x86/xen: remove deprecated IRQF_DISABLED
[deliverable/linux.git] / arch / x86 / xen / smp.c
1 /*
2 * Xen SMP support
3 *
4 * This file implements the Xen versions of smp_ops. SMP under Xen is
5 * very straightforward. Bringing a CPU up is simply a matter of
6 * loading its initial context and setting it running.
7 *
8 * IPIs are handled through the Xen event mechanism.
9 *
10 * Because virtual CPUs can be scheduled onto any real CPU, there's no
11 * useful topology information for the kernel to make use of. As a
12 * result, all CPUs are treated as if they're single-core and
13 * single-threaded.
14 */
15 #include <linux/sched.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/smp.h>
19 #include <linux/irq_work.h>
20 #include <linux/tick.h>
21
22 #include <asm/paravirt.h>
23 #include <asm/desc.h>
24 #include <asm/pgtable.h>
25 #include <asm/cpu.h>
26
27 #include <xen/interface/xen.h>
28 #include <xen/interface/vcpu.h>
29
30 #include <asm/xen/interface.h>
31 #include <asm/xen/hypercall.h>
32
33 #include <xen/xen.h>
34 #include <xen/page.h>
35 #include <xen/events.h>
36
37 #include <xen/hvc-console.h>
38 #include "xen-ops.h"
39 #include "mmu.h"
40
41 cpumask_var_t xen_cpu_initialized_map;
42
43 struct xen_common_irq {
44 int irq;
45 char *name;
46 };
47 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
48 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
49 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
50 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
51 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
52
53 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
54 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
55 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
56
57 /*
58 * Reschedule call back.
59 */
60 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
61 {
62 inc_irq_stat(irq_resched_count);
63 scheduler_ipi();
64
65 return IRQ_HANDLED;
66 }
67
68 static void cpu_bringup(void)
69 {
70 int cpu;
71
72 cpu_init();
73 touch_softlockup_watchdog();
74 preempt_disable();
75
76 xen_enable_sysenter();
77 xen_enable_syscall();
78
79 cpu = smp_processor_id();
80 smp_store_cpu_info(cpu);
81 cpu_data(cpu).x86_max_cores = 1;
82 set_cpu_sibling_map(cpu);
83
84 xen_setup_cpu_clockevents();
85
86 notify_cpu_starting(cpu);
87
88 set_cpu_online(cpu, true);
89
90 this_cpu_write(cpu_state, CPU_ONLINE);
91
92 wmb();
93
94 /* We can take interrupts now: we're officially "up". */
95 local_irq_enable();
96
97 wmb(); /* make sure everything is out */
98 }
99
100 static void cpu_bringup_and_idle(void)
101 {
102 cpu_bringup();
103 cpu_startup_entry(CPUHP_ONLINE);
104 }
105
106 static void xen_smp_intr_free(unsigned int cpu)
107 {
108 if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
109 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
110 per_cpu(xen_resched_irq, cpu).irq = -1;
111 kfree(per_cpu(xen_resched_irq, cpu).name);
112 per_cpu(xen_resched_irq, cpu).name = NULL;
113 }
114 if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
115 unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
116 per_cpu(xen_callfunc_irq, cpu).irq = -1;
117 kfree(per_cpu(xen_callfunc_irq, cpu).name);
118 per_cpu(xen_callfunc_irq, cpu).name = NULL;
119 }
120 if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
121 unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
122 per_cpu(xen_debug_irq, cpu).irq = -1;
123 kfree(per_cpu(xen_debug_irq, cpu).name);
124 per_cpu(xen_debug_irq, cpu).name = NULL;
125 }
126 if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
127 unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
128 NULL);
129 per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
130 kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
131 per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
132 }
133 if (xen_hvm_domain())
134 return;
135
136 if (per_cpu(xen_irq_work, cpu).irq >= 0) {
137 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
138 per_cpu(xen_irq_work, cpu).irq = -1;
139 kfree(per_cpu(xen_irq_work, cpu).name);
140 per_cpu(xen_irq_work, cpu).name = NULL;
141 }
142 };
143 static int xen_smp_intr_init(unsigned int cpu)
144 {
145 int rc;
146 char *resched_name, *callfunc_name, *debug_name;
147
148 resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
149 rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
150 cpu,
151 xen_reschedule_interrupt,
152 IRQF_PERCPU|IRQF_NOBALANCING,
153 resched_name,
154 NULL);
155 if (rc < 0)
156 goto fail;
157 per_cpu(xen_resched_irq, cpu).irq = rc;
158 per_cpu(xen_resched_irq, cpu).name = resched_name;
159
160 callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
161 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
162 cpu,
163 xen_call_function_interrupt,
164 IRQF_PERCPU|IRQF_NOBALANCING,
165 callfunc_name,
166 NULL);
167 if (rc < 0)
168 goto fail;
169 per_cpu(xen_callfunc_irq, cpu).irq = rc;
170 per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
171
172 debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
173 rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
174 IRQF_PERCPU | IRQF_NOBALANCING,
175 debug_name, NULL);
176 if (rc < 0)
177 goto fail;
178 per_cpu(xen_debug_irq, cpu).irq = rc;
179 per_cpu(xen_debug_irq, cpu).name = debug_name;
180
181 callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
182 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
183 cpu,
184 xen_call_function_single_interrupt,
185 IRQF_PERCPU|IRQF_NOBALANCING,
186 callfunc_name,
187 NULL);
188 if (rc < 0)
189 goto fail;
190 per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
191 per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
192
193 /*
194 * The IRQ worker on PVHVM goes through the native path and uses the
195 * IPI mechanism.
196 */
197 if (xen_hvm_domain())
198 return 0;
199
200 callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
201 rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
202 cpu,
203 xen_irq_work_interrupt,
204 IRQF_PERCPU|IRQF_NOBALANCING,
205 callfunc_name,
206 NULL);
207 if (rc < 0)
208 goto fail;
209 per_cpu(xen_irq_work, cpu).irq = rc;
210 per_cpu(xen_irq_work, cpu).name = callfunc_name;
211
212 return 0;
213
214 fail:
215 xen_smp_intr_free(cpu);
216 return rc;
217 }
218
219 static void __init xen_fill_possible_map(void)
220 {
221 int i, rc;
222
223 if (xen_initial_domain())
224 return;
225
226 for (i = 0; i < nr_cpu_ids; i++) {
227 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
228 if (rc >= 0) {
229 num_processors++;
230 set_cpu_possible(i, true);
231 }
232 }
233 }
234
235 static void __init xen_filter_cpu_maps(void)
236 {
237 int i, rc;
238 unsigned int subtract = 0;
239
240 if (!xen_initial_domain())
241 return;
242
243 num_processors = 0;
244 disabled_cpus = 0;
245 for (i = 0; i < nr_cpu_ids; i++) {
246 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
247 if (rc >= 0) {
248 num_processors++;
249 set_cpu_possible(i, true);
250 } else {
251 set_cpu_possible(i, false);
252 set_cpu_present(i, false);
253 subtract++;
254 }
255 }
256 #ifdef CONFIG_HOTPLUG_CPU
257 /* This is akin to using 'nr_cpus' on the Linux command line.
258 * Which is OK as when we use 'dom0_max_vcpus=X' we can only
259 * have up to X, while nr_cpu_ids is greater than X. This
260 * normally is not a problem, except when CPU hotplugging
261 * is involved and then there might be more than X CPUs
262 * in the guest - which will not work as there is no
263 * hypercall to expand the max number of VCPUs an already
264 * running guest has. So cap it up to X. */
265 if (subtract)
266 nr_cpu_ids = nr_cpu_ids - subtract;
267 #endif
268
269 }
270
271 static void __init xen_smp_prepare_boot_cpu(void)
272 {
273 BUG_ON(smp_processor_id() != 0);
274 native_smp_prepare_boot_cpu();
275
276 if (xen_pv_domain()) {
277 /* We've switched to the "real" per-cpu gdt, so make sure the
278 old memory can be recycled */
279 make_lowmem_page_readwrite(xen_initial_gdt);
280
281 xen_filter_cpu_maps();
282 xen_setup_vcpu_info_placement();
283 }
284 /*
285 * The alternative logic (which patches the unlock/lock) runs before
286 * the smp bootup up code is activated. Hence we need to set this up
287 * the core kernel is being patched. Otherwise we will have only
288 * modules patched but not core code.
289 */
290 xen_init_spinlocks();
291 }
292
293 static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
294 {
295 unsigned cpu;
296 unsigned int i;
297
298 if (skip_ioapic_setup) {
299 char *m = (max_cpus == 0) ?
300 "The nosmp parameter is incompatible with Xen; " \
301 "use Xen dom0_max_vcpus=1 parameter" :
302 "The noapic parameter is incompatible with Xen";
303
304 xen_raw_printk(m);
305 panic(m);
306 }
307 xen_init_lock_cpu(0);
308
309 smp_store_boot_cpu_info();
310 cpu_data(0).x86_max_cores = 1;
311
312 for_each_possible_cpu(i) {
313 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
314 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
315 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
316 }
317 set_cpu_sibling_map(0);
318
319 if (xen_smp_intr_init(0))
320 BUG();
321
322 if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
323 panic("could not allocate xen_cpu_initialized_map\n");
324
325 cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
326
327 /* Restrict the possible_map according to max_cpus. */
328 while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
329 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
330 continue;
331 set_cpu_possible(cpu, false);
332 }
333
334 for_each_possible_cpu(cpu)
335 set_cpu_present(cpu, true);
336 }
337
338 static int
339 cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
340 {
341 struct vcpu_guest_context *ctxt;
342 struct desc_struct *gdt;
343 unsigned long gdt_mfn;
344
345 if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
346 return 0;
347
348 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
349 if (ctxt == NULL)
350 return -ENOMEM;
351
352 gdt = get_cpu_gdt_table(cpu);
353
354 ctxt->flags = VGCF_IN_KERNEL;
355 ctxt->user_regs.ss = __KERNEL_DS;
356 #ifdef CONFIG_X86_32
357 ctxt->user_regs.fs = __KERNEL_PERCPU;
358 ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
359 #else
360 ctxt->gs_base_kernel = per_cpu_offset(cpu);
361 #endif
362 ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
363
364 memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
365
366 {
367 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
368 ctxt->user_regs.ds = __USER_DS;
369 ctxt->user_regs.es = __USER_DS;
370
371 xen_copy_trap_info(ctxt->trap_ctxt);
372
373 ctxt->ldt_ents = 0;
374
375 BUG_ON((unsigned long)gdt & ~PAGE_MASK);
376
377 gdt_mfn = arbitrary_virt_to_mfn(gdt);
378 make_lowmem_page_readonly(gdt);
379 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
380
381 ctxt->gdt_frames[0] = gdt_mfn;
382 ctxt->gdt_ents = GDT_ENTRIES;
383
384 ctxt->kernel_ss = __KERNEL_DS;
385 ctxt->kernel_sp = idle->thread.sp0;
386
387 #ifdef CONFIG_X86_32
388 ctxt->event_callback_cs = __KERNEL_CS;
389 ctxt->failsafe_callback_cs = __KERNEL_CS;
390 #endif
391 ctxt->event_callback_eip =
392 (unsigned long)xen_hypervisor_callback;
393 ctxt->failsafe_callback_eip =
394 (unsigned long)xen_failsafe_callback;
395 }
396 ctxt->user_regs.cs = __KERNEL_CS;
397 ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
398
399 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
400 ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
401
402 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
403 BUG();
404
405 kfree(ctxt);
406 return 0;
407 }
408
409 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
410 {
411 int rc;
412
413 per_cpu(current_task, cpu) = idle;
414 #ifdef CONFIG_X86_32
415 irq_ctx_init(cpu);
416 #else
417 clear_tsk_thread_flag(idle, TIF_FORK);
418 per_cpu(kernel_stack, cpu) =
419 (unsigned long)task_stack_page(idle) -
420 KERNEL_STACK_OFFSET + THREAD_SIZE;
421 #endif
422 xen_setup_runstate_info(cpu);
423 xen_setup_timer(cpu);
424 xen_init_lock_cpu(cpu);
425
426 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
427
428 /* make sure interrupts start blocked */
429 per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
430
431 rc = cpu_initialize_context(cpu, idle);
432 if (rc)
433 return rc;
434
435 if (num_online_cpus() == 1)
436 /* Just in case we booted with a single CPU. */
437 alternatives_enable_smp();
438
439 rc = xen_smp_intr_init(cpu);
440 if (rc)
441 return rc;
442
443 rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
444 BUG_ON(rc);
445
446 while(per_cpu(cpu_state, cpu) != CPU_ONLINE) {
447 HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
448 barrier();
449 }
450
451 return 0;
452 }
453
454 static void xen_smp_cpus_done(unsigned int max_cpus)
455 {
456 }
457
458 #ifdef CONFIG_HOTPLUG_CPU
459 static int xen_cpu_disable(void)
460 {
461 unsigned int cpu = smp_processor_id();
462 if (cpu == 0)
463 return -EBUSY;
464
465 cpu_disable_common();
466
467 load_cr3(swapper_pg_dir);
468 return 0;
469 }
470
471 static void xen_cpu_die(unsigned int cpu)
472 {
473 while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
474 current->state = TASK_UNINTERRUPTIBLE;
475 schedule_timeout(HZ/10);
476 }
477 xen_smp_intr_free(cpu);
478 xen_uninit_lock_cpu(cpu);
479 xen_teardown_timer(cpu);
480 }
481
482 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
483 {
484 play_dead_common();
485 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
486 cpu_bringup();
487 /*
488 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
489 * clears certain data that the cpu_idle loop (which called us
490 * and that we return from) expects. The only way to get that
491 * data back is to call:
492 */
493 tick_nohz_idle_enter();
494 }
495
496 #else /* !CONFIG_HOTPLUG_CPU */
497 static int xen_cpu_disable(void)
498 {
499 return -ENOSYS;
500 }
501
502 static void xen_cpu_die(unsigned int cpu)
503 {
504 BUG();
505 }
506
507 static void xen_play_dead(void)
508 {
509 BUG();
510 }
511
512 #endif
513 static void stop_self(void *v)
514 {
515 int cpu = smp_processor_id();
516
517 /* make sure we're not pinning something down */
518 load_cr3(swapper_pg_dir);
519 /* should set up a minimal gdt */
520
521 set_cpu_online(cpu, false);
522
523 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
524 BUG();
525 }
526
527 static void xen_stop_other_cpus(int wait)
528 {
529 smp_call_function(stop_self, NULL, wait);
530 }
531
532 static void xen_smp_send_reschedule(int cpu)
533 {
534 xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
535 }
536
537 static void __xen_send_IPI_mask(const struct cpumask *mask,
538 int vector)
539 {
540 unsigned cpu;
541
542 for_each_cpu_and(cpu, mask, cpu_online_mask)
543 xen_send_IPI_one(cpu, vector);
544 }
545
546 static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
547 {
548 int cpu;
549
550 __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
551
552 /* Make sure other vcpus get a chance to run if they need to. */
553 for_each_cpu(cpu, mask) {
554 if (xen_vcpu_stolen(cpu)) {
555 HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
556 break;
557 }
558 }
559 }
560
561 static void xen_smp_send_call_function_single_ipi(int cpu)
562 {
563 __xen_send_IPI_mask(cpumask_of(cpu),
564 XEN_CALL_FUNCTION_SINGLE_VECTOR);
565 }
566
567 static inline int xen_map_vector(int vector)
568 {
569 int xen_vector;
570
571 switch (vector) {
572 case RESCHEDULE_VECTOR:
573 xen_vector = XEN_RESCHEDULE_VECTOR;
574 break;
575 case CALL_FUNCTION_VECTOR:
576 xen_vector = XEN_CALL_FUNCTION_VECTOR;
577 break;
578 case CALL_FUNCTION_SINGLE_VECTOR:
579 xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
580 break;
581 case IRQ_WORK_VECTOR:
582 xen_vector = XEN_IRQ_WORK_VECTOR;
583 break;
584 #ifdef CONFIG_X86_64
585 case NMI_VECTOR:
586 case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
587 xen_vector = XEN_NMI_VECTOR;
588 break;
589 #endif
590 default:
591 xen_vector = -1;
592 printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
593 vector);
594 }
595
596 return xen_vector;
597 }
598
599 void xen_send_IPI_mask(const struct cpumask *mask,
600 int vector)
601 {
602 int xen_vector = xen_map_vector(vector);
603
604 if (xen_vector >= 0)
605 __xen_send_IPI_mask(mask, xen_vector);
606 }
607
608 void xen_send_IPI_all(int vector)
609 {
610 int xen_vector = xen_map_vector(vector);
611
612 if (xen_vector >= 0)
613 __xen_send_IPI_mask(cpu_online_mask, xen_vector);
614 }
615
616 void xen_send_IPI_self(int vector)
617 {
618 int xen_vector = xen_map_vector(vector);
619
620 if (xen_vector >= 0)
621 xen_send_IPI_one(smp_processor_id(), xen_vector);
622 }
623
624 void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
625 int vector)
626 {
627 unsigned cpu;
628 unsigned int this_cpu = smp_processor_id();
629 int xen_vector = xen_map_vector(vector);
630
631 if (!(num_online_cpus() > 1) || (xen_vector < 0))
632 return;
633
634 for_each_cpu_and(cpu, mask, cpu_online_mask) {
635 if (this_cpu == cpu)
636 continue;
637
638 xen_send_IPI_one(cpu, xen_vector);
639 }
640 }
641
642 void xen_send_IPI_allbutself(int vector)
643 {
644 xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
645 }
646
647 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
648 {
649 irq_enter();
650 generic_smp_call_function_interrupt();
651 inc_irq_stat(irq_call_count);
652 irq_exit();
653
654 return IRQ_HANDLED;
655 }
656
657 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
658 {
659 irq_enter();
660 generic_smp_call_function_single_interrupt();
661 inc_irq_stat(irq_call_count);
662 irq_exit();
663
664 return IRQ_HANDLED;
665 }
666
667 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
668 {
669 irq_enter();
670 irq_work_run();
671 inc_irq_stat(apic_irq_work_irqs);
672 irq_exit();
673
674 return IRQ_HANDLED;
675 }
676
677 static const struct smp_ops xen_smp_ops __initconst = {
678 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
679 .smp_prepare_cpus = xen_smp_prepare_cpus,
680 .smp_cpus_done = xen_smp_cpus_done,
681
682 .cpu_up = xen_cpu_up,
683 .cpu_die = xen_cpu_die,
684 .cpu_disable = xen_cpu_disable,
685 .play_dead = xen_play_dead,
686
687 .stop_other_cpus = xen_stop_other_cpus,
688 .smp_send_reschedule = xen_smp_send_reschedule,
689
690 .send_call_func_ipi = xen_smp_send_call_function_ipi,
691 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
692 };
693
694 void __init xen_smp_init(void)
695 {
696 smp_ops = xen_smp_ops;
697 xen_fill_possible_map();
698 }
699
700 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
701 {
702 native_smp_prepare_cpus(max_cpus);
703 WARN_ON(xen_smp_intr_init(0));
704
705 xen_init_lock_cpu(0);
706 }
707
708 static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
709 {
710 int rc;
711 /*
712 * xen_smp_intr_init() needs to run before native_cpu_up()
713 * so that IPI vectors are set up on the booting CPU before
714 * it is marked online in native_cpu_up().
715 */
716 rc = xen_smp_intr_init(cpu);
717 WARN_ON(rc);
718 if (!rc)
719 rc = native_cpu_up(cpu, tidle);
720
721 /*
722 * We must initialize the slowpath CPU kicker _after_ the native
723 * path has executed. If we initialized it before none of the
724 * unlocker IPI kicks would reach the booting CPU as the booting
725 * CPU had not set itself 'online' in cpu_online_mask. That mask
726 * is checked when IPIs are sent (on HVM at least).
727 */
728 xen_init_lock_cpu(cpu);
729 return rc;
730 }
731
732 static void xen_hvm_cpu_die(unsigned int cpu)
733 {
734 xen_cpu_die(cpu);
735 native_cpu_die(cpu);
736 }
737
738 void __init xen_hvm_smp_init(void)
739 {
740 if (!xen_have_vector_callback)
741 return;
742 smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
743 smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
744 smp_ops.cpu_up = xen_hvm_cpu_up;
745 smp_ops.cpu_die = xen_hvm_cpu_die;
746 smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
747 smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
748 smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu;
749 }
This page took 0.056053 seconds and 5 git commands to generate.