->addr);
601 unsigned long end_pfn = PFN_UP(entry->addr + entry->size);
602
603 if (start_pfn >= max_pfn)
604 break;
605 if (entry->type == E820_RAM)
606 continue;
607 if (end_pfn >= max_pfn)
608 end_pfn = max_pfn;
609 extra += end_pfn - start_pfn;
610 }
611
612 return extra;
613 }
614
615 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size)
616 {
617 struct e820entry *entry;
618 unsigned mapcnt;
619 phys_addr_t end;
620
621 if (!size)
622 return false;
623
624 end = start + size;
625 entry = xen_e820_map;
626
627 for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++) {
628 if (entry->type == E820_RAM && entry->addr <= start &&
629 (entry->addr + entry->size) >= end)
630 return false;
631
632 entry++;
633 }
634
635 return true;
636 }
637
638 /*
639 * Find a free area in physical memory not yet reserved and compliant with
640 * E820 map.
641 * Used to relocate pre-allocated areas like initrd or p2m list which are in
642 * conflict with the to be used E820 map.
643 * In case no area is found, return 0. Otherwise return the physical address
644 * of the area which is already reserved for convenience.
645 */
646 phys_addr_t __init xen_find_free_area(phys_addr_t size)
647 {
648 unsigned mapcnt;
649 phys_addr_t addr, start;
650 struct e820entry *entry = xen_e820_map;
651
652 for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++, entry++) {
653 if (entry->type != E820_RAM || entry->size < size)
654 continue;
655 start = entry->addr;
656 for (addr = start; addr < start + size; addr += PAGE_SIZE) {
657 if (!memblock_is_reserved(addr))
658 continue;
659 start = addr + PAGE_SIZE;
660 if (start + size > entry->addr + entry->size)
661 break;
662 }
663 if (addr >= start + size) {
664 memblock_reserve(start, size);
665 return start;
666 }
667 }
668
669 return 0;
670 }
671
672 /*
673 * Like memcpy, but with physical addresses for dest and src.
674 */
675 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src,
676 phys_addr_t n)
677 {
678 phys_addr_t dest_off, src_off, dest_len, src_len, len;
679 void *from, *to;
680
681 while (n) {
682 dest_off = dest & ~PAGE_MASK;
683 src_off = src & ~PAGE_MASK;
684 dest_len = n;
685 if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off)
686 dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off;
687 src_len = n;
688 if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off)
689 src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off;
690 len = min(dest_len, src_len);
691 to = early_memremap(dest - dest_off, dest_len + dest_off);
692 from = early_memremap(src - src_off, src_len + src_off);
693 memcpy(to, from, len);
694 early_memunmap(to, dest_len + dest_off);
695 early_memunmap(from, src_len + src_off);
696 n -= len;
697 dest += len;
698 src += len;
699 }
700 }
701
702 /*
703 * Reserve Xen mfn_list.
704 */
705 static void __init xen_reserve_xen_mfnlist(void)
706 {
707 phys_addr_t start, size;
708
709 if (xen_start_info->mfn_list >= __START_KERNEL_map) {
710 start = __pa(xen_start_info->mfn_list);
711 size = PFN_ALIGN(xen_start_info->nr_pages *
712 sizeof(unsigned long));
713 } else {
714 start = PFN_PHYS(xen_start_info->first_p2m_pfn);
715 size = PFN_PHYS(xen_start_info->nr_p2m_frames);
716 }
717
718 if (!xen_is_e820_reserved(start, size)) {
719 memblock_reserve(start, size);
720 return;
721 }
722
723 #ifdef CONFIG_X86_32
724 /*
725 * Relocating the p2m on 32 bit system to an arbitrary virtual address
726 * is not supported, so just give up.
727 */
728 xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n");
729 BUG();
730 #else
731 xen_relocate_p2m();
732 #endif
733 }
734
735 /**
736 * machine_specific_memory_setup - Hook for machine specific memory setup.
737 **/
738 char * __init xen_memory_setup(void)
739 {
740 unsigned long max_pfn;
741 phys_addr_t mem_end, addr, size, chunk_size;
742 u32 type;
743 int rc;
744 struct xen_memory_map memmap;
745 unsigned long max_pages;
746 unsigned long extra_pages = 0;
747 int i;
748 int op;
749
750 xen_parse_512gb();
751 max_pfn = xen_get_pages_limit();
752 max_pfn = min(max_pfn, xen_start_info->nr_pages);
753 mem_end = PFN_PHYS(max_pfn);
754
755 memmap.nr_entries = E820MAX;
756 set_xen_guest_handle(memmap.buffer, xen_e820_map);
757
758 op = xen_initial_domain() ?
759 XENMEM_machine_memory_map :
760 XENMEM_memory_map;
761 rc = HYPERVISOR_memory_op(op, &memmap);
762 if (rc == -ENOSYS) {
763 BUG_ON(xen_initial_domain());
764 memmap.nr_entries = 1;
765 xen_e820_map[0].addr = 0ULL;
766 xen_e820_map[0].size = mem_end;
767 /* 8MB slack (to balance backend allocations). */
768 xen_e820_map[0].size += 8ULL << 20;
769 xen_e820_map[0].type = E820_RAM;
770 rc = 0;
771 }
772 BUG_ON(rc);
773 BUG_ON(memmap.nr_entries == 0);
774 xen_e820_map_entries = memmap.nr_entries;
775
776 /*
777 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
778 * regions, so if we're using the machine memory map leave the
779 * region as RAM as it is in the pseudo-physical map.
780 *
781 * UNUSABLE regions in domUs are not handled and will need
782 * a patch in the future.
783 */
784 if (xen_initial_domain())
785 xen_ignore_unusable();
786
787 /* Make sure the Xen-supplied memory map is well-ordered. */
788 sanitize_e820_map(xen_e820_map, xen_e820_map_entries,
789 &xen_e820_map_entries);
790
791 max_pages = xen_get_max_pages();
792
793 /* How many extra pages do we need due to remapping? */
794 max_pages += xen_count_remap_pages(max_pfn);
795
796 if (max_pages > max_pfn)
797 extra_pages += max_pages - max_pfn;
798
799 /*
800 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
801 * factor the base size. On non-highmem systems, the base
802 * size is the full initial memory allocation; on highmem it
803 * is limited to the max size of lowmem, so that it doesn't
804 * get completely filled.
805 *
806 * Make sure we have no memory above max_pages, as this area
807 * isn't handled by the p2m management.
808 *
809 * In principle there could be a problem in lowmem systems if
810 * the initial memory is also very large with respect to
811 * lowmem, but we won't try to deal with that here.
812 */
813 extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
814 extra_pages, max_pages - max_pfn);
815 i = 0;
816 addr = xen_e820_map[0].addr;
817 size = xen_e820_map[0].size;
818 while (i < xen_e820_map_entries) {
819 chunk_size = size;
820 type = xen_e820_map[i].type;
821
822 if (type == E820_RAM) {
823 if (addr < mem_end) {
824 chunk_size = min(size, mem_end - addr);
825 } else if (extra_pages) {
826 chunk_size = min(size, PFN_PHYS(extra_pages));
827 extra_pages -= PFN_DOWN(chunk_size);
828 xen_add_extra_mem(addr, chunk_size);
829 xen_max_p2m_pfn = PFN_DOWN(addr + chunk_size);
830 } else
831 type = E820_UNUSABLE;
832 }
833
834 xen_align_and_add_e820_region(addr, chunk_size, type);
835
836 addr += chunk_size;
837 size -= chunk_size;
838 if (size == 0) {
839 i++;
840 if (i < xen_e820_map_entries) {
841 addr = xen_e820_map[i].addr;
842 size = xen_e820_map[i].size;
843 }
844 }
845 }
846
847 /*
848 * Set the rest as identity mapped, in case PCI BARs are
849 * located here.
850 */
851 set_phys_range_identity(addr / PAGE_SIZE, ~0ul);
852
853 /*
854 * In domU, the ISA region is normal, usable memory, but we
855 * reserve ISA memory anyway because too many things poke
856 * about in there.
857 */
858 e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
859 E820_RESERVED);
860
861 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
862
863 /*
864 * Check whether the kernel itself conflicts with the target E820 map.
865 * Failing now is better than running into weird problems later due
866 * to relocating (and even reusing) pages with kernel text or data.
867 */
868 if (xen_is_e820_reserved(__pa_symbol(_text),
869 __pa_symbol(__bss_stop) - __pa_symbol(_text))) {
870 xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n");
871 BUG();
872 }
873
874 /*
875 * Check for a conflict of the hypervisor supplied page tables with
876 * the target E820 map.
877 */
878 xen_pt_check_e820();
879
880 xen_reserve_xen_mfnlist();
881
882 /* Check for a conflict of the initrd with the target E820 map. */
883 if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image,
884 boot_params.hdr.ramdisk_size)) {
885 phys_addr_t new_area, start, size;
886
887 new_area = xen_find_free_area(boot_params.hdr.ramdisk_size);
888 if (!new_area) {
889 xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n");
890 BUG();
891 }
892
893 start = boot_params.hdr.ramdisk_image;
894 size = boot_params.hdr.ramdisk_size;
895 xen_phys_memcpy(new_area, start, size);
896 pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n",
897 start, start + size, new_area, new_area + size);
898 memblock_free(start, size);
899 boot_params.hdr.ramdisk_image = new_area;
900 boot_params.ext_ramdisk_image = new_area >> 32;
901 }
902
903 /*
904 * Set identity map on non-RAM pages and prepare remapping the
905 * underlying RAM.
906 */
907 xen_set_identity_and_remap(max_pfn);
908
909 return "Xen";
910 }
911
912 /*
913 * Machine specific memory setup for auto-translated guests.
914 */
915 char * __init xen_auto_xlated_memory_setup(void)
916 {
917 struct xen_memory_map memmap;
918 int i;
919 int rc;
920
921 memmap.nr_entries = E820MAX;
922 set_xen_guest_handle(memmap.buffer, xen_e820_map);
923
924 rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
925 if (rc < 0)
926 panic("No memory map (%d)\n", rc);
927
928 xen_e820_map_entries = memmap.nr_entries;
929
930 sanitize_e820_map(xen_e820_map, ARRAY_SIZE(xen_e820_map),
931 &xen_e820_map_entries);
932
933 for (i = 0; i < xen_e820_map_entries; i++)
934 e820_add_region(xen_e820_map[i].addr, xen_e820_map[i].size,
935 xen_e820_map[i].type);
936
937 /* Remove p2m info, it is not needed. */
938 xen_start_info->mfn_list = 0;
939 xen_start_info->first_p2m_pfn = 0;
940 xen_start_info->nr_p2m_frames = 0;
941
942 return "Xen";
943 }
944
945 /*
946 * Set the bit indicating "nosegneg" library variants should be used.
947 * We only need to bother in pure 32-bit mode; compat 32-bit processes
948 * can have un-truncated segments, so wrapping around is allowed.
949 */
950 static void __init fiddle_vdso(void)
951 {
952 #ifdef CONFIG_X86_32
953 /*
954 * This could be called before selected_vdso32 is initialized, so
955 * just fiddle with both possible images. vdso_image_32_syscall
956 * can't be selected, since it only exists on 64-bit systems.
957 */
958 u32 *mask;
959 mask = vdso_image_32_int80.data +
960 vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
961 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
962 mask = vdso_image_32_sysenter.data +
963 vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
964 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
965 #endif
966 }
967
968 static int register_callback(unsigned type, const void *func)
969 {
970 struct callback_register callback = {
971 .type = type,
972 .address = XEN_CALLBACK(__KERNEL_CS, func),
973 .flags = CALLBACKF_mask_events,
974 };
975
976 return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
977 }
978
979 void xen_enable_sysenter(void)
980 {
981 int ret;
982 unsigned sysenter_feature;
983
984 #ifdef CONFIG_X86_32
985 sysenter_feature = X86_FEATURE_SEP;
986 #else
987 sysenter_feature = X86_FEATURE_SYSENTER32;
988 #endif
989
990 if (!boot_cpu_has(sysenter_feature))
991 return;
992
993 ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
994 if(ret != 0)
995 setup_clear_cpu_cap(sysenter_feature);
996 }
997
998 void xen_enable_syscall(void)
999 {
1000 #ifdef CONFIG_X86_64
1001 int ret;
1002
1003 ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
1004 if (ret != 0) {
1005 printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
1006 /* Pretty fatal; 64-bit userspace has no other
1007 mechanism for syscalls. */
1008 }
1009
1010 if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
1011 ret = register_callback(CALLBACKTYPE_syscall32,
1012 xen_syscall32_target);
1013 if (ret != 0)
1014 setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
1015 }
1016 #endif /* CONFIG_X86_64 */
1017 }
1018
1019 void __init xen_pvmmu_arch_setup(void)
1020 {
1021 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
1022 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
1023
1024 HYPERVISOR_vm_assist(VMASST_CMD_enable,
1025 VMASST_TYPE_pae_extended_cr3);
1026
1027 if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
1028 register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
1029 BUG();
1030
1031 xen_enable_sysenter();
1032 xen_enable_syscall();
1033 }
1034
1035 /* This function is not called for HVM domains */
1036 void __init xen_arch_setup(void)
1037 {
1038 xen_panic_handler_init();
1039 if (!xen_feature(XENFEAT_auto_translated_physmap))
1040 xen_pvmmu_arch_setup();
1041
1042 #ifdef CONFIG_ACPI
1043 if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
1044 printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
1045 disable_acpi();
1046 }
1047 #endif
1048
1049 memcpy(boot_command_line, xen_start_info->cmd_line,
1050 MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
1051 COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
1052
1053 /* Set up idle, making sure it calls safe_halt() pvop */
1054 disable_cpuidle();
1055 disable_cpufreq();
1056 WARN_ON(xen_set_default_idle());
1057 fiddle_vdso();
1058 #ifdef CONFIG_NUMA
1059 numa_off = 1;
1060 #endif
1061 }
This page took 0.056945 seconds and 5 git commands to generate.