Merge branch 'linus' into x86/xen
[deliverable/linux.git] / arch / x86 / xen / time.c
1 /*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16
17 #include <asm/pvclock.h>
18 #include <asm/xen/hypervisor.h>
19 #include <asm/xen/hypercall.h>
20
21 #include <xen/events.h>
22 #include <xen/interface/xen.h>
23 #include <xen/interface/vcpu.h>
24
25 #include "xen-ops.h"
26
27 #define XEN_SHIFT 22
28
29 /* Xen may fire a timer up to this many ns early */
30 #define TIMER_SLOP 100000
31 #define NS_PER_TICK (1000000000LL / HZ)
32
33 /* runstate info updated by Xen */
34 static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate);
35
36 /* snapshots of runstate info */
37 static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot);
38
39 /* unused ns of stolen and blocked time */
40 static DEFINE_PER_CPU(u64, residual_stolen);
41 static DEFINE_PER_CPU(u64, residual_blocked);
42
43 /* return an consistent snapshot of 64-bit time/counter value */
44 static u64 get64(const u64 *p)
45 {
46 u64 ret;
47
48 if (BITS_PER_LONG < 64) {
49 u32 *p32 = (u32 *)p;
50 u32 h, l;
51
52 /*
53 * Read high then low, and then make sure high is
54 * still the same; this will only loop if low wraps
55 * and carries into high.
56 * XXX some clean way to make this endian-proof?
57 */
58 do {
59 h = p32[1];
60 barrier();
61 l = p32[0];
62 barrier();
63 } while (p32[1] != h);
64
65 ret = (((u64)h) << 32) | l;
66 } else
67 ret = *p;
68
69 return ret;
70 }
71
72 /*
73 * Runstate accounting
74 */
75 static void get_runstate_snapshot(struct vcpu_runstate_info *res)
76 {
77 u64 state_time;
78 struct vcpu_runstate_info *state;
79
80 BUG_ON(preemptible());
81
82 state = &__get_cpu_var(runstate);
83
84 /*
85 * The runstate info is always updated by the hypervisor on
86 * the current CPU, so there's no need to use anything
87 * stronger than a compiler barrier when fetching it.
88 */
89 do {
90 state_time = get64(&state->state_entry_time);
91 barrier();
92 *res = *state;
93 barrier();
94 } while (get64(&state->state_entry_time) != state_time);
95 }
96
97 /* return true when a vcpu could run but has no real cpu to run on */
98 bool xen_vcpu_stolen(int vcpu)
99 {
100 return per_cpu(runstate, vcpu).state == RUNSTATE_runnable;
101 }
102
103 static void setup_runstate_info(int cpu)
104 {
105 struct vcpu_register_runstate_memory_area area;
106
107 area.addr.v = &per_cpu(runstate, cpu);
108
109 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
110 cpu, &area))
111 BUG();
112 }
113
114 static void do_stolen_accounting(void)
115 {
116 struct vcpu_runstate_info state;
117 struct vcpu_runstate_info *snap;
118 s64 blocked, runnable, offline, stolen;
119 cputime_t ticks;
120
121 get_runstate_snapshot(&state);
122
123 WARN_ON(state.state != RUNSTATE_running);
124
125 snap = &__get_cpu_var(runstate_snapshot);
126
127 /* work out how much time the VCPU has not been runn*ing* */
128 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
129 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131
132 *snap = state;
133
134 /* Add the appropriate number of ticks of stolen time,
135 including any left-overs from last time. Passing NULL to
136 account_steal_time accounts the time as stolen. */
137 stolen = runnable + offline + __get_cpu_var(residual_stolen);
138
139 if (stolen < 0)
140 stolen = 0;
141
142 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
143 __get_cpu_var(residual_stolen) = stolen;
144 account_steal_time(NULL, ticks);
145
146 /* Add the appropriate number of ticks of blocked time,
147 including any left-overs from last time. Passing idle to
148 account_steal_time accounts the time as idle/wait. */
149 blocked += __get_cpu_var(residual_blocked);
150
151 if (blocked < 0)
152 blocked = 0;
153
154 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
155 __get_cpu_var(residual_blocked) = blocked;
156 account_steal_time(idle_task(smp_processor_id()), ticks);
157 }
158
159 /*
160 * Xen sched_clock implementation. Returns the number of unstolen
161 * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED
162 * states.
163 */
164 unsigned long long xen_sched_clock(void)
165 {
166 struct vcpu_runstate_info state;
167 cycle_t now;
168 u64 ret;
169 s64 offset;
170
171 /*
172 * Ideally sched_clock should be called on a per-cpu basis
173 * anyway, so preempt should already be disabled, but that's
174 * not current practice at the moment.
175 */
176 preempt_disable();
177
178 now = xen_clocksource_read();
179
180 get_runstate_snapshot(&state);
181
182 WARN_ON(state.state != RUNSTATE_running);
183
184 offset = now - state.state_entry_time;
185 if (offset < 0)
186 offset = 0;
187
188 ret = state.time[RUNSTATE_blocked] +
189 state.time[RUNSTATE_running] +
190 offset;
191
192 preempt_enable();
193
194 return ret;
195 }
196
197
198 /* Get the TSC speed from Xen */
199 unsigned long xen_tsc_khz(void)
200 {
201 u64 xen_khz = 1000000ULL << 32;
202 const struct pvclock_vcpu_time_info *info =
203 &HYPERVISOR_shared_info->vcpu_info[0].time;
204
205 do_div(xen_khz, info->tsc_to_system_mul);
206 if (info->tsc_shift < 0)
207 xen_khz <<= -info->tsc_shift;
208 else
209 xen_khz >>= info->tsc_shift;
210
211 return xen_khz;
212 }
213
214 cycle_t xen_clocksource_read(void)
215 {
216 struct pvclock_vcpu_time_info *src;
217 cycle_t ret;
218
219 src = &get_cpu_var(xen_vcpu)->time;
220 ret = pvclock_clocksource_read(src);
221 put_cpu_var(xen_vcpu);
222 return ret;
223 }
224
225 static void xen_read_wallclock(struct timespec *ts)
226 {
227 struct shared_info *s = HYPERVISOR_shared_info;
228 struct pvclock_wall_clock *wall_clock = &(s->wc);
229 struct pvclock_vcpu_time_info *vcpu_time;
230
231 vcpu_time = &get_cpu_var(xen_vcpu)->time;
232 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
233 put_cpu_var(xen_vcpu);
234 }
235
236 unsigned long xen_get_wallclock(void)
237 {
238 struct timespec ts;
239
240 xen_read_wallclock(&ts);
241 return ts.tv_sec;
242 }
243
244 int xen_set_wallclock(unsigned long now)
245 {
246 /* do nothing for domU */
247 return -1;
248 }
249
250 static struct clocksource xen_clocksource __read_mostly = {
251 .name = "xen",
252 .rating = 400,
253 .read = xen_clocksource_read,
254 .mask = ~0,
255 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
256 .shift = XEN_SHIFT,
257 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
258 };
259
260 /*
261 Xen clockevent implementation
262
263 Xen has two clockevent implementations:
264
265 The old timer_op one works with all released versions of Xen prior
266 to version 3.0.4. This version of the hypervisor provides a
267 single-shot timer with nanosecond resolution. However, sharing the
268 same event channel is a 100Hz tick which is delivered while the
269 vcpu is running. We don't care about or use this tick, but it will
270 cause the core time code to think the timer fired too soon, and
271 will end up resetting it each time. It could be filtered, but
272 doing so has complications when the ktime clocksource is not yet
273 the xen clocksource (ie, at boot time).
274
275 The new vcpu_op-based timer interface allows the tick timer period
276 to be changed or turned off. The tick timer is not useful as a
277 periodic timer because events are only delivered to running vcpus.
278 The one-shot timer can report when a timeout is in the past, so
279 set_next_event is capable of returning -ETIME when appropriate.
280 This interface is used when available.
281 */
282
283
284 /*
285 Get a hypervisor absolute time. In theory we could maintain an
286 offset between the kernel's time and the hypervisor's time, and
287 apply that to a kernel's absolute timeout. Unfortunately the
288 hypervisor and kernel times can drift even if the kernel is using
289 the Xen clocksource, because ntp can warp the kernel's clocksource.
290 */
291 static s64 get_abs_timeout(unsigned long delta)
292 {
293 return xen_clocksource_read() + delta;
294 }
295
296 static void xen_timerop_set_mode(enum clock_event_mode mode,
297 struct clock_event_device *evt)
298 {
299 switch (mode) {
300 case CLOCK_EVT_MODE_PERIODIC:
301 /* unsupported */
302 WARN_ON(1);
303 break;
304
305 case CLOCK_EVT_MODE_ONESHOT:
306 case CLOCK_EVT_MODE_RESUME:
307 break;
308
309 case CLOCK_EVT_MODE_UNUSED:
310 case CLOCK_EVT_MODE_SHUTDOWN:
311 HYPERVISOR_set_timer_op(0); /* cancel timeout */
312 break;
313 }
314 }
315
316 static int xen_timerop_set_next_event(unsigned long delta,
317 struct clock_event_device *evt)
318 {
319 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
320
321 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
322 BUG();
323
324 /* We may have missed the deadline, but there's no real way of
325 knowing for sure. If the event was in the past, then we'll
326 get an immediate interrupt. */
327
328 return 0;
329 }
330
331 static const struct clock_event_device xen_timerop_clockevent = {
332 .name = "xen",
333 .features = CLOCK_EVT_FEAT_ONESHOT,
334
335 .max_delta_ns = 0xffffffff,
336 .min_delta_ns = TIMER_SLOP,
337
338 .mult = 1,
339 .shift = 0,
340 .rating = 500,
341
342 .set_mode = xen_timerop_set_mode,
343 .set_next_event = xen_timerop_set_next_event,
344 };
345
346
347
348 static void xen_vcpuop_set_mode(enum clock_event_mode mode,
349 struct clock_event_device *evt)
350 {
351 int cpu = smp_processor_id();
352
353 switch (mode) {
354 case CLOCK_EVT_MODE_PERIODIC:
355 WARN_ON(1); /* unsupported */
356 break;
357
358 case CLOCK_EVT_MODE_ONESHOT:
359 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
360 BUG();
361 break;
362
363 case CLOCK_EVT_MODE_UNUSED:
364 case CLOCK_EVT_MODE_SHUTDOWN:
365 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
366 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
367 BUG();
368 break;
369 case CLOCK_EVT_MODE_RESUME:
370 break;
371 }
372 }
373
374 static int xen_vcpuop_set_next_event(unsigned long delta,
375 struct clock_event_device *evt)
376 {
377 int cpu = smp_processor_id();
378 struct vcpu_set_singleshot_timer single;
379 int ret;
380
381 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
382
383 single.timeout_abs_ns = get_abs_timeout(delta);
384 single.flags = VCPU_SSHOTTMR_future;
385
386 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
387
388 BUG_ON(ret != 0 && ret != -ETIME);
389
390 return ret;
391 }
392
393 static const struct clock_event_device xen_vcpuop_clockevent = {
394 .name = "xen",
395 .features = CLOCK_EVT_FEAT_ONESHOT,
396
397 .max_delta_ns = 0xffffffff,
398 .min_delta_ns = TIMER_SLOP,
399
400 .mult = 1,
401 .shift = 0,
402 .rating = 500,
403
404 .set_mode = xen_vcpuop_set_mode,
405 .set_next_event = xen_vcpuop_set_next_event,
406 };
407
408 static const struct clock_event_device *xen_clockevent =
409 &xen_timerop_clockevent;
410 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
411
412 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
413 {
414 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
415 irqreturn_t ret;
416
417 ret = IRQ_NONE;
418 if (evt->event_handler) {
419 evt->event_handler(evt);
420 ret = IRQ_HANDLED;
421 }
422
423 do_stolen_accounting();
424
425 return ret;
426 }
427
428 void xen_setup_timer(int cpu)
429 {
430 const char *name;
431 struct clock_event_device *evt;
432 int irq;
433
434 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
435
436 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
437 if (!name)
438 name = "<timer kasprintf failed>";
439
440 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
441 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
442 name, NULL);
443
444 evt = &per_cpu(xen_clock_events, cpu);
445 memcpy(evt, xen_clockevent, sizeof(*evt));
446
447 evt->cpumask = cpumask_of_cpu(cpu);
448 evt->irq = irq;
449
450 setup_runstate_info(cpu);
451 }
452
453 void xen_teardown_timer(int cpu)
454 {
455 struct clock_event_device *evt;
456 BUG_ON(cpu == 0);
457 evt = &per_cpu(xen_clock_events, cpu);
458 unbind_from_irqhandler(evt->irq, NULL);
459 }
460
461 void xen_setup_cpu_clockevents(void)
462 {
463 BUG_ON(preemptible());
464
465 clockevents_register_device(&__get_cpu_var(xen_clock_events));
466 }
467
468 void xen_timer_resume(void)
469 {
470 int cpu;
471
472 if (xen_clockevent != &xen_vcpuop_clockevent)
473 return;
474
475 for_each_online_cpu(cpu) {
476 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
477 BUG();
478 }
479 }
480
481 __init void xen_time_init(void)
482 {
483 int cpu = smp_processor_id();
484
485 clocksource_register(&xen_clocksource);
486
487 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
488 /* Successfully turned off 100Hz tick, so we have the
489 vcpuop-based timer interface */
490 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
491 xen_clockevent = &xen_vcpuop_clockevent;
492 }
493
494 /* Set initial system time with full resolution */
495 xen_read_wallclock(&xtime);
496 set_normalized_timespec(&wall_to_monotonic,
497 -xtime.tv_sec, -xtime.tv_nsec);
498
499 setup_force_cpu_cap(X86_FEATURE_TSC);
500
501 xen_setup_timer(cpu);
502 xen_setup_cpu_clockevents();
503 }
This page took 0.048932 seconds and 6 git commands to generate.