[PATCH] x86_64: Don't reserve hotplug CPUs by default
[deliverable/linux.git] / arch / x86_64 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
38 */
39
40
41 #include <linux/config.h>
42 #include <linux/init.h>
43
44 #include <linux/mm.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/bootmem.h>
48 #include <linux/thread_info.h>
49 #include <linux/module.h>
50
51 #include <linux/delay.h>
52 #include <linux/mc146818rtc.h>
53 #include <asm/mtrr.h>
54 #include <asm/pgalloc.h>
55 #include <asm/desc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/hw_irq.h>
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 /* Package ID of each logical CPU */
66 u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
67 /* core ID of each logical CPU */
68 u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
69
70 /* Bitmask of currently online CPUs */
71 cpumask_t cpu_online_map __read_mostly;
72
73 EXPORT_SYMBOL(cpu_online_map);
74
75 /*
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
78 */
79 cpumask_t cpu_callin_map;
80 cpumask_t cpu_callout_map;
81
82 cpumask_t cpu_possible_map;
83 EXPORT_SYMBOL(cpu_possible_map);
84
85 /* Per CPU bogomips and other parameters */
86 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
87
88 /* Set when the idlers are all forked */
89 int smp_threads_ready;
90
91 /* representing HT siblings of each logical CPU */
92 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
93
94 /* representing HT and core siblings of each logical CPU */
95 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
96 EXPORT_SYMBOL(cpu_core_map);
97
98 /*
99 * Trampoline 80x86 program as an array.
100 */
101
102 extern unsigned char trampoline_data[];
103 extern unsigned char trampoline_end[];
104
105 /* State of each CPU */
106 DEFINE_PER_CPU(int, cpu_state) = { 0 };
107
108 /*
109 * Store all idle threads, this can be reused instead of creating
110 * a new thread. Also avoids complicated thread destroy functionality
111 * for idle threads.
112 */
113 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
114
115 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
116 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
117
118 /*
119 * Currently trivial. Write the real->protected mode
120 * bootstrap into the page concerned. The caller
121 * has made sure it's suitably aligned.
122 */
123
124 static unsigned long __cpuinit setup_trampoline(void)
125 {
126 void *tramp = __va(SMP_TRAMPOLINE_BASE);
127 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
128 return virt_to_phys(tramp);
129 }
130
131 /*
132 * The bootstrap kernel entry code has set these up. Save them for
133 * a given CPU
134 */
135
136 static void __cpuinit smp_store_cpu_info(int id)
137 {
138 struct cpuinfo_x86 *c = cpu_data + id;
139
140 *c = boot_cpu_data;
141 identify_cpu(c);
142 print_cpu_info(c);
143 }
144
145 /*
146 * New Funky TSC sync algorithm borrowed from IA64.
147 * Main advantage is that it doesn't reset the TSCs fully and
148 * in general looks more robust and it works better than my earlier
149 * attempts. I believe it was written by David Mosberger. Some minor
150 * adjustments for x86-64 by me -AK
151 *
152 * Original comment reproduced below.
153 *
154 * Synchronize TSC of the current (slave) CPU with the TSC of the
155 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
156 * eliminate the possibility of unaccounted-for errors (such as
157 * getting a machine check in the middle of a calibration step). The
158 * basic idea is for the slave to ask the master what itc value it has
159 * and to read its own itc before and after the master responds. Each
160 * iteration gives us three timestamps:
161 *
162 * slave master
163 *
164 * t0 ---\
165 * ---\
166 * --->
167 * tm
168 * /---
169 * /---
170 * t1 <---
171 *
172 *
173 * The goal is to adjust the slave's TSC such that tm falls exactly
174 * half-way between t0 and t1. If we achieve this, the clocks are
175 * synchronized provided the interconnect between the slave and the
176 * master is symmetric. Even if the interconnect were asymmetric, we
177 * would still know that the synchronization error is smaller than the
178 * roundtrip latency (t0 - t1).
179 *
180 * When the interconnect is quiet and symmetric, this lets us
181 * synchronize the TSC to within one or two cycles. However, we can
182 * only *guarantee* that the synchronization is accurate to within a
183 * round-trip time, which is typically in the range of several hundred
184 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
185 * are usually almost perfectly synchronized, but we shouldn't assume
186 * that the accuracy is much better than half a micro second or so.
187 *
188 * [there are other errors like the latency of RDTSC and of the
189 * WRMSR. These can also account to hundreds of cycles. So it's
190 * probably worse. It claims 153 cycles error on a dual Opteron,
191 * but I suspect the numbers are actually somewhat worse -AK]
192 */
193
194 #define MASTER 0
195 #define SLAVE (SMP_CACHE_BYTES/8)
196
197 /* Intentionally don't use cpu_relax() while TSC synchronization
198 because we don't want to go into funky power save modi or cause
199 hypervisors to schedule us away. Going to sleep would likely affect
200 latency and low latency is the primary objective here. -AK */
201 #define no_cpu_relax() barrier()
202
203 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
204 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
205 static int notscsync __cpuinitdata;
206
207 #undef DEBUG_TSC_SYNC
208
209 #define NUM_ROUNDS 64 /* magic value */
210 #define NUM_ITERS 5 /* likewise */
211
212 /* Callback on boot CPU */
213 static __cpuinit void sync_master(void *arg)
214 {
215 unsigned long flags, i;
216
217 go[MASTER] = 0;
218
219 local_irq_save(flags);
220 {
221 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
222 while (!go[MASTER])
223 no_cpu_relax();
224 go[MASTER] = 0;
225 rdtscll(go[SLAVE]);
226 }
227 }
228 local_irq_restore(flags);
229 }
230
231 /*
232 * Return the number of cycles by which our tsc differs from the tsc
233 * on the master (time-keeper) CPU. A positive number indicates our
234 * tsc is ahead of the master, negative that it is behind.
235 */
236 static inline long
237 get_delta(long *rt, long *master)
238 {
239 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
240 unsigned long tcenter, t0, t1, tm;
241 int i;
242
243 for (i = 0; i < NUM_ITERS; ++i) {
244 rdtscll(t0);
245 go[MASTER] = 1;
246 while (!(tm = go[SLAVE]))
247 no_cpu_relax();
248 go[SLAVE] = 0;
249 rdtscll(t1);
250
251 if (t1 - t0 < best_t1 - best_t0)
252 best_t0 = t0, best_t1 = t1, best_tm = tm;
253 }
254
255 *rt = best_t1 - best_t0;
256 *master = best_tm - best_t0;
257
258 /* average best_t0 and best_t1 without overflow: */
259 tcenter = (best_t0/2 + best_t1/2);
260 if (best_t0 % 2 + best_t1 % 2 == 2)
261 ++tcenter;
262 return tcenter - best_tm;
263 }
264
265 static __cpuinit void sync_tsc(unsigned int master)
266 {
267 int i, done = 0;
268 long delta, adj, adjust_latency = 0;
269 unsigned long flags, rt, master_time_stamp, bound;
270 #ifdef DEBUG_TSC_SYNC
271 static struct syncdebug {
272 long rt; /* roundtrip time */
273 long master; /* master's timestamp */
274 long diff; /* difference between midpoint and master's timestamp */
275 long lat; /* estimate of tsc adjustment latency */
276 } t[NUM_ROUNDS] __cpuinitdata;
277 #endif
278
279 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
280 smp_processor_id(), master);
281
282 go[MASTER] = 1;
283
284 /* It is dangerous to broadcast IPI as cpus are coming up,
285 * as they may not be ready to accept them. So since
286 * we only need to send the ipi to the boot cpu direct
287 * the message, and avoid the race.
288 */
289 smp_call_function_single(master, sync_master, NULL, 1, 0);
290
291 while (go[MASTER]) /* wait for master to be ready */
292 no_cpu_relax();
293
294 spin_lock_irqsave(&tsc_sync_lock, flags);
295 {
296 for (i = 0; i < NUM_ROUNDS; ++i) {
297 delta = get_delta(&rt, &master_time_stamp);
298 if (delta == 0) {
299 done = 1; /* let's lock on to this... */
300 bound = rt;
301 }
302
303 if (!done) {
304 unsigned long t;
305 if (i > 0) {
306 adjust_latency += -delta;
307 adj = -delta + adjust_latency/4;
308 } else
309 adj = -delta;
310
311 rdtscll(t);
312 wrmsrl(MSR_IA32_TSC, t + adj);
313 }
314 #ifdef DEBUG_TSC_SYNC
315 t[i].rt = rt;
316 t[i].master = master_time_stamp;
317 t[i].diff = delta;
318 t[i].lat = adjust_latency/4;
319 #endif
320 }
321 }
322 spin_unlock_irqrestore(&tsc_sync_lock, flags);
323
324 #ifdef DEBUG_TSC_SYNC
325 for (i = 0; i < NUM_ROUNDS; ++i)
326 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
327 t[i].rt, t[i].master, t[i].diff, t[i].lat);
328 #endif
329
330 printk(KERN_INFO
331 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
332 "maxerr %lu cycles)\n",
333 smp_processor_id(), master, delta, rt);
334 }
335
336 static void __cpuinit tsc_sync_wait(void)
337 {
338 if (notscsync || !cpu_has_tsc)
339 return;
340 sync_tsc(0);
341 }
342
343 static __init int notscsync_setup(char *s)
344 {
345 notscsync = 1;
346 return 0;
347 }
348 __setup("notscsync", notscsync_setup);
349
350 static atomic_t init_deasserted __cpuinitdata;
351
352 /*
353 * Report back to the Boot Processor.
354 * Running on AP.
355 */
356 void __cpuinit smp_callin(void)
357 {
358 int cpuid, phys_id;
359 unsigned long timeout;
360
361 /*
362 * If waken up by an INIT in an 82489DX configuration
363 * we may get here before an INIT-deassert IPI reaches
364 * our local APIC. We have to wait for the IPI or we'll
365 * lock up on an APIC access.
366 */
367 while (!atomic_read(&init_deasserted))
368 cpu_relax();
369
370 /*
371 * (This works even if the APIC is not enabled.)
372 */
373 phys_id = GET_APIC_ID(apic_read(APIC_ID));
374 cpuid = smp_processor_id();
375 if (cpu_isset(cpuid, cpu_callin_map)) {
376 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
377 phys_id, cpuid);
378 }
379 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
380
381 /*
382 * STARTUP IPIs are fragile beasts as they might sometimes
383 * trigger some glue motherboard logic. Complete APIC bus
384 * silence for 1 second, this overestimates the time the
385 * boot CPU is spending to send the up to 2 STARTUP IPIs
386 * by a factor of two. This should be enough.
387 */
388
389 /*
390 * Waiting 2s total for startup (udelay is not yet working)
391 */
392 timeout = jiffies + 2*HZ;
393 while (time_before(jiffies, timeout)) {
394 /*
395 * Has the boot CPU finished it's STARTUP sequence?
396 */
397 if (cpu_isset(cpuid, cpu_callout_map))
398 break;
399 cpu_relax();
400 }
401
402 if (!time_before(jiffies, timeout)) {
403 panic("smp_callin: CPU%d started up but did not get a callout!\n",
404 cpuid);
405 }
406
407 /*
408 * the boot CPU has finished the init stage and is spinning
409 * on callin_map until we finish. We are free to set up this
410 * CPU, first the APIC. (this is probably redundant on most
411 * boards)
412 */
413
414 Dprintk("CALLIN, before setup_local_APIC().\n");
415 setup_local_APIC();
416
417 /*
418 * Get our bogomips.
419 *
420 * Need to enable IRQs because it can take longer and then
421 * the NMI watchdog might kill us.
422 */
423 local_irq_enable();
424 calibrate_delay();
425 local_irq_disable();
426 Dprintk("Stack at about %p\n",&cpuid);
427
428 disable_APIC_timer();
429
430 /*
431 * Save our processor parameters
432 */
433 smp_store_cpu_info(cpuid);
434
435 /*
436 * Allow the master to continue.
437 */
438 cpu_set(cpuid, cpu_callin_map);
439 }
440
441 /* representing cpus for which sibling maps can be computed */
442 static cpumask_t cpu_sibling_setup_map;
443
444 static inline void set_cpu_sibling_map(int cpu)
445 {
446 int i;
447 struct cpuinfo_x86 *c = cpu_data;
448
449 cpu_set(cpu, cpu_sibling_setup_map);
450
451 if (smp_num_siblings > 1) {
452 for_each_cpu_mask(i, cpu_sibling_setup_map) {
453 if (phys_proc_id[cpu] == phys_proc_id[i] &&
454 cpu_core_id[cpu] == cpu_core_id[i]) {
455 cpu_set(i, cpu_sibling_map[cpu]);
456 cpu_set(cpu, cpu_sibling_map[i]);
457 cpu_set(i, cpu_core_map[cpu]);
458 cpu_set(cpu, cpu_core_map[i]);
459 }
460 }
461 } else {
462 cpu_set(cpu, cpu_sibling_map[cpu]);
463 }
464
465 if (current_cpu_data.x86_max_cores == 1) {
466 cpu_core_map[cpu] = cpu_sibling_map[cpu];
467 c[cpu].booted_cores = 1;
468 return;
469 }
470
471 for_each_cpu_mask(i, cpu_sibling_setup_map) {
472 if (phys_proc_id[cpu] == phys_proc_id[i]) {
473 cpu_set(i, cpu_core_map[cpu]);
474 cpu_set(cpu, cpu_core_map[i]);
475 /*
476 * Does this new cpu bringup a new core?
477 */
478 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
479 /*
480 * for each core in package, increment
481 * the booted_cores for this new cpu
482 */
483 if (first_cpu(cpu_sibling_map[i]) == i)
484 c[cpu].booted_cores++;
485 /*
486 * increment the core count for all
487 * the other cpus in this package
488 */
489 if (i != cpu)
490 c[i].booted_cores++;
491 } else if (i != cpu && !c[cpu].booted_cores)
492 c[cpu].booted_cores = c[i].booted_cores;
493 }
494 }
495 }
496
497 /*
498 * Setup code on secondary processor (after comming out of the trampoline)
499 */
500 void __cpuinit start_secondary(void)
501 {
502 /*
503 * Dont put anything before smp_callin(), SMP
504 * booting is too fragile that we want to limit the
505 * things done here to the most necessary things.
506 */
507 cpu_init();
508 preempt_disable();
509 smp_callin();
510
511 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
512 barrier();
513
514 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
515 setup_secondary_APIC_clock();
516
517 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
518
519 if (nmi_watchdog == NMI_IO_APIC) {
520 disable_8259A_irq(0);
521 enable_NMI_through_LVT0(NULL);
522 enable_8259A_irq(0);
523 }
524
525 enable_APIC_timer();
526
527 /*
528 * The sibling maps must be set before turing the online map on for
529 * this cpu
530 */
531 set_cpu_sibling_map(smp_processor_id());
532
533 /*
534 * Wait for TSC sync to not schedule things before.
535 * We still process interrupts, which could see an inconsistent
536 * time in that window unfortunately.
537 * Do this here because TSC sync has global unprotected state.
538 */
539 tsc_sync_wait();
540
541 /*
542 * We need to hold call_lock, so there is no inconsistency
543 * between the time smp_call_function() determines number of
544 * IPI receipients, and the time when the determination is made
545 * for which cpus receive the IPI in genapic_flat.c. Holding this
546 * lock helps us to not include this cpu in a currently in progress
547 * smp_call_function().
548 */
549 lock_ipi_call_lock();
550
551 /*
552 * Allow the master to continue.
553 */
554 cpu_set(smp_processor_id(), cpu_online_map);
555 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
556 unlock_ipi_call_lock();
557
558 cpu_idle();
559 }
560
561 extern volatile unsigned long init_rsp;
562 extern void (*initial_code)(void);
563
564 #ifdef APIC_DEBUG
565 static void inquire_remote_apic(int apicid)
566 {
567 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
568 char *names[] = { "ID", "VERSION", "SPIV" };
569 int timeout, status;
570
571 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
572
573 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
574 printk("... APIC #%d %s: ", apicid, names[i]);
575
576 /*
577 * Wait for idle.
578 */
579 apic_wait_icr_idle();
580
581 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
582 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
583
584 timeout = 0;
585 do {
586 udelay(100);
587 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
588 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
589
590 switch (status) {
591 case APIC_ICR_RR_VALID:
592 status = apic_read(APIC_RRR);
593 printk("%08x\n", status);
594 break;
595 default:
596 printk("failed\n");
597 }
598 }
599 }
600 #endif
601
602 /*
603 * Kick the secondary to wake up.
604 */
605 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
606 {
607 unsigned long send_status = 0, accept_status = 0;
608 int maxlvt, timeout, num_starts, j;
609
610 Dprintk("Asserting INIT.\n");
611
612 /*
613 * Turn INIT on target chip
614 */
615 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
616
617 /*
618 * Send IPI
619 */
620 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
621 | APIC_DM_INIT);
622
623 Dprintk("Waiting for send to finish...\n");
624 timeout = 0;
625 do {
626 Dprintk("+");
627 udelay(100);
628 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
629 } while (send_status && (timeout++ < 1000));
630
631 mdelay(10);
632
633 Dprintk("Deasserting INIT.\n");
634
635 /* Target chip */
636 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
637
638 /* Send IPI */
639 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
640
641 Dprintk("Waiting for send to finish...\n");
642 timeout = 0;
643 do {
644 Dprintk("+");
645 udelay(100);
646 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
647 } while (send_status && (timeout++ < 1000));
648
649 atomic_set(&init_deasserted, 1);
650
651 num_starts = 2;
652
653 /*
654 * Run STARTUP IPI loop.
655 */
656 Dprintk("#startup loops: %d.\n", num_starts);
657
658 maxlvt = get_maxlvt();
659
660 for (j = 1; j <= num_starts; j++) {
661 Dprintk("Sending STARTUP #%d.\n",j);
662 apic_read_around(APIC_SPIV);
663 apic_write(APIC_ESR, 0);
664 apic_read(APIC_ESR);
665 Dprintk("After apic_write.\n");
666
667 /*
668 * STARTUP IPI
669 */
670
671 /* Target chip */
672 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
673
674 /* Boot on the stack */
675 /* Kick the second */
676 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
677
678 /*
679 * Give the other CPU some time to accept the IPI.
680 */
681 udelay(300);
682
683 Dprintk("Startup point 1.\n");
684
685 Dprintk("Waiting for send to finish...\n");
686 timeout = 0;
687 do {
688 Dprintk("+");
689 udelay(100);
690 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
691 } while (send_status && (timeout++ < 1000));
692
693 /*
694 * Give the other CPU some time to accept the IPI.
695 */
696 udelay(200);
697 /*
698 * Due to the Pentium erratum 3AP.
699 */
700 if (maxlvt > 3) {
701 apic_read_around(APIC_SPIV);
702 apic_write(APIC_ESR, 0);
703 }
704 accept_status = (apic_read(APIC_ESR) & 0xEF);
705 if (send_status || accept_status)
706 break;
707 }
708 Dprintk("After Startup.\n");
709
710 if (send_status)
711 printk(KERN_ERR "APIC never delivered???\n");
712 if (accept_status)
713 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
714
715 return (send_status | accept_status);
716 }
717
718 struct create_idle {
719 struct task_struct *idle;
720 struct completion done;
721 int cpu;
722 };
723
724 void do_fork_idle(void *_c_idle)
725 {
726 struct create_idle *c_idle = _c_idle;
727
728 c_idle->idle = fork_idle(c_idle->cpu);
729 complete(&c_idle->done);
730 }
731
732 /*
733 * Boot one CPU.
734 */
735 static int __cpuinit do_boot_cpu(int cpu, int apicid)
736 {
737 unsigned long boot_error;
738 int timeout;
739 unsigned long start_rip;
740 struct create_idle c_idle = {
741 .cpu = cpu,
742 .done = COMPLETION_INITIALIZER(c_idle.done),
743 };
744 DECLARE_WORK(work, do_fork_idle, &c_idle);
745
746 c_idle.idle = get_idle_for_cpu(cpu);
747
748 if (c_idle.idle) {
749 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
750 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
751 init_idle(c_idle.idle, cpu);
752 goto do_rest;
753 }
754
755 /*
756 * During cold boot process, keventd thread is not spun up yet.
757 * When we do cpu hot-add, we create idle threads on the fly, we should
758 * not acquire any attributes from the calling context. Hence the clean
759 * way to create kernel_threads() is to do that from keventd().
760 * We do the current_is_keventd() due to the fact that ACPI notifier
761 * was also queuing to keventd() and when the caller is already running
762 * in context of keventd(), we would end up with locking up the keventd
763 * thread.
764 */
765 if (!keventd_up() || current_is_keventd())
766 work.func(work.data);
767 else {
768 schedule_work(&work);
769 wait_for_completion(&c_idle.done);
770 }
771
772 if (IS_ERR(c_idle.idle)) {
773 printk("failed fork for CPU %d\n", cpu);
774 return PTR_ERR(c_idle.idle);
775 }
776
777 set_idle_for_cpu(cpu, c_idle.idle);
778
779 do_rest:
780
781 cpu_pda[cpu].pcurrent = c_idle.idle;
782
783 start_rip = setup_trampoline();
784
785 init_rsp = c_idle.idle->thread.rsp;
786 per_cpu(init_tss,cpu).rsp0 = init_rsp;
787 initial_code = start_secondary;
788 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
789
790 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
791 cpus_weight(cpu_present_map),
792 apicid);
793
794 /*
795 * This grunge runs the startup process for
796 * the targeted processor.
797 */
798
799 atomic_set(&init_deasserted, 0);
800
801 Dprintk("Setting warm reset code and vector.\n");
802
803 CMOS_WRITE(0xa, 0xf);
804 local_flush_tlb();
805 Dprintk("1.\n");
806 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
807 Dprintk("2.\n");
808 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
809 Dprintk("3.\n");
810
811 /*
812 * Be paranoid about clearing APIC errors.
813 */
814 if (APIC_INTEGRATED(apic_version[apicid])) {
815 apic_read_around(APIC_SPIV);
816 apic_write(APIC_ESR, 0);
817 apic_read(APIC_ESR);
818 }
819
820 /*
821 * Status is now clean
822 */
823 boot_error = 0;
824
825 /*
826 * Starting actual IPI sequence...
827 */
828 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
829
830 if (!boot_error) {
831 /*
832 * allow APs to start initializing.
833 */
834 Dprintk("Before Callout %d.\n", cpu);
835 cpu_set(cpu, cpu_callout_map);
836 Dprintk("After Callout %d.\n", cpu);
837
838 /*
839 * Wait 5s total for a response
840 */
841 for (timeout = 0; timeout < 50000; timeout++) {
842 if (cpu_isset(cpu, cpu_callin_map))
843 break; /* It has booted */
844 udelay(100);
845 }
846
847 if (cpu_isset(cpu, cpu_callin_map)) {
848 /* number CPUs logically, starting from 1 (BSP is 0) */
849 Dprintk("CPU has booted.\n");
850 } else {
851 boot_error = 1;
852 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
853 == 0xA5)
854 /* trampoline started but...? */
855 printk("Stuck ??\n");
856 else
857 /* trampoline code not run */
858 printk("Not responding.\n");
859 #ifdef APIC_DEBUG
860 inquire_remote_apic(apicid);
861 #endif
862 }
863 }
864 if (boot_error) {
865 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
866 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
867 cpu_clear(cpu, cpu_present_map);
868 cpu_clear(cpu, cpu_possible_map);
869 x86_cpu_to_apicid[cpu] = BAD_APICID;
870 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
871 return -EIO;
872 }
873
874 return 0;
875 }
876
877 cycles_t cacheflush_time;
878 unsigned long cache_decay_ticks;
879
880 /*
881 * Cleanup possible dangling ends...
882 */
883 static __cpuinit void smp_cleanup_boot(void)
884 {
885 /*
886 * Paranoid: Set warm reset code and vector here back
887 * to default values.
888 */
889 CMOS_WRITE(0, 0xf);
890
891 /*
892 * Reset trampoline flag
893 */
894 *((volatile int *) phys_to_virt(0x467)) = 0;
895 }
896
897 /*
898 * Fall back to non SMP mode after errors.
899 *
900 * RED-PEN audit/test this more. I bet there is more state messed up here.
901 */
902 static __init void disable_smp(void)
903 {
904 cpu_present_map = cpumask_of_cpu(0);
905 cpu_possible_map = cpumask_of_cpu(0);
906 if (smp_found_config)
907 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
908 else
909 phys_cpu_present_map = physid_mask_of_physid(0);
910 cpu_set(0, cpu_sibling_map[0]);
911 cpu_set(0, cpu_core_map[0]);
912 }
913
914 #ifdef CONFIG_HOTPLUG_CPU
915
916 int additional_cpus __initdata = -1;
917
918 /*
919 * cpu_possible_map should be static, it cannot change as cpu's
920 * are onlined, or offlined. The reason is per-cpu data-structures
921 * are allocated by some modules at init time, and dont expect to
922 * do this dynamically on cpu arrival/departure.
923 * cpu_present_map on the other hand can change dynamically.
924 * In case when cpu_hotplug is not compiled, then we resort to current
925 * behaviour, which is cpu_possible == cpu_present.
926 * - Ashok Raj
927 *
928 * Three ways to find out the number of additional hotplug CPUs:
929 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
930 * - The user can overwrite it with additional_cpus=NUM
931 * - Otherwise don't reserve additional CPUs.
932 * We do this because additional CPUs waste a lot of memory.
933 * -AK
934 */
935 __init void prefill_possible_map(void)
936 {
937 int i;
938 int possible;
939
940 if (additional_cpus == -1) {
941 if (disabled_cpus > 0)
942 additional_cpus = disabled_cpus;
943 else
944 additional_cpus = 0;
945 }
946 possible = num_processors + additional_cpus;
947 if (possible > NR_CPUS)
948 possible = NR_CPUS;
949
950 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
951 possible,
952 max_t(int, possible - num_processors, 0));
953
954 for (i = 0; i < possible; i++)
955 cpu_set(i, cpu_possible_map);
956 }
957 #endif
958
959 /*
960 * Various sanity checks.
961 */
962 static int __init smp_sanity_check(unsigned max_cpus)
963 {
964 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
965 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
966 hard_smp_processor_id());
967 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
968 }
969
970 /*
971 * If we couldn't find an SMP configuration at boot time,
972 * get out of here now!
973 */
974 if (!smp_found_config) {
975 printk(KERN_NOTICE "SMP motherboard not detected.\n");
976 disable_smp();
977 if (APIC_init_uniprocessor())
978 printk(KERN_NOTICE "Local APIC not detected."
979 " Using dummy APIC emulation.\n");
980 return -1;
981 }
982
983 /*
984 * Should not be necessary because the MP table should list the boot
985 * CPU too, but we do it for the sake of robustness anyway.
986 */
987 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
988 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
989 boot_cpu_id);
990 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
991 }
992
993 /*
994 * If we couldn't find a local APIC, then get out of here now!
995 */
996 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
997 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
998 boot_cpu_id);
999 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1000 nr_ioapics = 0;
1001 return -1;
1002 }
1003
1004 /*
1005 * If SMP should be disabled, then really disable it!
1006 */
1007 if (!max_cpus) {
1008 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1009 nr_ioapics = 0;
1010 return -1;
1011 }
1012
1013 return 0;
1014 }
1015
1016 /*
1017 * Prepare for SMP bootup. The MP table or ACPI has been read
1018 * earlier. Just do some sanity checking here and enable APIC mode.
1019 */
1020 void __init smp_prepare_cpus(unsigned int max_cpus)
1021 {
1022 nmi_watchdog_default();
1023 current_cpu_data = boot_cpu_data;
1024 current_thread_info()->cpu = 0; /* needed? */
1025 set_cpu_sibling_map(0);
1026
1027 if (smp_sanity_check(max_cpus) < 0) {
1028 printk(KERN_INFO "SMP disabled\n");
1029 disable_smp();
1030 return;
1031 }
1032
1033
1034 /*
1035 * Switch from PIC to APIC mode.
1036 */
1037 connect_bsp_APIC();
1038 setup_local_APIC();
1039
1040 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1041 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1042 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1043 /* Or can we switch back to PIC here? */
1044 }
1045
1046 /*
1047 * Now start the IO-APICs
1048 */
1049 if (!skip_ioapic_setup && nr_ioapics)
1050 setup_IO_APIC();
1051 else
1052 nr_ioapics = 0;
1053
1054 /*
1055 * Set up local APIC timer on boot CPU.
1056 */
1057
1058 setup_boot_APIC_clock();
1059 }
1060
1061 /*
1062 * Early setup to make printk work.
1063 */
1064 void __init smp_prepare_boot_cpu(void)
1065 {
1066 int me = smp_processor_id();
1067 cpu_set(me, cpu_online_map);
1068 cpu_set(me, cpu_callout_map);
1069 per_cpu(cpu_state, me) = CPU_ONLINE;
1070 }
1071
1072 /*
1073 * Entry point to boot a CPU.
1074 */
1075 int __cpuinit __cpu_up(unsigned int cpu)
1076 {
1077 int err;
1078 int apicid = cpu_present_to_apicid(cpu);
1079
1080 WARN_ON(irqs_disabled());
1081
1082 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1083
1084 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1085 !physid_isset(apicid, phys_cpu_present_map)) {
1086 printk("__cpu_up: bad cpu %d\n", cpu);
1087 return -EINVAL;
1088 }
1089
1090 /*
1091 * Already booted CPU?
1092 */
1093 if (cpu_isset(cpu, cpu_callin_map)) {
1094 Dprintk("do_boot_cpu %d Already started\n", cpu);
1095 return -ENOSYS;
1096 }
1097
1098 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1099 /* Boot it! */
1100 err = do_boot_cpu(cpu, apicid);
1101 if (err < 0) {
1102 Dprintk("do_boot_cpu failed %d\n", err);
1103 return err;
1104 }
1105
1106 /* Unleash the CPU! */
1107 Dprintk("waiting for cpu %d\n", cpu);
1108
1109 while (!cpu_isset(cpu, cpu_online_map))
1110 cpu_relax();
1111 err = 0;
1112
1113 return err;
1114 }
1115
1116 /*
1117 * Finish the SMP boot.
1118 */
1119 void __init smp_cpus_done(unsigned int max_cpus)
1120 {
1121 smp_cleanup_boot();
1122
1123 #ifdef CONFIG_X86_IO_APIC
1124 setup_ioapic_dest();
1125 #endif
1126
1127 time_init_gtod();
1128
1129 check_nmi_watchdog();
1130 }
1131
1132 #ifdef CONFIG_HOTPLUG_CPU
1133
1134 static void remove_siblinginfo(int cpu)
1135 {
1136 int sibling;
1137 struct cpuinfo_x86 *c = cpu_data;
1138
1139 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1140 cpu_clear(cpu, cpu_core_map[sibling]);
1141 /*
1142 * last thread sibling in this cpu core going down
1143 */
1144 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1145 c[sibling].booted_cores--;
1146 }
1147
1148 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1149 cpu_clear(cpu, cpu_sibling_map[sibling]);
1150 cpus_clear(cpu_sibling_map[cpu]);
1151 cpus_clear(cpu_core_map[cpu]);
1152 phys_proc_id[cpu] = BAD_APICID;
1153 cpu_core_id[cpu] = BAD_APICID;
1154 cpu_clear(cpu, cpu_sibling_setup_map);
1155 }
1156
1157 void remove_cpu_from_maps(void)
1158 {
1159 int cpu = smp_processor_id();
1160
1161 cpu_clear(cpu, cpu_callout_map);
1162 cpu_clear(cpu, cpu_callin_map);
1163 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1164 }
1165
1166 int __cpu_disable(void)
1167 {
1168 int cpu = smp_processor_id();
1169
1170 /*
1171 * Perhaps use cpufreq to drop frequency, but that could go
1172 * into generic code.
1173 *
1174 * We won't take down the boot processor on i386 due to some
1175 * interrupts only being able to be serviced by the BSP.
1176 * Especially so if we're not using an IOAPIC -zwane
1177 */
1178 if (cpu == 0)
1179 return -EBUSY;
1180
1181 clear_local_APIC();
1182
1183 /*
1184 * HACK:
1185 * Allow any queued timer interrupts to get serviced
1186 * This is only a temporary solution until we cleanup
1187 * fixup_irqs as we do for IA64.
1188 */
1189 local_irq_enable();
1190 mdelay(1);
1191
1192 local_irq_disable();
1193 remove_siblinginfo(cpu);
1194
1195 /* It's now safe to remove this processor from the online map */
1196 cpu_clear(cpu, cpu_online_map);
1197 remove_cpu_from_maps();
1198 fixup_irqs(cpu_online_map);
1199 return 0;
1200 }
1201
1202 void __cpu_die(unsigned int cpu)
1203 {
1204 /* We don't do anything here: idle task is faking death itself. */
1205 unsigned int i;
1206
1207 for (i = 0; i < 10; i++) {
1208 /* They ack this in play_dead by setting CPU_DEAD */
1209 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1210 printk ("CPU %d is now offline\n", cpu);
1211 return;
1212 }
1213 msleep(100);
1214 }
1215 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1216 }
1217
1218 static __init int setup_additional_cpus(char *s)
1219 {
1220 return get_option(&s, &additional_cpus);
1221 }
1222 __setup("additional_cpus=", setup_additional_cpus);
1223
1224 #else /* ... !CONFIG_HOTPLUG_CPU */
1225
1226 int __cpu_disable(void)
1227 {
1228 return -ENOSYS;
1229 }
1230
1231 void __cpu_die(unsigned int cpu)
1232 {
1233 /* We said "no" in __cpu_disable */
1234 BUG();
1235 }
1236 #endif /* CONFIG_HOTPLUG_CPU */
This page took 0.079945 seconds and 5 git commands to generate.