Merge tag 'dm-4.6-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[deliverable/linux.git] / arch / x86 / xen / smp.c
1 /*
2 * Xen SMP support
3 *
4 * This file implements the Xen versions of smp_ops. SMP under Xen is
5 * very straightforward. Bringing a CPU up is simply a matter of
6 * loading its initial context and setting it running.
7 *
8 * IPIs are handled through the Xen event mechanism.
9 *
10 * Because virtual CPUs can be scheduled onto any real CPU, there's no
11 * useful topology information for the kernel to make use of. As a
12 * result, all CPUs are treated as if they're single-core and
13 * single-threaded.
14 */
15 #include <linux/sched.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/smp.h>
19 #include <linux/irq_work.h>
20 #include <linux/tick.h>
21
22 #include <asm/paravirt.h>
23 #include <asm/desc.h>
24 #include <asm/pgtable.h>
25 #include <asm/cpu.h>
26
27 #include <xen/interface/xen.h>
28 #include <xen/interface/vcpu.h>
29 #include <xen/interface/xenpmu.h>
30
31 #include <asm/xen/interface.h>
32 #include <asm/xen/hypercall.h>
33
34 #include <xen/xen.h>
35 #include <xen/page.h>
36 #include <xen/events.h>
37
38 #include <xen/hvc-console.h>
39 #include "xen-ops.h"
40 #include "mmu.h"
41 #include "smp.h"
42 #include "pmu.h"
43
44 cpumask_var_t xen_cpu_initialized_map;
45
46 struct xen_common_irq {
47 int irq;
48 char *name;
49 };
50 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
51 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
52 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
53 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
54 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
55 static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 };
56
57 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
58 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
59 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
60
61 /*
62 * Reschedule call back.
63 */
64 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
65 {
66 inc_irq_stat(irq_resched_count);
67 scheduler_ipi();
68
69 return IRQ_HANDLED;
70 }
71
72 static void cpu_bringup(void)
73 {
74 int cpu;
75
76 cpu_init();
77 touch_softlockup_watchdog();
78 preempt_disable();
79
80 /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
81 if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
82 xen_enable_sysenter();
83 xen_enable_syscall();
84 }
85 cpu = smp_processor_id();
86 smp_store_cpu_info(cpu);
87 cpu_data(cpu).x86_max_cores = 1;
88 set_cpu_sibling_map(cpu);
89
90 xen_setup_cpu_clockevents();
91
92 notify_cpu_starting(cpu);
93
94 set_cpu_online(cpu, true);
95
96 cpu_set_state_online(cpu); /* Implies full memory barrier. */
97
98 /* We can take interrupts now: we're officially "up". */
99 local_irq_enable();
100 }
101
102 /*
103 * Note: cpu parameter is only relevant for PVH. The reason for passing it
104 * is we can't do smp_processor_id until the percpu segments are loaded, for
105 * which we need the cpu number! So we pass it in rdi as first parameter.
106 */
107 asmlinkage __visible void cpu_bringup_and_idle(int cpu)
108 {
109 #ifdef CONFIG_XEN_PVH
110 if (xen_feature(XENFEAT_auto_translated_physmap) &&
111 xen_feature(XENFEAT_supervisor_mode_kernel))
112 xen_pvh_secondary_vcpu_init(cpu);
113 #endif
114 cpu_bringup();
115 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
116 }
117
118 static void xen_smp_intr_free(unsigned int cpu)
119 {
120 if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
121 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
122 per_cpu(xen_resched_irq, cpu).irq = -1;
123 kfree(per_cpu(xen_resched_irq, cpu).name);
124 per_cpu(xen_resched_irq, cpu).name = NULL;
125 }
126 if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
127 unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
128 per_cpu(xen_callfunc_irq, cpu).irq = -1;
129 kfree(per_cpu(xen_callfunc_irq, cpu).name);
130 per_cpu(xen_callfunc_irq, cpu).name = NULL;
131 }
132 if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
133 unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
134 per_cpu(xen_debug_irq, cpu).irq = -1;
135 kfree(per_cpu(xen_debug_irq, cpu).name);
136 per_cpu(xen_debug_irq, cpu).name = NULL;
137 }
138 if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
139 unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
140 NULL);
141 per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
142 kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
143 per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
144 }
145 if (xen_hvm_domain())
146 return;
147
148 if (per_cpu(xen_irq_work, cpu).irq >= 0) {
149 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
150 per_cpu(xen_irq_work, cpu).irq = -1;
151 kfree(per_cpu(xen_irq_work, cpu).name);
152 per_cpu(xen_irq_work, cpu).name = NULL;
153 }
154
155 if (per_cpu(xen_pmu_irq, cpu).irq >= 0) {
156 unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL);
157 per_cpu(xen_pmu_irq, cpu).irq = -1;
158 kfree(per_cpu(xen_pmu_irq, cpu).name);
159 per_cpu(xen_pmu_irq, cpu).name = NULL;
160 }
161 };
162 static int xen_smp_intr_init(unsigned int cpu)
163 {
164 int rc;
165 char *resched_name, *callfunc_name, *debug_name, *pmu_name;
166
167 resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
168 rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
169 cpu,
170 xen_reschedule_interrupt,
171 IRQF_PERCPU|IRQF_NOBALANCING,
172 resched_name,
173 NULL);
174 if (rc < 0)
175 goto fail;
176 per_cpu(xen_resched_irq, cpu).irq = rc;
177 per_cpu(xen_resched_irq, cpu).name = resched_name;
178
179 callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
180 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
181 cpu,
182 xen_call_function_interrupt,
183 IRQF_PERCPU|IRQF_NOBALANCING,
184 callfunc_name,
185 NULL);
186 if (rc < 0)
187 goto fail;
188 per_cpu(xen_callfunc_irq, cpu).irq = rc;
189 per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
190
191 debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
192 rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
193 IRQF_PERCPU | IRQF_NOBALANCING,
194 debug_name, NULL);
195 if (rc < 0)
196 goto fail;
197 per_cpu(xen_debug_irq, cpu).irq = rc;
198 per_cpu(xen_debug_irq, cpu).name = debug_name;
199
200 callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
201 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
202 cpu,
203 xen_call_function_single_interrupt,
204 IRQF_PERCPU|IRQF_NOBALANCING,
205 callfunc_name,
206 NULL);
207 if (rc < 0)
208 goto fail;
209 per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
210 per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
211
212 /*
213 * The IRQ worker on PVHVM goes through the native path and uses the
214 * IPI mechanism.
215 */
216 if (xen_hvm_domain())
217 return 0;
218
219 callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
220 rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
221 cpu,
222 xen_irq_work_interrupt,
223 IRQF_PERCPU|IRQF_NOBALANCING,
224 callfunc_name,
225 NULL);
226 if (rc < 0)
227 goto fail;
228 per_cpu(xen_irq_work, cpu).irq = rc;
229 per_cpu(xen_irq_work, cpu).name = callfunc_name;
230
231 if (is_xen_pmu(cpu)) {
232 pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu);
233 rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu,
234 xen_pmu_irq_handler,
235 IRQF_PERCPU|IRQF_NOBALANCING,
236 pmu_name, NULL);
237 if (rc < 0)
238 goto fail;
239 per_cpu(xen_pmu_irq, cpu).irq = rc;
240 per_cpu(xen_pmu_irq, cpu).name = pmu_name;
241 }
242
243 return 0;
244
245 fail:
246 xen_smp_intr_free(cpu);
247 return rc;
248 }
249
250 static void __init xen_fill_possible_map(void)
251 {
252 int i, rc;
253
254 if (xen_initial_domain())
255 return;
256
257 for (i = 0; i < nr_cpu_ids; i++) {
258 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
259 if (rc >= 0) {
260 num_processors++;
261 set_cpu_possible(i, true);
262 }
263 }
264 }
265
266 static void __init xen_filter_cpu_maps(void)
267 {
268 int i, rc;
269 unsigned int subtract = 0;
270
271 if (!xen_initial_domain())
272 return;
273
274 num_processors = 0;
275 disabled_cpus = 0;
276 for (i = 0; i < nr_cpu_ids; i++) {
277 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
278 if (rc >= 0) {
279 num_processors++;
280 set_cpu_possible(i, true);
281 } else {
282 set_cpu_possible(i, false);
283 set_cpu_present(i, false);
284 subtract++;
285 }
286 }
287 #ifdef CONFIG_HOTPLUG_CPU
288 /* This is akin to using 'nr_cpus' on the Linux command line.
289 * Which is OK as when we use 'dom0_max_vcpus=X' we can only
290 * have up to X, while nr_cpu_ids is greater than X. This
291 * normally is not a problem, except when CPU hotplugging
292 * is involved and then there might be more than X CPUs
293 * in the guest - which will not work as there is no
294 * hypercall to expand the max number of VCPUs an already
295 * running guest has. So cap it up to X. */
296 if (subtract)
297 nr_cpu_ids = nr_cpu_ids - subtract;
298 #endif
299
300 }
301
302 static void __init xen_smp_prepare_boot_cpu(void)
303 {
304 BUG_ON(smp_processor_id() != 0);
305 native_smp_prepare_boot_cpu();
306
307 if (xen_pv_domain()) {
308 if (!xen_feature(XENFEAT_writable_page_tables))
309 /* We've switched to the "real" per-cpu gdt, so make
310 * sure the old memory can be recycled. */
311 make_lowmem_page_readwrite(xen_initial_gdt);
312
313 #ifdef CONFIG_X86_32
314 /*
315 * Xen starts us with XEN_FLAT_RING1_DS, but linux code
316 * expects __USER_DS
317 */
318 loadsegment(ds, __USER_DS);
319 loadsegment(es, __USER_DS);
320 #endif
321
322 xen_filter_cpu_maps();
323 xen_setup_vcpu_info_placement();
324 }
325 /*
326 * The alternative logic (which patches the unlock/lock) runs before
327 * the smp bootup up code is activated. Hence we need to set this up
328 * the core kernel is being patched. Otherwise we will have only
329 * modules patched but not core code.
330 */
331 xen_init_spinlocks();
332 }
333
334 static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
335 {
336 unsigned cpu;
337 unsigned int i;
338
339 if (skip_ioapic_setup) {
340 char *m = (max_cpus == 0) ?
341 "The nosmp parameter is incompatible with Xen; " \
342 "use Xen dom0_max_vcpus=1 parameter" :
343 "The noapic parameter is incompatible with Xen";
344
345 xen_raw_printk(m);
346 panic(m);
347 }
348 xen_init_lock_cpu(0);
349
350 smp_store_boot_cpu_info();
351 cpu_data(0).x86_max_cores = 1;
352
353 for_each_possible_cpu(i) {
354 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
355 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
356 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
357 }
358 set_cpu_sibling_map(0);
359
360 xen_pmu_init(0);
361
362 if (xen_smp_intr_init(0))
363 BUG();
364
365 if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
366 panic("could not allocate xen_cpu_initialized_map\n");
367
368 cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
369
370 /* Restrict the possible_map according to max_cpus. */
371 while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
372 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
373 continue;
374 set_cpu_possible(cpu, false);
375 }
376
377 for_each_possible_cpu(cpu)
378 set_cpu_present(cpu, true);
379 }
380
381 static int
382 cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
383 {
384 struct vcpu_guest_context *ctxt;
385 struct desc_struct *gdt;
386 unsigned long gdt_mfn;
387
388 /* used to tell cpu_init() that it can proceed with initialization */
389 cpumask_set_cpu(cpu, cpu_callout_mask);
390 if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
391 return 0;
392
393 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
394 if (ctxt == NULL)
395 return -ENOMEM;
396
397 gdt = get_cpu_gdt_table(cpu);
398
399 #ifdef CONFIG_X86_32
400 /* Note: PVH is not yet supported on x86_32. */
401 ctxt->user_regs.fs = __KERNEL_PERCPU;
402 ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
403 #endif
404 memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
405
406 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
407 ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
408 ctxt->flags = VGCF_IN_KERNEL;
409 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
410 ctxt->user_regs.ds = __USER_DS;
411 ctxt->user_regs.es = __USER_DS;
412 ctxt->user_regs.ss = __KERNEL_DS;
413
414 xen_copy_trap_info(ctxt->trap_ctxt);
415
416 ctxt->ldt_ents = 0;
417
418 BUG_ON((unsigned long)gdt & ~PAGE_MASK);
419
420 gdt_mfn = arbitrary_virt_to_mfn(gdt);
421 make_lowmem_page_readonly(gdt);
422 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
423
424 ctxt->gdt_frames[0] = gdt_mfn;
425 ctxt->gdt_ents = GDT_ENTRIES;
426
427 ctxt->kernel_ss = __KERNEL_DS;
428 ctxt->kernel_sp = idle->thread.sp0;
429
430 #ifdef CONFIG_X86_32
431 ctxt->event_callback_cs = __KERNEL_CS;
432 ctxt->failsafe_callback_cs = __KERNEL_CS;
433 #else
434 ctxt->gs_base_kernel = per_cpu_offset(cpu);
435 #endif
436 ctxt->event_callback_eip =
437 (unsigned long)xen_hypervisor_callback;
438 ctxt->failsafe_callback_eip =
439 (unsigned long)xen_failsafe_callback;
440 ctxt->user_regs.cs = __KERNEL_CS;
441 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
442 }
443 #ifdef CONFIG_XEN_PVH
444 else {
445 /*
446 * The vcpu comes on kernel page tables which have the NX pte
447 * bit set. This means before DS/SS is touched, NX in
448 * EFER must be set. Hence the following assembly glue code.
449 */
450 ctxt->user_regs.eip = (unsigned long)xen_pvh_early_cpu_init;
451 ctxt->user_regs.rdi = cpu;
452 ctxt->user_regs.rsi = true; /* entry == true */
453 }
454 #endif
455 ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
456 ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir));
457 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
458 BUG();
459
460 kfree(ctxt);
461 return 0;
462 }
463
464 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
465 {
466 int rc;
467
468 common_cpu_up(cpu, idle);
469
470 xen_setup_runstate_info(cpu);
471 xen_setup_timer(cpu);
472 xen_init_lock_cpu(cpu);
473
474 /*
475 * PV VCPUs are always successfully taken down (see 'while' loop
476 * in xen_cpu_die()), so -EBUSY is an error.
477 */
478 rc = cpu_check_up_prepare(cpu);
479 if (rc)
480 return rc;
481
482 /* make sure interrupts start blocked */
483 per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
484
485 rc = cpu_initialize_context(cpu, idle);
486 if (rc)
487 return rc;
488
489 xen_pmu_init(cpu);
490
491 rc = xen_smp_intr_init(cpu);
492 if (rc)
493 return rc;
494
495 rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
496 BUG_ON(rc);
497
498 while (cpu_report_state(cpu) != CPU_ONLINE)
499 HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
500
501 return 0;
502 }
503
504 static void xen_smp_cpus_done(unsigned int max_cpus)
505 {
506 }
507
508 #ifdef CONFIG_HOTPLUG_CPU
509 static int xen_cpu_disable(void)
510 {
511 unsigned int cpu = smp_processor_id();
512 if (cpu == 0)
513 return -EBUSY;
514
515 cpu_disable_common();
516
517 load_cr3(swapper_pg_dir);
518 return 0;
519 }
520
521 static void xen_cpu_die(unsigned int cpu)
522 {
523 while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
524 __set_current_state(TASK_UNINTERRUPTIBLE);
525 schedule_timeout(HZ/10);
526 }
527
528 if (common_cpu_die(cpu) == 0) {
529 xen_smp_intr_free(cpu);
530 xen_uninit_lock_cpu(cpu);
531 xen_teardown_timer(cpu);
532 xen_pmu_finish(cpu);
533 }
534 }
535
536 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
537 {
538 play_dead_common();
539 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
540 cpu_bringup();
541 /*
542 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
543 * clears certain data that the cpu_idle loop (which called us
544 * and that we return from) expects. The only way to get that
545 * data back is to call:
546 */
547 tick_nohz_idle_enter();
548 }
549
550 #else /* !CONFIG_HOTPLUG_CPU */
551 static int xen_cpu_disable(void)
552 {
553 return -ENOSYS;
554 }
555
556 static void xen_cpu_die(unsigned int cpu)
557 {
558 BUG();
559 }
560
561 static void xen_play_dead(void)
562 {
563 BUG();
564 }
565
566 #endif
567 static void stop_self(void *v)
568 {
569 int cpu = smp_processor_id();
570
571 /* make sure we're not pinning something down */
572 load_cr3(swapper_pg_dir);
573 /* should set up a minimal gdt */
574
575 set_cpu_online(cpu, false);
576
577 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
578 BUG();
579 }
580
581 static void xen_stop_other_cpus(int wait)
582 {
583 smp_call_function(stop_self, NULL, wait);
584 }
585
586 static void xen_smp_send_reschedule(int cpu)
587 {
588 xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
589 }
590
591 static void __xen_send_IPI_mask(const struct cpumask *mask,
592 int vector)
593 {
594 unsigned cpu;
595
596 for_each_cpu_and(cpu, mask, cpu_online_mask)
597 xen_send_IPI_one(cpu, vector);
598 }
599
600 static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
601 {
602 int cpu;
603
604 __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
605
606 /* Make sure other vcpus get a chance to run if they need to. */
607 for_each_cpu(cpu, mask) {
608 if (xen_vcpu_stolen(cpu)) {
609 HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
610 break;
611 }
612 }
613 }
614
615 static void xen_smp_send_call_function_single_ipi(int cpu)
616 {
617 __xen_send_IPI_mask(cpumask_of(cpu),
618 XEN_CALL_FUNCTION_SINGLE_VECTOR);
619 }
620
621 static inline int xen_map_vector(int vector)
622 {
623 int xen_vector;
624
625 switch (vector) {
626 case RESCHEDULE_VECTOR:
627 xen_vector = XEN_RESCHEDULE_VECTOR;
628 break;
629 case CALL_FUNCTION_VECTOR:
630 xen_vector = XEN_CALL_FUNCTION_VECTOR;
631 break;
632 case CALL_FUNCTION_SINGLE_VECTOR:
633 xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
634 break;
635 case IRQ_WORK_VECTOR:
636 xen_vector = XEN_IRQ_WORK_VECTOR;
637 break;
638 #ifdef CONFIG_X86_64
639 case NMI_VECTOR:
640 case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
641 xen_vector = XEN_NMI_VECTOR;
642 break;
643 #endif
644 default:
645 xen_vector = -1;
646 printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
647 vector);
648 }
649
650 return xen_vector;
651 }
652
653 void xen_send_IPI_mask(const struct cpumask *mask,
654 int vector)
655 {
656 int xen_vector = xen_map_vector(vector);
657
658 if (xen_vector >= 0)
659 __xen_send_IPI_mask(mask, xen_vector);
660 }
661
662 void xen_send_IPI_all(int vector)
663 {
664 int xen_vector = xen_map_vector(vector);
665
666 if (xen_vector >= 0)
667 __xen_send_IPI_mask(cpu_online_mask, xen_vector);
668 }
669
670 void xen_send_IPI_self(int vector)
671 {
672 int xen_vector = xen_map_vector(vector);
673
674 if (xen_vector >= 0)
675 xen_send_IPI_one(smp_processor_id(), xen_vector);
676 }
677
678 void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
679 int vector)
680 {
681 unsigned cpu;
682 unsigned int this_cpu = smp_processor_id();
683 int xen_vector = xen_map_vector(vector);
684
685 if (!(num_online_cpus() > 1) || (xen_vector < 0))
686 return;
687
688 for_each_cpu_and(cpu, mask, cpu_online_mask) {
689 if (this_cpu == cpu)
690 continue;
691
692 xen_send_IPI_one(cpu, xen_vector);
693 }
694 }
695
696 void xen_send_IPI_allbutself(int vector)
697 {
698 xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
699 }
700
701 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
702 {
703 irq_enter();
704 generic_smp_call_function_interrupt();
705 inc_irq_stat(irq_call_count);
706 irq_exit();
707
708 return IRQ_HANDLED;
709 }
710
711 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
712 {
713 irq_enter();
714 generic_smp_call_function_single_interrupt();
715 inc_irq_stat(irq_call_count);
716 irq_exit();
717
718 return IRQ_HANDLED;
719 }
720
721 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
722 {
723 irq_enter();
724 irq_work_run();
725 inc_irq_stat(apic_irq_work_irqs);
726 irq_exit();
727
728 return IRQ_HANDLED;
729 }
730
731 static const struct smp_ops xen_smp_ops __initconst = {
732 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
733 .smp_prepare_cpus = xen_smp_prepare_cpus,
734 .smp_cpus_done = xen_smp_cpus_done,
735
736 .cpu_up = xen_cpu_up,
737 .cpu_die = xen_cpu_die,
738 .cpu_disable = xen_cpu_disable,
739 .play_dead = xen_play_dead,
740
741 .stop_other_cpus = xen_stop_other_cpus,
742 .smp_send_reschedule = xen_smp_send_reschedule,
743
744 .send_call_func_ipi = xen_smp_send_call_function_ipi,
745 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
746 };
747
748 void __init xen_smp_init(void)
749 {
750 smp_ops = xen_smp_ops;
751 xen_fill_possible_map();
752 }
753
754 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
755 {
756 native_smp_prepare_cpus(max_cpus);
757 WARN_ON(xen_smp_intr_init(0));
758
759 xen_init_lock_cpu(0);
760 }
761
762 static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
763 {
764 int rc;
765
766 /*
767 * This can happen if CPU was offlined earlier and
768 * offlining timed out in common_cpu_die().
769 */
770 if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) {
771 xen_smp_intr_free(cpu);
772 xen_uninit_lock_cpu(cpu);
773 }
774
775 /*
776 * xen_smp_intr_init() needs to run before native_cpu_up()
777 * so that IPI vectors are set up on the booting CPU before
778 * it is marked online in native_cpu_up().
779 */
780 rc = xen_smp_intr_init(cpu);
781 WARN_ON(rc);
782 if (!rc)
783 rc = native_cpu_up(cpu, tidle);
784
785 /*
786 * We must initialize the slowpath CPU kicker _after_ the native
787 * path has executed. If we initialized it before none of the
788 * unlocker IPI kicks would reach the booting CPU as the booting
789 * CPU had not set itself 'online' in cpu_online_mask. That mask
790 * is checked when IPIs are sent (on HVM at least).
791 */
792 xen_init_lock_cpu(cpu);
793 return rc;
794 }
795
796 void __init xen_hvm_smp_init(void)
797 {
798 if (!xen_have_vector_callback)
799 return;
800 smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
801 smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
802 smp_ops.cpu_up = xen_hvm_cpu_up;
803 smp_ops.cpu_die = xen_cpu_die;
804 smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
805 smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
806 smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu;
807 }
This page took 0.048448 seconds and 5 git commands to generate.