Merge branch 'for-linus' of git://git390.osdl.marist.edu/pub/scm/linux-2.6
[deliverable/linux.git] / arch / x86_64 / kernel / setup.c
1 /*
2 * linux/arch/x86-64/kernel/setup.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
8 */
9
10 /*
11 * This file handles the architecture-dependent parts of initialization
12 */
13
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/user.h>
23 #include <linux/a.out.h>
24 #include <linux/screen_info.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/initrd.h>
29 #include <linux/highmem.h>
30 #include <linux/bootmem.h>
31 #include <linux/module.h>
32 #include <asm/processor.h>
33 #include <linux/console.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/root_dev.h>
37 #include <linux/pci.h>
38 #include <linux/acpi.h>
39 #include <linux/kallsyms.h>
40 #include <linux/edd.h>
41 #include <linux/mmzone.h>
42 #include <linux/kexec.h>
43 #include <linux/cpufreq.h>
44 #include <linux/dmi.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/ctype.h>
47
48 #include <asm/mtrr.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
51 #include <asm/io.h>
52 #include <asm/smp.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <video/edid.h>
56 #include <asm/e820.h>
57 #include <asm/dma.h>
58 #include <asm/mpspec.h>
59 #include <asm/mmu_context.h>
60 #include <asm/bootsetup.h>
61 #include <asm/proto.h>
62 #include <asm/setup.h>
63 #include <asm/mach_apic.h>
64 #include <asm/numa.h>
65 #include <asm/sections.h>
66 #include <asm/dmi.h>
67
68 /*
69 * Machine setup..
70 */
71
72 struct cpuinfo_x86 boot_cpu_data __read_mostly;
73 EXPORT_SYMBOL(boot_cpu_data);
74
75 unsigned long mmu_cr4_features;
76
77 int acpi_disabled;
78 EXPORT_SYMBOL(acpi_disabled);
79 #ifdef CONFIG_ACPI
80 extern int __initdata acpi_ht;
81 extern acpi_interrupt_flags acpi_sci_flags;
82 int __initdata acpi_force = 0;
83 #endif
84
85 int acpi_numa __initdata;
86
87 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
88 int bootloader_type;
89
90 unsigned long saved_video_mode;
91
92 /*
93 * Early DMI memory
94 */
95 int dmi_alloc_index;
96 char dmi_alloc_data[DMI_MAX_DATA];
97
98 /*
99 * Setup options
100 */
101 struct screen_info screen_info;
102 EXPORT_SYMBOL(screen_info);
103 struct sys_desc_table_struct {
104 unsigned short length;
105 unsigned char table[0];
106 };
107
108 struct edid_info edid_info;
109 EXPORT_SYMBOL_GPL(edid_info);
110 struct e820map e820;
111
112 extern int root_mountflags;
113
114 char command_line[COMMAND_LINE_SIZE];
115
116 struct resource standard_io_resources[] = {
117 { .name = "dma1", .start = 0x00, .end = 0x1f,
118 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
119 { .name = "pic1", .start = 0x20, .end = 0x21,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "timer0", .start = 0x40, .end = 0x43,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
123 { .name = "timer1", .start = 0x50, .end = 0x53,
124 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
125 { .name = "keyboard", .start = 0x60, .end = 0x6f,
126 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
127 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
128 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
129 { .name = "pic2", .start = 0xa0, .end = 0xa1,
130 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
131 { .name = "dma2", .start = 0xc0, .end = 0xdf,
132 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
133 { .name = "fpu", .start = 0xf0, .end = 0xff,
134 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
135 };
136
137 #define STANDARD_IO_RESOURCES \
138 (sizeof standard_io_resources / sizeof standard_io_resources[0])
139
140 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
141
142 struct resource data_resource = {
143 .name = "Kernel data",
144 .start = 0,
145 .end = 0,
146 .flags = IORESOURCE_RAM,
147 };
148 struct resource code_resource = {
149 .name = "Kernel code",
150 .start = 0,
151 .end = 0,
152 .flags = IORESOURCE_RAM,
153 };
154
155 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
156
157 static struct resource system_rom_resource = {
158 .name = "System ROM",
159 .start = 0xf0000,
160 .end = 0xfffff,
161 .flags = IORESOURCE_ROM,
162 };
163
164 static struct resource extension_rom_resource = {
165 .name = "Extension ROM",
166 .start = 0xe0000,
167 .end = 0xeffff,
168 .flags = IORESOURCE_ROM,
169 };
170
171 static struct resource adapter_rom_resources[] = {
172 { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
173 .flags = IORESOURCE_ROM },
174 { .name = "Adapter ROM", .start = 0, .end = 0,
175 .flags = IORESOURCE_ROM },
176 { .name = "Adapter ROM", .start = 0, .end = 0,
177 .flags = IORESOURCE_ROM },
178 { .name = "Adapter ROM", .start = 0, .end = 0,
179 .flags = IORESOURCE_ROM },
180 { .name = "Adapter ROM", .start = 0, .end = 0,
181 .flags = IORESOURCE_ROM },
182 { .name = "Adapter ROM", .start = 0, .end = 0,
183 .flags = IORESOURCE_ROM }
184 };
185
186 #define ADAPTER_ROM_RESOURCES \
187 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
188
189 static struct resource video_rom_resource = {
190 .name = "Video ROM",
191 .start = 0xc0000,
192 .end = 0xc7fff,
193 .flags = IORESOURCE_ROM,
194 };
195
196 static struct resource video_ram_resource = {
197 .name = "Video RAM area",
198 .start = 0xa0000,
199 .end = 0xbffff,
200 .flags = IORESOURCE_RAM,
201 };
202
203 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
204
205 static int __init romchecksum(unsigned char *rom, unsigned long length)
206 {
207 unsigned char *p, sum = 0;
208
209 for (p = rom; p < rom + length; p++)
210 sum += *p;
211 return sum == 0;
212 }
213
214 static void __init probe_roms(void)
215 {
216 unsigned long start, length, upper;
217 unsigned char *rom;
218 int i;
219
220 /* video rom */
221 upper = adapter_rom_resources[0].start;
222 for (start = video_rom_resource.start; start < upper; start += 2048) {
223 rom = isa_bus_to_virt(start);
224 if (!romsignature(rom))
225 continue;
226
227 video_rom_resource.start = start;
228
229 /* 0 < length <= 0x7f * 512, historically */
230 length = rom[2] * 512;
231
232 /* if checksum okay, trust length byte */
233 if (length && romchecksum(rom, length))
234 video_rom_resource.end = start + length - 1;
235
236 request_resource(&iomem_resource, &video_rom_resource);
237 break;
238 }
239
240 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
241 if (start < upper)
242 start = upper;
243
244 /* system rom */
245 request_resource(&iomem_resource, &system_rom_resource);
246 upper = system_rom_resource.start;
247
248 /* check for extension rom (ignore length byte!) */
249 rom = isa_bus_to_virt(extension_rom_resource.start);
250 if (romsignature(rom)) {
251 length = extension_rom_resource.end - extension_rom_resource.start + 1;
252 if (romchecksum(rom, length)) {
253 request_resource(&iomem_resource, &extension_rom_resource);
254 upper = extension_rom_resource.start;
255 }
256 }
257
258 /* check for adapter roms on 2k boundaries */
259 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
260 rom = isa_bus_to_virt(start);
261 if (!romsignature(rom))
262 continue;
263
264 /* 0 < length <= 0x7f * 512, historically */
265 length = rom[2] * 512;
266
267 /* but accept any length that fits if checksum okay */
268 if (!length || start + length > upper || !romchecksum(rom, length))
269 continue;
270
271 adapter_rom_resources[i].start = start;
272 adapter_rom_resources[i].end = start + length - 1;
273 request_resource(&iomem_resource, &adapter_rom_resources[i]);
274
275 start = adapter_rom_resources[i++].end & ~2047UL;
276 }
277 }
278
279 /* Check for full argument with no trailing characters */
280 static int fullarg(char *p, char *arg)
281 {
282 int l = strlen(arg);
283 return !memcmp(p, arg, l) && (p[l] == 0 || isspace(p[l]));
284 }
285
286 static __init void parse_cmdline_early (char ** cmdline_p)
287 {
288 char c = ' ', *to = command_line, *from = COMMAND_LINE;
289 int len = 0;
290 int userdef = 0;
291
292 for (;;) {
293 if (c != ' ')
294 goto next_char;
295
296 #ifdef CONFIG_SMP
297 /*
298 * If the BIOS enumerates physical processors before logical,
299 * maxcpus=N at enumeration-time can be used to disable HT.
300 */
301 else if (!memcmp(from, "maxcpus=", 8)) {
302 extern unsigned int maxcpus;
303
304 maxcpus = simple_strtoul(from + 8, NULL, 0);
305 }
306 #endif
307 #ifdef CONFIG_ACPI
308 /* "acpi=off" disables both ACPI table parsing and interpreter init */
309 if (fullarg(from,"acpi=off"))
310 disable_acpi();
311
312 if (fullarg(from, "acpi=force")) {
313 /* add later when we do DMI horrors: */
314 acpi_force = 1;
315 acpi_disabled = 0;
316 }
317
318 /* acpi=ht just means: do ACPI MADT parsing
319 at bootup, but don't enable the full ACPI interpreter */
320 if (fullarg(from, "acpi=ht")) {
321 if (!acpi_force)
322 disable_acpi();
323 acpi_ht = 1;
324 }
325 else if (fullarg(from, "pci=noacpi"))
326 acpi_disable_pci();
327 else if (fullarg(from, "acpi=noirq"))
328 acpi_noirq_set();
329
330 else if (fullarg(from, "acpi_sci=edge"))
331 acpi_sci_flags.trigger = 1;
332 else if (fullarg(from, "acpi_sci=level"))
333 acpi_sci_flags.trigger = 3;
334 else if (fullarg(from, "acpi_sci=high"))
335 acpi_sci_flags.polarity = 1;
336 else if (fullarg(from, "acpi_sci=low"))
337 acpi_sci_flags.polarity = 3;
338
339 /* acpi=strict disables out-of-spec workarounds */
340 else if (fullarg(from, "acpi=strict")) {
341 acpi_strict = 1;
342 }
343 #ifdef CONFIG_X86_IO_APIC
344 else if (fullarg(from, "acpi_skip_timer_override"))
345 acpi_skip_timer_override = 1;
346 #endif
347 #endif
348
349 if (fullarg(from, "disable_timer_pin_1"))
350 disable_timer_pin_1 = 1;
351 if (fullarg(from, "enable_timer_pin_1"))
352 disable_timer_pin_1 = -1;
353
354 if (fullarg(from, "nolapic") || fullarg(from, "disableapic")) {
355 clear_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability);
356 disable_apic = 1;
357 }
358
359 if (fullarg(from, "noapic"))
360 skip_ioapic_setup = 1;
361
362 if (fullarg(from,"apic")) {
363 skip_ioapic_setup = 0;
364 ioapic_force = 1;
365 }
366
367 if (!memcmp(from, "mem=", 4))
368 parse_memopt(from+4, &from);
369
370 if (!memcmp(from, "memmap=", 7)) {
371 /* exactmap option is for used defined memory */
372 if (!memcmp(from+7, "exactmap", 8)) {
373 #ifdef CONFIG_CRASH_DUMP
374 /* If we are doing a crash dump, we
375 * still need to know the real mem
376 * size before original memory map is
377 * reset.
378 */
379 saved_max_pfn = e820_end_of_ram();
380 #endif
381 from += 8+7;
382 end_pfn_map = 0;
383 e820.nr_map = 0;
384 userdef = 1;
385 }
386 else {
387 parse_memmapopt(from+7, &from);
388 userdef = 1;
389 }
390 }
391
392 #ifdef CONFIG_NUMA
393 if (!memcmp(from, "numa=", 5))
394 numa_setup(from+5);
395 #endif
396
397 if (!memcmp(from,"iommu=",6)) {
398 iommu_setup(from+6);
399 }
400
401 if (fullarg(from,"oops=panic"))
402 panic_on_oops = 1;
403
404 if (!memcmp(from, "noexec=", 7))
405 nonx_setup(from + 7);
406
407 #ifdef CONFIG_KEXEC
408 /* crashkernel=size@addr specifies the location to reserve for
409 * a crash kernel. By reserving this memory we guarantee
410 * that linux never set's it up as a DMA target.
411 * Useful for holding code to do something appropriate
412 * after a kernel panic.
413 */
414 else if (!memcmp(from, "crashkernel=", 12)) {
415 unsigned long size, base;
416 size = memparse(from+12, &from);
417 if (*from == '@') {
418 base = memparse(from+1, &from);
419 /* FIXME: Do I want a sanity check
420 * to validate the memory range?
421 */
422 crashk_res.start = base;
423 crashk_res.end = base + size - 1;
424 }
425 }
426 #endif
427
428 #ifdef CONFIG_PROC_VMCORE
429 /* elfcorehdr= specifies the location of elf core header
430 * stored by the crashed kernel. This option will be passed
431 * by kexec loader to the capture kernel.
432 */
433 else if(!memcmp(from, "elfcorehdr=", 11))
434 elfcorehdr_addr = memparse(from+11, &from);
435 #endif
436
437 #ifdef CONFIG_HOTPLUG_CPU
438 else if (!memcmp(from, "additional_cpus=", 16))
439 setup_additional_cpus(from+16);
440 #endif
441
442 next_char:
443 c = *(from++);
444 if (!c)
445 break;
446 if (COMMAND_LINE_SIZE <= ++len)
447 break;
448 *(to++) = c;
449 }
450 if (userdef) {
451 printk(KERN_INFO "user-defined physical RAM map:\n");
452 e820_print_map("user");
453 }
454 *to = '\0';
455 *cmdline_p = command_line;
456 }
457
458 #ifndef CONFIG_NUMA
459 static void __init
460 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
461 {
462 unsigned long bootmap_size, bootmap;
463
464 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
465 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
466 if (bootmap == -1L)
467 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
468 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
469 e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
470 reserve_bootmem(bootmap, bootmap_size);
471 }
472 #endif
473
474 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
475 struct edd edd;
476 #ifdef CONFIG_EDD_MODULE
477 EXPORT_SYMBOL(edd);
478 #endif
479 /**
480 * copy_edd() - Copy the BIOS EDD information
481 * from boot_params into a safe place.
482 *
483 */
484 static inline void copy_edd(void)
485 {
486 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
487 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
488 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
489 edd.edd_info_nr = EDD_NR;
490 }
491 #else
492 static inline void copy_edd(void)
493 {
494 }
495 #endif
496
497 #define EBDA_ADDR_POINTER 0x40E
498
499 unsigned __initdata ebda_addr;
500 unsigned __initdata ebda_size;
501
502 static void discover_ebda(void)
503 {
504 /*
505 * there is a real-mode segmented pointer pointing to the
506 * 4K EBDA area at 0x40E
507 */
508 ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
509 ebda_addr <<= 4;
510
511 ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
512
513 /* Round EBDA up to pages */
514 if (ebda_size == 0)
515 ebda_size = 1;
516 ebda_size <<= 10;
517 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
518 if (ebda_size > 64*1024)
519 ebda_size = 64*1024;
520 }
521
522 void __init setup_arch(char **cmdline_p)
523 {
524 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
525 screen_info = SCREEN_INFO;
526 edid_info = EDID_INFO;
527 saved_video_mode = SAVED_VIDEO_MODE;
528 bootloader_type = LOADER_TYPE;
529
530 #ifdef CONFIG_BLK_DEV_RAM
531 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
532 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
533 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
534 #endif
535 setup_memory_region();
536 copy_edd();
537
538 if (!MOUNT_ROOT_RDONLY)
539 root_mountflags &= ~MS_RDONLY;
540 init_mm.start_code = (unsigned long) &_text;
541 init_mm.end_code = (unsigned long) &_etext;
542 init_mm.end_data = (unsigned long) &_edata;
543 init_mm.brk = (unsigned long) &_end;
544
545 code_resource.start = virt_to_phys(&_text);
546 code_resource.end = virt_to_phys(&_etext)-1;
547 data_resource.start = virt_to_phys(&_etext);
548 data_resource.end = virt_to_phys(&_edata)-1;
549
550 parse_cmdline_early(cmdline_p);
551
552 early_identify_cpu(&boot_cpu_data);
553
554 /*
555 * partially used pages are not usable - thus
556 * we are rounding upwards:
557 */
558 end_pfn = e820_end_of_ram();
559 num_physpages = end_pfn; /* for pfn_valid */
560
561 check_efer();
562
563 discover_ebda();
564
565 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
566
567 dmi_scan_machine();
568
569 zap_low_mappings(0);
570
571 #ifdef CONFIG_ACPI
572 /*
573 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
574 * Call this early for SRAT node setup.
575 */
576 acpi_boot_table_init();
577 #endif
578
579 #ifdef CONFIG_ACPI_NUMA
580 /*
581 * Parse SRAT to discover nodes.
582 */
583 acpi_numa_init();
584 #endif
585
586 #ifdef CONFIG_NUMA
587 numa_initmem_init(0, end_pfn);
588 #else
589 contig_initmem_init(0, end_pfn);
590 #endif
591
592 /* Reserve direct mapping */
593 reserve_bootmem_generic(table_start << PAGE_SHIFT,
594 (table_end - table_start) << PAGE_SHIFT);
595
596 /* reserve kernel */
597 reserve_bootmem_generic(__pa_symbol(&_text),
598 __pa_symbol(&_end) - __pa_symbol(&_text));
599
600 /*
601 * reserve physical page 0 - it's a special BIOS page on many boxes,
602 * enabling clean reboots, SMP operation, laptop functions.
603 */
604 reserve_bootmem_generic(0, PAGE_SIZE);
605
606 /* reserve ebda region */
607 if (ebda_addr)
608 reserve_bootmem_generic(ebda_addr, ebda_size);
609
610 #ifdef CONFIG_SMP
611 /*
612 * But first pinch a few for the stack/trampoline stuff
613 * FIXME: Don't need the extra page at 4K, but need to fix
614 * trampoline before removing it. (see the GDT stuff)
615 */
616 reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
617
618 /* Reserve SMP trampoline */
619 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
620 #endif
621
622 #ifdef CONFIG_ACPI_SLEEP
623 /*
624 * Reserve low memory region for sleep support.
625 */
626 acpi_reserve_bootmem();
627 #endif
628 #ifdef CONFIG_X86_LOCAL_APIC
629 /*
630 * Find and reserve possible boot-time SMP configuration:
631 */
632 find_smp_config();
633 #endif
634 #ifdef CONFIG_BLK_DEV_INITRD
635 if (LOADER_TYPE && INITRD_START) {
636 if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
637 reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
638 initrd_start =
639 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
640 initrd_end = initrd_start+INITRD_SIZE;
641 }
642 else {
643 printk(KERN_ERR "initrd extends beyond end of memory "
644 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
645 (unsigned long)(INITRD_START + INITRD_SIZE),
646 (unsigned long)(end_pfn << PAGE_SHIFT));
647 initrd_start = 0;
648 }
649 }
650 #endif
651 #ifdef CONFIG_KEXEC
652 if (crashk_res.start != crashk_res.end) {
653 reserve_bootmem_generic(crashk_res.start,
654 crashk_res.end - crashk_res.start + 1);
655 }
656 #endif
657
658 paging_init();
659
660 check_ioapic();
661
662 /*
663 * set this early, so we dont allocate cpu0
664 * if MADT list doesnt list BSP first
665 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
666 */
667 cpu_set(0, cpu_present_map);
668 #ifdef CONFIG_ACPI
669 /*
670 * Read APIC and some other early information from ACPI tables.
671 */
672 acpi_boot_init();
673 #endif
674
675 init_cpu_to_node();
676
677 #ifdef CONFIG_X86_LOCAL_APIC
678 /*
679 * get boot-time SMP configuration:
680 */
681 if (smp_found_config)
682 get_smp_config();
683 init_apic_mappings();
684 #endif
685
686 /*
687 * Request address space for all standard RAM and ROM resources
688 * and also for regions reported as reserved by the e820.
689 */
690 probe_roms();
691 e820_reserve_resources();
692
693 request_resource(&iomem_resource, &video_ram_resource);
694
695 {
696 unsigned i;
697 /* request I/O space for devices used on all i[345]86 PCs */
698 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
699 request_resource(&ioport_resource, &standard_io_resources[i]);
700 }
701
702 e820_setup_gap();
703
704 #ifdef CONFIG_VT
705 #if defined(CONFIG_VGA_CONSOLE)
706 conswitchp = &vga_con;
707 #elif defined(CONFIG_DUMMY_CONSOLE)
708 conswitchp = &dummy_con;
709 #endif
710 #endif
711 }
712
713 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
714 {
715 unsigned int *v;
716
717 if (c->extended_cpuid_level < 0x80000004)
718 return 0;
719
720 v = (unsigned int *) c->x86_model_id;
721 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
722 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
723 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
724 c->x86_model_id[48] = 0;
725 return 1;
726 }
727
728
729 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
730 {
731 unsigned int n, dummy, eax, ebx, ecx, edx;
732
733 n = c->extended_cpuid_level;
734
735 if (n >= 0x80000005) {
736 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
737 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
738 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
739 c->x86_cache_size=(ecx>>24)+(edx>>24);
740 /* On K8 L1 TLB is inclusive, so don't count it */
741 c->x86_tlbsize = 0;
742 }
743
744 if (n >= 0x80000006) {
745 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
746 ecx = cpuid_ecx(0x80000006);
747 c->x86_cache_size = ecx >> 16;
748 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
749
750 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
751 c->x86_cache_size, ecx & 0xFF);
752 }
753
754 if (n >= 0x80000007)
755 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
756 if (n >= 0x80000008) {
757 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
758 c->x86_virt_bits = (eax >> 8) & 0xff;
759 c->x86_phys_bits = eax & 0xff;
760 }
761 }
762
763 #ifdef CONFIG_NUMA
764 static int nearby_node(int apicid)
765 {
766 int i;
767 for (i = apicid - 1; i >= 0; i--) {
768 int node = apicid_to_node[i];
769 if (node != NUMA_NO_NODE && node_online(node))
770 return node;
771 }
772 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
773 int node = apicid_to_node[i];
774 if (node != NUMA_NO_NODE && node_online(node))
775 return node;
776 }
777 return first_node(node_online_map); /* Shouldn't happen */
778 }
779 #endif
780
781 /*
782 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
783 * Assumes number of cores is a power of two.
784 */
785 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
786 {
787 #ifdef CONFIG_SMP
788 unsigned bits;
789 #ifdef CONFIG_NUMA
790 int cpu = smp_processor_id();
791 int node = 0;
792 unsigned apicid = hard_smp_processor_id();
793 #endif
794 unsigned ecx = cpuid_ecx(0x80000008);
795
796 c->x86_max_cores = (ecx & 0xff) + 1;
797
798 /* CPU telling us the core id bits shift? */
799 bits = (ecx >> 12) & 0xF;
800
801 /* Otherwise recompute */
802 if (bits == 0) {
803 while ((1 << bits) < c->x86_max_cores)
804 bits++;
805 }
806
807 /* Low order bits define the core id (index of core in socket) */
808 c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
809 /* Convert the APIC ID into the socket ID */
810 c->phys_proc_id = phys_pkg_id(bits);
811
812 #ifdef CONFIG_NUMA
813 node = c->phys_proc_id;
814 if (apicid_to_node[apicid] != NUMA_NO_NODE)
815 node = apicid_to_node[apicid];
816 if (!node_online(node)) {
817 /* Two possibilities here:
818 - The CPU is missing memory and no node was created.
819 In that case try picking one from a nearby CPU
820 - The APIC IDs differ from the HyperTransport node IDs
821 which the K8 northbridge parsing fills in.
822 Assume they are all increased by a constant offset,
823 but in the same order as the HT nodeids.
824 If that doesn't result in a usable node fall back to the
825 path for the previous case. */
826 int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
827 if (ht_nodeid >= 0 &&
828 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
829 node = apicid_to_node[ht_nodeid];
830 /* Pick a nearby node */
831 if (!node_online(node))
832 node = nearby_node(apicid);
833 }
834 numa_set_node(cpu, node);
835
836 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
837 #endif
838 #endif
839 }
840
841 static void __init init_amd(struct cpuinfo_x86 *c)
842 {
843 unsigned level;
844
845 #ifdef CONFIG_SMP
846 unsigned long value;
847
848 /*
849 * Disable TLB flush filter by setting HWCR.FFDIS on K8
850 * bit 6 of msr C001_0015
851 *
852 * Errata 63 for SH-B3 steppings
853 * Errata 122 for all steppings (F+ have it disabled by default)
854 */
855 if (c->x86 == 15) {
856 rdmsrl(MSR_K8_HWCR, value);
857 value |= 1 << 6;
858 wrmsrl(MSR_K8_HWCR, value);
859 }
860 #endif
861
862 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
863 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
864 clear_bit(0*32+31, &c->x86_capability);
865
866 /* On C+ stepping K8 rep microcode works well for copy/memset */
867 level = cpuid_eax(1);
868 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
869 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
870
871 /* Enable workaround for FXSAVE leak */
872 if (c->x86 >= 6)
873 set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
874
875 level = get_model_name(c);
876 if (!level) {
877 switch (c->x86) {
878 case 15:
879 /* Should distinguish Models here, but this is only
880 a fallback anyways. */
881 strcpy(c->x86_model_id, "Hammer");
882 break;
883 }
884 }
885 display_cacheinfo(c);
886
887 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
888 if (c->x86_power & (1<<8))
889 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
890
891 /* Multi core CPU? */
892 if (c->extended_cpuid_level >= 0x80000008)
893 amd_detect_cmp(c);
894
895 /* Fix cpuid4 emulation for more */
896 num_cache_leaves = 3;
897 }
898
899 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
900 {
901 #ifdef CONFIG_SMP
902 u32 eax, ebx, ecx, edx;
903 int index_msb, core_bits;
904
905 cpuid(1, &eax, &ebx, &ecx, &edx);
906
907
908 if (!cpu_has(c, X86_FEATURE_HT))
909 return;
910 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
911 goto out;
912
913 smp_num_siblings = (ebx & 0xff0000) >> 16;
914
915 if (smp_num_siblings == 1) {
916 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
917 } else if (smp_num_siblings > 1 ) {
918
919 if (smp_num_siblings > NR_CPUS) {
920 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
921 smp_num_siblings = 1;
922 return;
923 }
924
925 index_msb = get_count_order(smp_num_siblings);
926 c->phys_proc_id = phys_pkg_id(index_msb);
927
928 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
929
930 index_msb = get_count_order(smp_num_siblings) ;
931
932 core_bits = get_count_order(c->x86_max_cores);
933
934 c->cpu_core_id = phys_pkg_id(index_msb) &
935 ((1 << core_bits) - 1);
936 }
937 out:
938 if ((c->x86_max_cores * smp_num_siblings) > 1) {
939 printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
940 printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
941 }
942
943 #endif
944 }
945
946 /*
947 * find out the number of processor cores on the die
948 */
949 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
950 {
951 unsigned int eax, t;
952
953 if (c->cpuid_level < 4)
954 return 1;
955
956 cpuid_count(4, 0, &eax, &t, &t, &t);
957
958 if (eax & 0x1f)
959 return ((eax >> 26) + 1);
960 else
961 return 1;
962 }
963
964 static void srat_detect_node(void)
965 {
966 #ifdef CONFIG_NUMA
967 unsigned node;
968 int cpu = smp_processor_id();
969 int apicid = hard_smp_processor_id();
970
971 /* Don't do the funky fallback heuristics the AMD version employs
972 for now. */
973 node = apicid_to_node[apicid];
974 if (node == NUMA_NO_NODE)
975 node = first_node(node_online_map);
976 numa_set_node(cpu, node);
977
978 if (acpi_numa > 0)
979 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
980 #endif
981 }
982
983 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
984 {
985 /* Cache sizes */
986 unsigned n;
987
988 init_intel_cacheinfo(c);
989 if (c->cpuid_level > 9 ) {
990 unsigned eax = cpuid_eax(10);
991 /* Check for version and the number of counters */
992 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
993 set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
994 }
995
996 n = c->extended_cpuid_level;
997 if (n >= 0x80000008) {
998 unsigned eax = cpuid_eax(0x80000008);
999 c->x86_virt_bits = (eax >> 8) & 0xff;
1000 c->x86_phys_bits = eax & 0xff;
1001 /* CPUID workaround for Intel 0F34 CPU */
1002 if (c->x86_vendor == X86_VENDOR_INTEL &&
1003 c->x86 == 0xF && c->x86_model == 0x3 &&
1004 c->x86_mask == 0x4)
1005 c->x86_phys_bits = 36;
1006 }
1007
1008 if (c->x86 == 15)
1009 c->x86_cache_alignment = c->x86_clflush_size * 2;
1010 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
1011 (c->x86 == 0x6 && c->x86_model >= 0x0e))
1012 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
1013 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
1014 c->x86_max_cores = intel_num_cpu_cores(c);
1015
1016 srat_detect_node();
1017 }
1018
1019 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
1020 {
1021 char *v = c->x86_vendor_id;
1022
1023 if (!strcmp(v, "AuthenticAMD"))
1024 c->x86_vendor = X86_VENDOR_AMD;
1025 else if (!strcmp(v, "GenuineIntel"))
1026 c->x86_vendor = X86_VENDOR_INTEL;
1027 else
1028 c->x86_vendor = X86_VENDOR_UNKNOWN;
1029 }
1030
1031 struct cpu_model_info {
1032 int vendor;
1033 int family;
1034 char *model_names[16];
1035 };
1036
1037 /* Do some early cpuid on the boot CPU to get some parameter that are
1038 needed before check_bugs. Everything advanced is in identify_cpu
1039 below. */
1040 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
1041 {
1042 u32 tfms;
1043
1044 c->loops_per_jiffy = loops_per_jiffy;
1045 c->x86_cache_size = -1;
1046 c->x86_vendor = X86_VENDOR_UNKNOWN;
1047 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1048 c->x86_vendor_id[0] = '\0'; /* Unset */
1049 c->x86_model_id[0] = '\0'; /* Unset */
1050 c->x86_clflush_size = 64;
1051 c->x86_cache_alignment = c->x86_clflush_size;
1052 c->x86_max_cores = 1;
1053 c->extended_cpuid_level = 0;
1054 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1055
1056 /* Get vendor name */
1057 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
1058 (unsigned int *)&c->x86_vendor_id[0],
1059 (unsigned int *)&c->x86_vendor_id[8],
1060 (unsigned int *)&c->x86_vendor_id[4]);
1061
1062 get_cpu_vendor(c);
1063
1064 /* Initialize the standard set of capabilities */
1065 /* Note that the vendor-specific code below might override */
1066
1067 /* Intel-defined flags: level 0x00000001 */
1068 if (c->cpuid_level >= 0x00000001) {
1069 __u32 misc;
1070 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
1071 &c->x86_capability[0]);
1072 c->x86 = (tfms >> 8) & 0xf;
1073 c->x86_model = (tfms >> 4) & 0xf;
1074 c->x86_mask = tfms & 0xf;
1075 if (c->x86 == 0xf)
1076 c->x86 += (tfms >> 20) & 0xff;
1077 if (c->x86 >= 0x6)
1078 c->x86_model += ((tfms >> 16) & 0xF) << 4;
1079 if (c->x86_capability[0] & (1<<19))
1080 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
1081 } else {
1082 /* Have CPUID level 0 only - unheard of */
1083 c->x86 = 4;
1084 }
1085
1086 #ifdef CONFIG_SMP
1087 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
1088 #endif
1089 }
1090
1091 /*
1092 * This does the hard work of actually picking apart the CPU stuff...
1093 */
1094 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1095 {
1096 int i;
1097 u32 xlvl;
1098
1099 early_identify_cpu(c);
1100
1101 /* AMD-defined flags: level 0x80000001 */
1102 xlvl = cpuid_eax(0x80000000);
1103 c->extended_cpuid_level = xlvl;
1104 if ((xlvl & 0xffff0000) == 0x80000000) {
1105 if (xlvl >= 0x80000001) {
1106 c->x86_capability[1] = cpuid_edx(0x80000001);
1107 c->x86_capability[6] = cpuid_ecx(0x80000001);
1108 }
1109 if (xlvl >= 0x80000004)
1110 get_model_name(c); /* Default name */
1111 }
1112
1113 /* Transmeta-defined flags: level 0x80860001 */
1114 xlvl = cpuid_eax(0x80860000);
1115 if ((xlvl & 0xffff0000) == 0x80860000) {
1116 /* Don't set x86_cpuid_level here for now to not confuse. */
1117 if (xlvl >= 0x80860001)
1118 c->x86_capability[2] = cpuid_edx(0x80860001);
1119 }
1120
1121 c->apicid = phys_pkg_id(0);
1122
1123 /*
1124 * Vendor-specific initialization. In this section we
1125 * canonicalize the feature flags, meaning if there are
1126 * features a certain CPU supports which CPUID doesn't
1127 * tell us, CPUID claiming incorrect flags, or other bugs,
1128 * we handle them here.
1129 *
1130 * At the end of this section, c->x86_capability better
1131 * indicate the features this CPU genuinely supports!
1132 */
1133 switch (c->x86_vendor) {
1134 case X86_VENDOR_AMD:
1135 init_amd(c);
1136 break;
1137
1138 case X86_VENDOR_INTEL:
1139 init_intel(c);
1140 break;
1141
1142 case X86_VENDOR_UNKNOWN:
1143 default:
1144 display_cacheinfo(c);
1145 break;
1146 }
1147
1148 select_idle_routine(c);
1149 detect_ht(c);
1150
1151 /*
1152 * On SMP, boot_cpu_data holds the common feature set between
1153 * all CPUs; so make sure that we indicate which features are
1154 * common between the CPUs. The first time this routine gets
1155 * executed, c == &boot_cpu_data.
1156 */
1157 if (c != &boot_cpu_data) {
1158 /* AND the already accumulated flags with these */
1159 for (i = 0 ; i < NCAPINTS ; i++)
1160 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1161 }
1162
1163 #ifdef CONFIG_X86_MCE
1164 mcheck_init(c);
1165 #endif
1166 if (c == &boot_cpu_data)
1167 mtrr_bp_init();
1168 else
1169 mtrr_ap_init();
1170 #ifdef CONFIG_NUMA
1171 numa_add_cpu(smp_processor_id());
1172 #endif
1173 }
1174
1175
1176 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1177 {
1178 if (c->x86_model_id[0])
1179 printk("%s", c->x86_model_id);
1180
1181 if (c->x86_mask || c->cpuid_level >= 0)
1182 printk(" stepping %02x\n", c->x86_mask);
1183 else
1184 printk("\n");
1185 }
1186
1187 /*
1188 * Get CPU information for use by the procfs.
1189 */
1190
1191 static int show_cpuinfo(struct seq_file *m, void *v)
1192 {
1193 struct cpuinfo_x86 *c = v;
1194
1195 /*
1196 * These flag bits must match the definitions in <asm/cpufeature.h>.
1197 * NULL means this bit is undefined or reserved; either way it doesn't
1198 * have meaning as far as Linux is concerned. Note that it's important
1199 * to realize there is a difference between this table and CPUID -- if
1200 * applications want to get the raw CPUID data, they should access
1201 * /dev/cpu/<cpu_nr>/cpuid instead.
1202 */
1203 static char *x86_cap_flags[] = {
1204 /* Intel-defined */
1205 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1206 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1207 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1208 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
1209
1210 /* AMD-defined */
1211 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1212 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1213 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1214 NULL, "fxsr_opt", NULL, "rdtscp", NULL, "lm", "3dnowext", "3dnow",
1215
1216 /* Transmeta-defined */
1217 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1218 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1219 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1220 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1221
1222 /* Other (Linux-defined) */
1223 "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
1224 "constant_tsc", NULL, NULL,
1225 "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1226 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1227 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1228
1229 /* Intel-defined (#2) */
1230 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1231 "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
1232 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1233 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1234
1235 /* VIA/Cyrix/Centaur-defined */
1236 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1237 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1238 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1239 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1240
1241 /* AMD-defined (#2) */
1242 "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
1243 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1244 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1245 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1246 };
1247 static char *x86_power_flags[] = {
1248 "ts", /* temperature sensor */
1249 "fid", /* frequency id control */
1250 "vid", /* voltage id control */
1251 "ttp", /* thermal trip */
1252 "tm",
1253 "stc",
1254 NULL,
1255 /* nothing */ /* constant_tsc - moved to flags */
1256 };
1257
1258
1259 #ifdef CONFIG_SMP
1260 if (!cpu_online(c-cpu_data))
1261 return 0;
1262 #endif
1263
1264 seq_printf(m,"processor\t: %u\n"
1265 "vendor_id\t: %s\n"
1266 "cpu family\t: %d\n"
1267 "model\t\t: %d\n"
1268 "model name\t: %s\n",
1269 (unsigned)(c-cpu_data),
1270 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1271 c->x86,
1272 (int)c->x86_model,
1273 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1274
1275 if (c->x86_mask || c->cpuid_level >= 0)
1276 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1277 else
1278 seq_printf(m, "stepping\t: unknown\n");
1279
1280 if (cpu_has(c,X86_FEATURE_TSC)) {
1281 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1282 if (!freq)
1283 freq = cpu_khz;
1284 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1285 freq / 1000, (freq % 1000));
1286 }
1287
1288 /* Cache size */
1289 if (c->x86_cache_size >= 0)
1290 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1291
1292 #ifdef CONFIG_SMP
1293 if (smp_num_siblings * c->x86_max_cores > 1) {
1294 int cpu = c - cpu_data;
1295 seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
1296 seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
1297 seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
1298 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1299 }
1300 #endif
1301
1302 seq_printf(m,
1303 "fpu\t\t: yes\n"
1304 "fpu_exception\t: yes\n"
1305 "cpuid level\t: %d\n"
1306 "wp\t\t: yes\n"
1307 "flags\t\t:",
1308 c->cpuid_level);
1309
1310 {
1311 int i;
1312 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1313 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1314 seq_printf(m, " %s", x86_cap_flags[i]);
1315 }
1316
1317 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1318 c->loops_per_jiffy/(500000/HZ),
1319 (c->loops_per_jiffy/(5000/HZ)) % 100);
1320
1321 if (c->x86_tlbsize > 0)
1322 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1323 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1324 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1325
1326 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1327 c->x86_phys_bits, c->x86_virt_bits);
1328
1329 seq_printf(m, "power management:");
1330 {
1331 unsigned i;
1332 for (i = 0; i < 32; i++)
1333 if (c->x86_power & (1 << i)) {
1334 if (i < ARRAY_SIZE(x86_power_flags) &&
1335 x86_power_flags[i])
1336 seq_printf(m, "%s%s",
1337 x86_power_flags[i][0]?" ":"",
1338 x86_power_flags[i]);
1339 else
1340 seq_printf(m, " [%d]", i);
1341 }
1342 }
1343
1344 seq_printf(m, "\n\n");
1345
1346 return 0;
1347 }
1348
1349 static void *c_start(struct seq_file *m, loff_t *pos)
1350 {
1351 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1352 }
1353
1354 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1355 {
1356 ++*pos;
1357 return c_start(m, pos);
1358 }
1359
1360 static void c_stop(struct seq_file *m, void *v)
1361 {
1362 }
1363
1364 struct seq_operations cpuinfo_op = {
1365 .start =c_start,
1366 .next = c_next,
1367 .stop = c_stop,
1368 .show = show_cpuinfo,
1369 };
1370
1371 #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
1372 #include <linux/platform_device.h>
1373 static __init int add_pcspkr(void)
1374 {
1375 struct platform_device *pd;
1376 int ret;
1377
1378 pd = platform_device_alloc("pcspkr", -1);
1379 if (!pd)
1380 return -ENOMEM;
1381
1382 ret = platform_device_add(pd);
1383 if (ret)
1384 platform_device_put(pd);
1385
1386 return ret;
1387 }
1388 device_initcall(add_pcspkr);
1389 #endif
This page took 0.058685 seconds and 6 git commands to generate.