[PATCH] x86_64: Fix modular pc speaker
[deliverable/linux.git] / arch / x86_64 / kernel / setup.c
1 /*
2 * linux/arch/x86-64/kernel/setup.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
8 */
9
10 /*
11 * This file handles the architecture-dependent parts of initialization
12 */
13
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/user.h>
23 #include <linux/a.out.h>
24 #include <linux/tty.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/config.h>
28 #include <linux/init.h>
29 #include <linux/initrd.h>
30 #include <linux/highmem.h>
31 #include <linux/bootmem.h>
32 #include <linux/module.h>
33 #include <asm/processor.h>
34 #include <linux/console.h>
35 #include <linux/seq_file.h>
36 #include <linux/crash_dump.h>
37 #include <linux/root_dev.h>
38 #include <linux/pci.h>
39 #include <linux/acpi.h>
40 #include <linux/kallsyms.h>
41 #include <linux/edd.h>
42 #include <linux/mmzone.h>
43 #include <linux/kexec.h>
44 #include <linux/cpufreq.h>
45 #include <linux/dmi.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/ctype.h>
48
49 #include <asm/mtrr.h>
50 #include <asm/uaccess.h>
51 #include <asm/system.h>
52 #include <asm/io.h>
53 #include <asm/smp.h>
54 #include <asm/msr.h>
55 #include <asm/desc.h>
56 #include <video/edid.h>
57 #include <asm/e820.h>
58 #include <asm/dma.h>
59 #include <asm/mpspec.h>
60 #include <asm/mmu_context.h>
61 #include <asm/bootsetup.h>
62 #include <asm/proto.h>
63 #include <asm/setup.h>
64 #include <asm/mach_apic.h>
65 #include <asm/numa.h>
66 #include <asm/sections.h>
67 #include <asm/dmi.h>
68
69 /*
70 * Machine setup..
71 */
72
73 struct cpuinfo_x86 boot_cpu_data __read_mostly;
74
75 unsigned long mmu_cr4_features;
76
77 int acpi_disabled;
78 EXPORT_SYMBOL(acpi_disabled);
79 #ifdef CONFIG_ACPI
80 extern int __initdata acpi_ht;
81 extern acpi_interrupt_flags acpi_sci_flags;
82 int __initdata acpi_force = 0;
83 #endif
84
85 int acpi_numa __initdata;
86
87 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
88 int bootloader_type;
89
90 unsigned long saved_video_mode;
91
92 /*
93 * Early DMI memory
94 */
95 int dmi_alloc_index;
96 char dmi_alloc_data[DMI_MAX_DATA];
97
98 /*
99 * Setup options
100 */
101 struct screen_info screen_info;
102 struct sys_desc_table_struct {
103 unsigned short length;
104 unsigned char table[0];
105 };
106
107 struct edid_info edid_info;
108 struct e820map e820;
109
110 extern int root_mountflags;
111
112 char command_line[COMMAND_LINE_SIZE];
113
114 struct resource standard_io_resources[] = {
115 { .name = "dma1", .start = 0x00, .end = 0x1f,
116 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
117 { .name = "pic1", .start = 0x20, .end = 0x21,
118 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
119 { .name = "timer0", .start = 0x40, .end = 0x43,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "timer1", .start = 0x50, .end = 0x53,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
123 { .name = "keyboard", .start = 0x60, .end = 0x6f,
124 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
125 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
126 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
127 { .name = "pic2", .start = 0xa0, .end = 0xa1,
128 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
129 { .name = "dma2", .start = 0xc0, .end = 0xdf,
130 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
131 { .name = "fpu", .start = 0xf0, .end = 0xff,
132 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
133 };
134
135 #define STANDARD_IO_RESOURCES \
136 (sizeof standard_io_resources / sizeof standard_io_resources[0])
137
138 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
139
140 struct resource data_resource = {
141 .name = "Kernel data",
142 .start = 0,
143 .end = 0,
144 .flags = IORESOURCE_RAM,
145 };
146 struct resource code_resource = {
147 .name = "Kernel code",
148 .start = 0,
149 .end = 0,
150 .flags = IORESOURCE_RAM,
151 };
152
153 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
154
155 static struct resource system_rom_resource = {
156 .name = "System ROM",
157 .start = 0xf0000,
158 .end = 0xfffff,
159 .flags = IORESOURCE_ROM,
160 };
161
162 static struct resource extension_rom_resource = {
163 .name = "Extension ROM",
164 .start = 0xe0000,
165 .end = 0xeffff,
166 .flags = IORESOURCE_ROM,
167 };
168
169 static struct resource adapter_rom_resources[] = {
170 { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
171 .flags = IORESOURCE_ROM },
172 { .name = "Adapter ROM", .start = 0, .end = 0,
173 .flags = IORESOURCE_ROM },
174 { .name = "Adapter ROM", .start = 0, .end = 0,
175 .flags = IORESOURCE_ROM },
176 { .name = "Adapter ROM", .start = 0, .end = 0,
177 .flags = IORESOURCE_ROM },
178 { .name = "Adapter ROM", .start = 0, .end = 0,
179 .flags = IORESOURCE_ROM },
180 { .name = "Adapter ROM", .start = 0, .end = 0,
181 .flags = IORESOURCE_ROM }
182 };
183
184 #define ADAPTER_ROM_RESOURCES \
185 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
186
187 static struct resource video_rom_resource = {
188 .name = "Video ROM",
189 .start = 0xc0000,
190 .end = 0xc7fff,
191 .flags = IORESOURCE_ROM,
192 };
193
194 static struct resource video_ram_resource = {
195 .name = "Video RAM area",
196 .start = 0xa0000,
197 .end = 0xbffff,
198 .flags = IORESOURCE_RAM,
199 };
200
201 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
202
203 static int __init romchecksum(unsigned char *rom, unsigned long length)
204 {
205 unsigned char *p, sum = 0;
206
207 for (p = rom; p < rom + length; p++)
208 sum += *p;
209 return sum == 0;
210 }
211
212 static void __init probe_roms(void)
213 {
214 unsigned long start, length, upper;
215 unsigned char *rom;
216 int i;
217
218 /* video rom */
219 upper = adapter_rom_resources[0].start;
220 for (start = video_rom_resource.start; start < upper; start += 2048) {
221 rom = isa_bus_to_virt(start);
222 if (!romsignature(rom))
223 continue;
224
225 video_rom_resource.start = start;
226
227 /* 0 < length <= 0x7f * 512, historically */
228 length = rom[2] * 512;
229
230 /* if checksum okay, trust length byte */
231 if (length && romchecksum(rom, length))
232 video_rom_resource.end = start + length - 1;
233
234 request_resource(&iomem_resource, &video_rom_resource);
235 break;
236 }
237
238 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
239 if (start < upper)
240 start = upper;
241
242 /* system rom */
243 request_resource(&iomem_resource, &system_rom_resource);
244 upper = system_rom_resource.start;
245
246 /* check for extension rom (ignore length byte!) */
247 rom = isa_bus_to_virt(extension_rom_resource.start);
248 if (romsignature(rom)) {
249 length = extension_rom_resource.end - extension_rom_resource.start + 1;
250 if (romchecksum(rom, length)) {
251 request_resource(&iomem_resource, &extension_rom_resource);
252 upper = extension_rom_resource.start;
253 }
254 }
255
256 /* check for adapter roms on 2k boundaries */
257 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
258 rom = isa_bus_to_virt(start);
259 if (!romsignature(rom))
260 continue;
261
262 /* 0 < length <= 0x7f * 512, historically */
263 length = rom[2] * 512;
264
265 /* but accept any length that fits if checksum okay */
266 if (!length || start + length > upper || !romchecksum(rom, length))
267 continue;
268
269 adapter_rom_resources[i].start = start;
270 adapter_rom_resources[i].end = start + length - 1;
271 request_resource(&iomem_resource, &adapter_rom_resources[i]);
272
273 start = adapter_rom_resources[i++].end & ~2047UL;
274 }
275 }
276
277 /* Check for full argument with no trailing characters */
278 static int fullarg(char *p, char *arg)
279 {
280 int l = strlen(arg);
281 return !memcmp(p, arg, l) && (p[l] == 0 || isspace(p[l]));
282 }
283
284 static __init void parse_cmdline_early (char ** cmdline_p)
285 {
286 char c = ' ', *to = command_line, *from = COMMAND_LINE;
287 int len = 0;
288 int userdef = 0;
289
290 for (;;) {
291 if (c != ' ')
292 goto next_char;
293
294 #ifdef CONFIG_SMP
295 /*
296 * If the BIOS enumerates physical processors before logical,
297 * maxcpus=N at enumeration-time can be used to disable HT.
298 */
299 else if (!memcmp(from, "maxcpus=", 8)) {
300 extern unsigned int maxcpus;
301
302 maxcpus = simple_strtoul(from + 8, NULL, 0);
303 }
304 #endif
305 #ifdef CONFIG_ACPI
306 /* "acpi=off" disables both ACPI table parsing and interpreter init */
307 if (fullarg(from,"acpi=off"))
308 disable_acpi();
309
310 if (fullarg(from, "acpi=force")) {
311 /* add later when we do DMI horrors: */
312 acpi_force = 1;
313 acpi_disabled = 0;
314 }
315
316 /* acpi=ht just means: do ACPI MADT parsing
317 at bootup, but don't enable the full ACPI interpreter */
318 if (fullarg(from, "acpi=ht")) {
319 if (!acpi_force)
320 disable_acpi();
321 acpi_ht = 1;
322 }
323 else if (fullarg(from, "pci=noacpi"))
324 acpi_disable_pci();
325 else if (fullarg(from, "acpi=noirq"))
326 acpi_noirq_set();
327
328 else if (fullarg(from, "acpi_sci=edge"))
329 acpi_sci_flags.trigger = 1;
330 else if (fullarg(from, "acpi_sci=level"))
331 acpi_sci_flags.trigger = 3;
332 else if (fullarg(from, "acpi_sci=high"))
333 acpi_sci_flags.polarity = 1;
334 else if (fullarg(from, "acpi_sci=low"))
335 acpi_sci_flags.polarity = 3;
336
337 /* acpi=strict disables out-of-spec workarounds */
338 else if (fullarg(from, "acpi=strict")) {
339 acpi_strict = 1;
340 }
341 #ifdef CONFIG_X86_IO_APIC
342 else if (fullarg(from, "acpi_skip_timer_override"))
343 acpi_skip_timer_override = 1;
344 #endif
345 #endif
346
347 if (fullarg(from, "disable_timer_pin_1"))
348 disable_timer_pin_1 = 1;
349 if (fullarg(from, "enable_timer_pin_1"))
350 disable_timer_pin_1 = -1;
351
352 if (fullarg(from, "nolapic") || fullarg(from, "disableapic")) {
353 clear_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability);
354 disable_apic = 1;
355 }
356
357 if (fullarg(from, "noapic"))
358 skip_ioapic_setup = 1;
359
360 if (fullarg(from,"apic")) {
361 skip_ioapic_setup = 0;
362 ioapic_force = 1;
363 }
364
365 if (!memcmp(from, "mem=", 4))
366 parse_memopt(from+4, &from);
367
368 if (!memcmp(from, "memmap=", 7)) {
369 /* exactmap option is for used defined memory */
370 if (!memcmp(from+7, "exactmap", 8)) {
371 #ifdef CONFIG_CRASH_DUMP
372 /* If we are doing a crash dump, we
373 * still need to know the real mem
374 * size before original memory map is
375 * reset.
376 */
377 saved_max_pfn = e820_end_of_ram();
378 #endif
379 from += 8+7;
380 end_pfn_map = 0;
381 e820.nr_map = 0;
382 userdef = 1;
383 }
384 else {
385 parse_memmapopt(from+7, &from);
386 userdef = 1;
387 }
388 }
389
390 #ifdef CONFIG_NUMA
391 if (!memcmp(from, "numa=", 5))
392 numa_setup(from+5);
393 #endif
394
395 if (!memcmp(from,"iommu=",6)) {
396 iommu_setup(from+6);
397 }
398
399 if (fullarg(from,"oops=panic"))
400 panic_on_oops = 1;
401
402 if (!memcmp(from, "noexec=", 7))
403 nonx_setup(from + 7);
404
405 #ifdef CONFIG_KEXEC
406 /* crashkernel=size@addr specifies the location to reserve for
407 * a crash kernel. By reserving this memory we guarantee
408 * that linux never set's it up as a DMA target.
409 * Useful for holding code to do something appropriate
410 * after a kernel panic.
411 */
412 else if (!memcmp(from, "crashkernel=", 12)) {
413 unsigned long size, base;
414 size = memparse(from+12, &from);
415 if (*from == '@') {
416 base = memparse(from+1, &from);
417 /* FIXME: Do I want a sanity check
418 * to validate the memory range?
419 */
420 crashk_res.start = base;
421 crashk_res.end = base + size - 1;
422 }
423 }
424 #endif
425
426 #ifdef CONFIG_PROC_VMCORE
427 /* elfcorehdr= specifies the location of elf core header
428 * stored by the crashed kernel. This option will be passed
429 * by kexec loader to the capture kernel.
430 */
431 else if(!memcmp(from, "elfcorehdr=", 11))
432 elfcorehdr_addr = memparse(from+11, &from);
433 #endif
434
435 #ifdef CONFIG_HOTPLUG_CPU
436 else if (!memcmp(from, "additional_cpus=", 16))
437 setup_additional_cpus(from+16);
438 #endif
439
440 next_char:
441 c = *(from++);
442 if (!c)
443 break;
444 if (COMMAND_LINE_SIZE <= ++len)
445 break;
446 *(to++) = c;
447 }
448 if (userdef) {
449 printk(KERN_INFO "user-defined physical RAM map:\n");
450 e820_print_map("user");
451 }
452 *to = '\0';
453 *cmdline_p = command_line;
454 }
455
456 #ifndef CONFIG_NUMA
457 static void __init
458 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
459 {
460 unsigned long bootmap_size, bootmap;
461
462 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
463 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
464 if (bootmap == -1L)
465 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
466 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
467 e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
468 reserve_bootmem(bootmap, bootmap_size);
469 }
470 #endif
471
472 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
473 struct edd edd;
474 #ifdef CONFIG_EDD_MODULE
475 EXPORT_SYMBOL(edd);
476 #endif
477 /**
478 * copy_edd() - Copy the BIOS EDD information
479 * from boot_params into a safe place.
480 *
481 */
482 static inline void copy_edd(void)
483 {
484 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
485 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
486 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
487 edd.edd_info_nr = EDD_NR;
488 }
489 #else
490 static inline void copy_edd(void)
491 {
492 }
493 #endif
494
495 #define EBDA_ADDR_POINTER 0x40E
496
497 unsigned __initdata ebda_addr;
498 unsigned __initdata ebda_size;
499
500 static void discover_ebda(void)
501 {
502 /*
503 * there is a real-mode segmented pointer pointing to the
504 * 4K EBDA area at 0x40E
505 */
506 ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
507 ebda_addr <<= 4;
508
509 ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
510
511 /* Round EBDA up to pages */
512 if (ebda_size == 0)
513 ebda_size = 1;
514 ebda_size <<= 10;
515 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
516 if (ebda_size > 64*1024)
517 ebda_size = 64*1024;
518 }
519
520 void __init setup_arch(char **cmdline_p)
521 {
522 unsigned long kernel_end;
523
524 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
525 screen_info = SCREEN_INFO;
526 edid_info = EDID_INFO;
527 saved_video_mode = SAVED_VIDEO_MODE;
528 bootloader_type = LOADER_TYPE;
529
530 #ifdef CONFIG_BLK_DEV_RAM
531 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
532 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
533 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
534 #endif
535 setup_memory_region();
536 copy_edd();
537
538 if (!MOUNT_ROOT_RDONLY)
539 root_mountflags &= ~MS_RDONLY;
540 init_mm.start_code = (unsigned long) &_text;
541 init_mm.end_code = (unsigned long) &_etext;
542 init_mm.end_data = (unsigned long) &_edata;
543 init_mm.brk = (unsigned long) &_end;
544
545 code_resource.start = virt_to_phys(&_text);
546 code_resource.end = virt_to_phys(&_etext)-1;
547 data_resource.start = virt_to_phys(&_etext);
548 data_resource.end = virt_to_phys(&_edata)-1;
549
550 parse_cmdline_early(cmdline_p);
551
552 early_identify_cpu(&boot_cpu_data);
553
554 /*
555 * partially used pages are not usable - thus
556 * we are rounding upwards:
557 */
558 end_pfn = e820_end_of_ram();
559 num_physpages = end_pfn; /* for pfn_valid */
560
561 check_efer();
562
563 discover_ebda();
564
565 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
566
567 dmi_scan_machine();
568
569 zap_low_mappings(0);
570
571 #ifdef CONFIG_ACPI
572 /*
573 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
574 * Call this early for SRAT node setup.
575 */
576 acpi_boot_table_init();
577 #endif
578
579 #ifdef CONFIG_ACPI_NUMA
580 /*
581 * Parse SRAT to discover nodes.
582 */
583 acpi_numa_init();
584 #endif
585
586 #ifdef CONFIG_NUMA
587 numa_initmem_init(0, end_pfn);
588 #else
589 contig_initmem_init(0, end_pfn);
590 #endif
591
592 /* Reserve direct mapping */
593 reserve_bootmem_generic(table_start << PAGE_SHIFT,
594 (table_end - table_start) << PAGE_SHIFT);
595
596 /* reserve kernel */
597 kernel_end = round_up(__pa_symbol(&_end),PAGE_SIZE);
598 reserve_bootmem_generic(HIGH_MEMORY, kernel_end - HIGH_MEMORY);
599
600 /*
601 * reserve physical page 0 - it's a special BIOS page on many boxes,
602 * enabling clean reboots, SMP operation, laptop functions.
603 */
604 reserve_bootmem_generic(0, PAGE_SIZE);
605
606 /* reserve ebda region */
607 if (ebda_addr)
608 reserve_bootmem_generic(ebda_addr, ebda_size);
609
610 #ifdef CONFIG_SMP
611 /*
612 * But first pinch a few for the stack/trampoline stuff
613 * FIXME: Don't need the extra page at 4K, but need to fix
614 * trampoline before removing it. (see the GDT stuff)
615 */
616 reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
617
618 /* Reserve SMP trampoline */
619 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
620 #endif
621
622 #ifdef CONFIG_ACPI_SLEEP
623 /*
624 * Reserve low memory region for sleep support.
625 */
626 acpi_reserve_bootmem();
627 #endif
628 #ifdef CONFIG_X86_LOCAL_APIC
629 /*
630 * Find and reserve possible boot-time SMP configuration:
631 */
632 find_smp_config();
633 #endif
634 #ifdef CONFIG_BLK_DEV_INITRD
635 if (LOADER_TYPE && INITRD_START) {
636 if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
637 reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
638 initrd_start =
639 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
640 initrd_end = initrd_start+INITRD_SIZE;
641 }
642 else {
643 printk(KERN_ERR "initrd extends beyond end of memory "
644 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
645 (unsigned long)(INITRD_START + INITRD_SIZE),
646 (unsigned long)(end_pfn << PAGE_SHIFT));
647 initrd_start = 0;
648 }
649 }
650 #endif
651 #ifdef CONFIG_KEXEC
652 if (crashk_res.start != crashk_res.end) {
653 reserve_bootmem_generic(crashk_res.start,
654 crashk_res.end - crashk_res.start + 1);
655 }
656 #endif
657
658 paging_init();
659
660 check_ioapic();
661
662 /*
663 * set this early, so we dont allocate cpu0
664 * if MADT list doesnt list BSP first
665 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
666 */
667 cpu_set(0, cpu_present_map);
668 #ifdef CONFIG_ACPI
669 /*
670 * Read APIC and some other early information from ACPI tables.
671 */
672 acpi_boot_init();
673 #endif
674
675 init_cpu_to_node();
676
677 #ifdef CONFIG_X86_LOCAL_APIC
678 /*
679 * get boot-time SMP configuration:
680 */
681 if (smp_found_config)
682 get_smp_config();
683 init_apic_mappings();
684 #endif
685
686 /*
687 * Request address space for all standard RAM and ROM resources
688 * and also for regions reported as reserved by the e820.
689 */
690 probe_roms();
691 e820_reserve_resources();
692
693 request_resource(&iomem_resource, &video_ram_resource);
694
695 {
696 unsigned i;
697 /* request I/O space for devices used on all i[345]86 PCs */
698 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
699 request_resource(&ioport_resource, &standard_io_resources[i]);
700 }
701
702 e820_setup_gap();
703
704 #ifdef CONFIG_VT
705 #if defined(CONFIG_VGA_CONSOLE)
706 conswitchp = &vga_con;
707 #elif defined(CONFIG_DUMMY_CONSOLE)
708 conswitchp = &dummy_con;
709 #endif
710 #endif
711 }
712
713 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
714 {
715 unsigned int *v;
716
717 if (c->extended_cpuid_level < 0x80000004)
718 return 0;
719
720 v = (unsigned int *) c->x86_model_id;
721 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
722 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
723 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
724 c->x86_model_id[48] = 0;
725 return 1;
726 }
727
728
729 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
730 {
731 unsigned int n, dummy, eax, ebx, ecx, edx;
732
733 n = c->extended_cpuid_level;
734
735 if (n >= 0x80000005) {
736 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
737 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
738 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
739 c->x86_cache_size=(ecx>>24)+(edx>>24);
740 /* On K8 L1 TLB is inclusive, so don't count it */
741 c->x86_tlbsize = 0;
742 }
743
744 if (n >= 0x80000006) {
745 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
746 ecx = cpuid_ecx(0x80000006);
747 c->x86_cache_size = ecx >> 16;
748 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
749
750 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
751 c->x86_cache_size, ecx & 0xFF);
752 }
753
754 if (n >= 0x80000007)
755 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
756 if (n >= 0x80000008) {
757 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
758 c->x86_virt_bits = (eax >> 8) & 0xff;
759 c->x86_phys_bits = eax & 0xff;
760 }
761 }
762
763 #ifdef CONFIG_NUMA
764 static int nearby_node(int apicid)
765 {
766 int i;
767 for (i = apicid - 1; i >= 0; i--) {
768 int node = apicid_to_node[i];
769 if (node != NUMA_NO_NODE && node_online(node))
770 return node;
771 }
772 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
773 int node = apicid_to_node[i];
774 if (node != NUMA_NO_NODE && node_online(node))
775 return node;
776 }
777 return first_node(node_online_map); /* Shouldn't happen */
778 }
779 #endif
780
781 /*
782 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
783 * Assumes number of cores is a power of two.
784 */
785 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
786 {
787 #ifdef CONFIG_SMP
788 unsigned bits;
789 #ifdef CONFIG_NUMA
790 int cpu = smp_processor_id();
791 int node = 0;
792 unsigned apicid = hard_smp_processor_id();
793 #endif
794 unsigned ecx = cpuid_ecx(0x80000008);
795
796 c->x86_max_cores = (ecx & 0xff) + 1;
797
798 /* CPU telling us the core id bits shift? */
799 bits = (ecx >> 12) & 0xF;
800
801 /* Otherwise recompute */
802 if (bits == 0) {
803 while ((1 << bits) < c->x86_max_cores)
804 bits++;
805 }
806
807 /* Low order bits define the core id (index of core in socket) */
808 c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
809 /* Convert the APIC ID into the socket ID */
810 c->phys_proc_id = phys_pkg_id(bits);
811
812 #ifdef CONFIG_NUMA
813 node = c->phys_proc_id;
814 if (apicid_to_node[apicid] != NUMA_NO_NODE)
815 node = apicid_to_node[apicid];
816 if (!node_online(node)) {
817 /* Two possibilities here:
818 - The CPU is missing memory and no node was created.
819 In that case try picking one from a nearby CPU
820 - The APIC IDs differ from the HyperTransport node IDs
821 which the K8 northbridge parsing fills in.
822 Assume they are all increased by a constant offset,
823 but in the same order as the HT nodeids.
824 If that doesn't result in a usable node fall back to the
825 path for the previous case. */
826 int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
827 if (ht_nodeid >= 0 &&
828 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
829 node = apicid_to_node[ht_nodeid];
830 /* Pick a nearby node */
831 if (!node_online(node))
832 node = nearby_node(apicid);
833 }
834 numa_set_node(cpu, node);
835
836 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
837 #endif
838 #endif
839 }
840
841 static void __init init_amd(struct cpuinfo_x86 *c)
842 {
843 unsigned level;
844
845 #ifdef CONFIG_SMP
846 unsigned long value;
847
848 /*
849 * Disable TLB flush filter by setting HWCR.FFDIS on K8
850 * bit 6 of msr C001_0015
851 *
852 * Errata 63 for SH-B3 steppings
853 * Errata 122 for all steppings (F+ have it disabled by default)
854 */
855 if (c->x86 == 15) {
856 rdmsrl(MSR_K8_HWCR, value);
857 value |= 1 << 6;
858 wrmsrl(MSR_K8_HWCR, value);
859 }
860 #endif
861
862 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
863 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
864 clear_bit(0*32+31, &c->x86_capability);
865
866 /* On C+ stepping K8 rep microcode works well for copy/memset */
867 level = cpuid_eax(1);
868 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
869 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
870
871 /* Enable workaround for FXSAVE leak */
872 if (c->x86 >= 6)
873 set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
874
875 level = get_model_name(c);
876 if (!level) {
877 switch (c->x86) {
878 case 15:
879 /* Should distinguish Models here, but this is only
880 a fallback anyways. */
881 strcpy(c->x86_model_id, "Hammer");
882 break;
883 }
884 }
885 display_cacheinfo(c);
886
887 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
888 if (c->x86_power & (1<<8))
889 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
890
891 /* Multi core CPU? */
892 if (c->extended_cpuid_level >= 0x80000008)
893 amd_detect_cmp(c);
894
895 /* Fix cpuid4 emulation for more */
896 num_cache_leaves = 3;
897 }
898
899 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
900 {
901 #ifdef CONFIG_SMP
902 u32 eax, ebx, ecx, edx;
903 int index_msb, core_bits;
904
905 cpuid(1, &eax, &ebx, &ecx, &edx);
906
907
908 if (!cpu_has(c, X86_FEATURE_HT))
909 return;
910 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
911 goto out;
912
913 smp_num_siblings = (ebx & 0xff0000) >> 16;
914
915 if (smp_num_siblings == 1) {
916 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
917 } else if (smp_num_siblings > 1 ) {
918
919 if (smp_num_siblings > NR_CPUS) {
920 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
921 smp_num_siblings = 1;
922 return;
923 }
924
925 index_msb = get_count_order(smp_num_siblings);
926 c->phys_proc_id = phys_pkg_id(index_msb);
927
928 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
929
930 index_msb = get_count_order(smp_num_siblings) ;
931
932 core_bits = get_count_order(c->x86_max_cores);
933
934 c->cpu_core_id = phys_pkg_id(index_msb) &
935 ((1 << core_bits) - 1);
936 }
937 out:
938 if ((c->x86_max_cores * smp_num_siblings) > 1) {
939 printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
940 printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
941 }
942
943 #endif
944 }
945
946 /*
947 * find out the number of processor cores on the die
948 */
949 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
950 {
951 unsigned int eax, t;
952
953 if (c->cpuid_level < 4)
954 return 1;
955
956 cpuid_count(4, 0, &eax, &t, &t, &t);
957
958 if (eax & 0x1f)
959 return ((eax >> 26) + 1);
960 else
961 return 1;
962 }
963
964 static void srat_detect_node(void)
965 {
966 #ifdef CONFIG_NUMA
967 unsigned node;
968 int cpu = smp_processor_id();
969 int apicid = hard_smp_processor_id();
970
971 /* Don't do the funky fallback heuristics the AMD version employs
972 for now. */
973 node = apicid_to_node[apicid];
974 if (node == NUMA_NO_NODE)
975 node = first_node(node_online_map);
976 numa_set_node(cpu, node);
977
978 if (acpi_numa > 0)
979 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
980 #endif
981 }
982
983 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
984 {
985 /* Cache sizes */
986 unsigned n;
987
988 init_intel_cacheinfo(c);
989 n = c->extended_cpuid_level;
990 if (n >= 0x80000008) {
991 unsigned eax = cpuid_eax(0x80000008);
992 c->x86_virt_bits = (eax >> 8) & 0xff;
993 c->x86_phys_bits = eax & 0xff;
994 /* CPUID workaround for Intel 0F34 CPU */
995 if (c->x86_vendor == X86_VENDOR_INTEL &&
996 c->x86 == 0xF && c->x86_model == 0x3 &&
997 c->x86_mask == 0x4)
998 c->x86_phys_bits = 36;
999 }
1000
1001 if (c->x86 == 15)
1002 c->x86_cache_alignment = c->x86_clflush_size * 2;
1003 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
1004 (c->x86 == 0x6 && c->x86_model >= 0x0e))
1005 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
1006 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
1007 c->x86_max_cores = intel_num_cpu_cores(c);
1008
1009 srat_detect_node();
1010 }
1011
1012 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
1013 {
1014 char *v = c->x86_vendor_id;
1015
1016 if (!strcmp(v, "AuthenticAMD"))
1017 c->x86_vendor = X86_VENDOR_AMD;
1018 else if (!strcmp(v, "GenuineIntel"))
1019 c->x86_vendor = X86_VENDOR_INTEL;
1020 else
1021 c->x86_vendor = X86_VENDOR_UNKNOWN;
1022 }
1023
1024 struct cpu_model_info {
1025 int vendor;
1026 int family;
1027 char *model_names[16];
1028 };
1029
1030 /* Do some early cpuid on the boot CPU to get some parameter that are
1031 needed before check_bugs. Everything advanced is in identify_cpu
1032 below. */
1033 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
1034 {
1035 u32 tfms;
1036
1037 c->loops_per_jiffy = loops_per_jiffy;
1038 c->x86_cache_size = -1;
1039 c->x86_vendor = X86_VENDOR_UNKNOWN;
1040 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1041 c->x86_vendor_id[0] = '\0'; /* Unset */
1042 c->x86_model_id[0] = '\0'; /* Unset */
1043 c->x86_clflush_size = 64;
1044 c->x86_cache_alignment = c->x86_clflush_size;
1045 c->x86_max_cores = 1;
1046 c->extended_cpuid_level = 0;
1047 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1048
1049 /* Get vendor name */
1050 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
1051 (unsigned int *)&c->x86_vendor_id[0],
1052 (unsigned int *)&c->x86_vendor_id[8],
1053 (unsigned int *)&c->x86_vendor_id[4]);
1054
1055 get_cpu_vendor(c);
1056
1057 /* Initialize the standard set of capabilities */
1058 /* Note that the vendor-specific code below might override */
1059
1060 /* Intel-defined flags: level 0x00000001 */
1061 if (c->cpuid_level >= 0x00000001) {
1062 __u32 misc;
1063 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
1064 &c->x86_capability[0]);
1065 c->x86 = (tfms >> 8) & 0xf;
1066 c->x86_model = (tfms >> 4) & 0xf;
1067 c->x86_mask = tfms & 0xf;
1068 if (c->x86 == 0xf)
1069 c->x86 += (tfms >> 20) & 0xff;
1070 if (c->x86 >= 0x6)
1071 c->x86_model += ((tfms >> 16) & 0xF) << 4;
1072 if (c->x86_capability[0] & (1<<19))
1073 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
1074 } else {
1075 /* Have CPUID level 0 only - unheard of */
1076 c->x86 = 4;
1077 }
1078
1079 #ifdef CONFIG_SMP
1080 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
1081 #endif
1082 }
1083
1084 /*
1085 * This does the hard work of actually picking apart the CPU stuff...
1086 */
1087 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1088 {
1089 int i;
1090 u32 xlvl;
1091
1092 early_identify_cpu(c);
1093
1094 /* AMD-defined flags: level 0x80000001 */
1095 xlvl = cpuid_eax(0x80000000);
1096 c->extended_cpuid_level = xlvl;
1097 if ((xlvl & 0xffff0000) == 0x80000000) {
1098 if (xlvl >= 0x80000001) {
1099 c->x86_capability[1] = cpuid_edx(0x80000001);
1100 c->x86_capability[6] = cpuid_ecx(0x80000001);
1101 }
1102 if (xlvl >= 0x80000004)
1103 get_model_name(c); /* Default name */
1104 }
1105
1106 /* Transmeta-defined flags: level 0x80860001 */
1107 xlvl = cpuid_eax(0x80860000);
1108 if ((xlvl & 0xffff0000) == 0x80860000) {
1109 /* Don't set x86_cpuid_level here for now to not confuse. */
1110 if (xlvl >= 0x80860001)
1111 c->x86_capability[2] = cpuid_edx(0x80860001);
1112 }
1113
1114 c->apicid = phys_pkg_id(0);
1115
1116 /*
1117 * Vendor-specific initialization. In this section we
1118 * canonicalize the feature flags, meaning if there are
1119 * features a certain CPU supports which CPUID doesn't
1120 * tell us, CPUID claiming incorrect flags, or other bugs,
1121 * we handle them here.
1122 *
1123 * At the end of this section, c->x86_capability better
1124 * indicate the features this CPU genuinely supports!
1125 */
1126 switch (c->x86_vendor) {
1127 case X86_VENDOR_AMD:
1128 init_amd(c);
1129 break;
1130
1131 case X86_VENDOR_INTEL:
1132 init_intel(c);
1133 break;
1134
1135 case X86_VENDOR_UNKNOWN:
1136 default:
1137 display_cacheinfo(c);
1138 break;
1139 }
1140
1141 select_idle_routine(c);
1142 detect_ht(c);
1143
1144 /*
1145 * On SMP, boot_cpu_data holds the common feature set between
1146 * all CPUs; so make sure that we indicate which features are
1147 * common between the CPUs. The first time this routine gets
1148 * executed, c == &boot_cpu_data.
1149 */
1150 if (c != &boot_cpu_data) {
1151 /* AND the already accumulated flags with these */
1152 for (i = 0 ; i < NCAPINTS ; i++)
1153 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1154 }
1155
1156 #ifdef CONFIG_X86_MCE
1157 mcheck_init(c);
1158 #endif
1159 if (c == &boot_cpu_data)
1160 mtrr_bp_init();
1161 else
1162 mtrr_ap_init();
1163 #ifdef CONFIG_NUMA
1164 numa_add_cpu(smp_processor_id());
1165 #endif
1166 }
1167
1168
1169 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1170 {
1171 if (c->x86_model_id[0])
1172 printk("%s", c->x86_model_id);
1173
1174 if (c->x86_mask || c->cpuid_level >= 0)
1175 printk(" stepping %02x\n", c->x86_mask);
1176 else
1177 printk("\n");
1178 }
1179
1180 /*
1181 * Get CPU information for use by the procfs.
1182 */
1183
1184 static int show_cpuinfo(struct seq_file *m, void *v)
1185 {
1186 struct cpuinfo_x86 *c = v;
1187
1188 /*
1189 * These flag bits must match the definitions in <asm/cpufeature.h>.
1190 * NULL means this bit is undefined or reserved; either way it doesn't
1191 * have meaning as far as Linux is concerned. Note that it's important
1192 * to realize there is a difference between this table and CPUID -- if
1193 * applications want to get the raw CPUID data, they should access
1194 * /dev/cpu/<cpu_nr>/cpuid instead.
1195 */
1196 static char *x86_cap_flags[] = {
1197 /* Intel-defined */
1198 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1199 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1200 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1201 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
1202
1203 /* AMD-defined */
1204 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1205 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1206 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1207 NULL, "fxsr_opt", NULL, "rdtscp", NULL, "lm", "3dnowext", "3dnow",
1208
1209 /* Transmeta-defined */
1210 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1211 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1212 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1213 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1214
1215 /* Other (Linux-defined) */
1216 "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
1217 "constant_tsc", NULL, NULL,
1218 "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1219 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1220 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1221
1222 /* Intel-defined (#2) */
1223 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1224 "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
1225 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1226 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1227
1228 /* VIA/Cyrix/Centaur-defined */
1229 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1230 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1231 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1232 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1233
1234 /* AMD-defined (#2) */
1235 "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
1236 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1237 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1238 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1239 };
1240 static char *x86_power_flags[] = {
1241 "ts", /* temperature sensor */
1242 "fid", /* frequency id control */
1243 "vid", /* voltage id control */
1244 "ttp", /* thermal trip */
1245 "tm",
1246 "stc",
1247 NULL,
1248 /* nothing */ /* constant_tsc - moved to flags */
1249 };
1250
1251
1252 #ifdef CONFIG_SMP
1253 if (!cpu_online(c-cpu_data))
1254 return 0;
1255 #endif
1256
1257 seq_printf(m,"processor\t: %u\n"
1258 "vendor_id\t: %s\n"
1259 "cpu family\t: %d\n"
1260 "model\t\t: %d\n"
1261 "model name\t: %s\n",
1262 (unsigned)(c-cpu_data),
1263 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1264 c->x86,
1265 (int)c->x86_model,
1266 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1267
1268 if (c->x86_mask || c->cpuid_level >= 0)
1269 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1270 else
1271 seq_printf(m, "stepping\t: unknown\n");
1272
1273 if (cpu_has(c,X86_FEATURE_TSC)) {
1274 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1275 if (!freq)
1276 freq = cpu_khz;
1277 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1278 freq / 1000, (freq % 1000));
1279 }
1280
1281 /* Cache size */
1282 if (c->x86_cache_size >= 0)
1283 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1284
1285 #ifdef CONFIG_SMP
1286 if (smp_num_siblings * c->x86_max_cores > 1) {
1287 int cpu = c - cpu_data;
1288 seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
1289 seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
1290 seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
1291 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1292 }
1293 #endif
1294
1295 seq_printf(m,
1296 "fpu\t\t: yes\n"
1297 "fpu_exception\t: yes\n"
1298 "cpuid level\t: %d\n"
1299 "wp\t\t: yes\n"
1300 "flags\t\t:",
1301 c->cpuid_level);
1302
1303 {
1304 int i;
1305 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1306 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1307 seq_printf(m, " %s", x86_cap_flags[i]);
1308 }
1309
1310 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1311 c->loops_per_jiffy/(500000/HZ),
1312 (c->loops_per_jiffy/(5000/HZ)) % 100);
1313
1314 if (c->x86_tlbsize > 0)
1315 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1316 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1317 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1318
1319 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1320 c->x86_phys_bits, c->x86_virt_bits);
1321
1322 seq_printf(m, "power management:");
1323 {
1324 unsigned i;
1325 for (i = 0; i < 32; i++)
1326 if (c->x86_power & (1 << i)) {
1327 if (i < ARRAY_SIZE(x86_power_flags) &&
1328 x86_power_flags[i])
1329 seq_printf(m, "%s%s",
1330 x86_power_flags[i][0]?" ":"",
1331 x86_power_flags[i]);
1332 else
1333 seq_printf(m, " [%d]", i);
1334 }
1335 }
1336
1337 seq_printf(m, "\n\n");
1338
1339 return 0;
1340 }
1341
1342 static void *c_start(struct seq_file *m, loff_t *pos)
1343 {
1344 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1345 }
1346
1347 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1348 {
1349 ++*pos;
1350 return c_start(m, pos);
1351 }
1352
1353 static void c_stop(struct seq_file *m, void *v)
1354 {
1355 }
1356
1357 struct seq_operations cpuinfo_op = {
1358 .start =c_start,
1359 .next = c_next,
1360 .stop = c_stop,
1361 .show = show_cpuinfo,
1362 };
1363
1364 #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
1365 #include <linux/platform_device.h>
1366 static __init int add_pcspkr(void)
1367 {
1368 struct platform_device *pd;
1369 int ret;
1370
1371 pd = platform_device_alloc("pcspkr", -1);
1372 if (!pd)
1373 return -ENOMEM;
1374
1375 ret = platform_device_add(pd);
1376 if (ret)
1377 platform_device_put(pd);
1378
1379 return ret;
1380 }
1381 device_initcall(add_pcspkr);
1382 #endif
This page took 0.062701 seconds and 6 git commands to generate.