Merge git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial
[deliverable/linux.git] / arch / x86_64 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
38 */
39
40
41 #include <linux/config.h>
42 #include <linux/init.h>
43
44 #include <linux/mm.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/bootmem.h>
48 #include <linux/thread_info.h>
49 #include <linux/module.h>
50
51 #include <linux/delay.h>
52 #include <linux/mc146818rtc.h>
53 #include <asm/mtrr.h>
54 #include <asm/pgalloc.h>
55 #include <asm/desc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/hw_irq.h>
62 #include <asm/numa.h>
63
64 /* Number of siblings per CPU package */
65 int smp_num_siblings = 1;
66 EXPORT_SYMBOL(smp_num_siblings);
67
68 /* Last level cache ID of each logical CPU */
69 u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
70 EXPORT_SYMBOL(cpu_llc_id);
71
72 /* Bitmask of currently online CPUs */
73 cpumask_t cpu_online_map __read_mostly;
74
75 EXPORT_SYMBOL(cpu_online_map);
76
77 /*
78 * Private maps to synchronize booting between AP and BP.
79 * Probably not needed anymore, but it makes for easier debugging. -AK
80 */
81 cpumask_t cpu_callin_map;
82 cpumask_t cpu_callout_map;
83 EXPORT_SYMBOL(cpu_callout_map);
84
85 cpumask_t cpu_possible_map;
86 EXPORT_SYMBOL(cpu_possible_map);
87
88 /* Per CPU bogomips and other parameters */
89 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
90 EXPORT_SYMBOL(cpu_data);
91
92 /* Set when the idlers are all forked */
93 int smp_threads_ready;
94
95 /* representing HT siblings of each logical CPU */
96 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
97 EXPORT_SYMBOL(cpu_sibling_map);
98
99 /* representing HT and core siblings of each logical CPU */
100 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
101 EXPORT_SYMBOL(cpu_core_map);
102
103 /*
104 * Trampoline 80x86 program as an array.
105 */
106
107 extern unsigned char trampoline_data[];
108 extern unsigned char trampoline_end[];
109
110 /* State of each CPU */
111 DEFINE_PER_CPU(int, cpu_state) = { 0 };
112
113 /*
114 * Store all idle threads, this can be reused instead of creating
115 * a new thread. Also avoids complicated thread destroy functionality
116 * for idle threads.
117 */
118 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
119
120 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
121 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
122
123 /*
124 * Currently trivial. Write the real->protected mode
125 * bootstrap into the page concerned. The caller
126 * has made sure it's suitably aligned.
127 */
128
129 static unsigned long __cpuinit setup_trampoline(void)
130 {
131 void *tramp = __va(SMP_TRAMPOLINE_BASE);
132 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
133 return virt_to_phys(tramp);
134 }
135
136 /*
137 * The bootstrap kernel entry code has set these up. Save them for
138 * a given CPU
139 */
140
141 static void __cpuinit smp_store_cpu_info(int id)
142 {
143 struct cpuinfo_x86 *c = cpu_data + id;
144
145 *c = boot_cpu_data;
146 identify_cpu(c);
147 print_cpu_info(c);
148 }
149
150 /*
151 * New Funky TSC sync algorithm borrowed from IA64.
152 * Main advantage is that it doesn't reset the TSCs fully and
153 * in general looks more robust and it works better than my earlier
154 * attempts. I believe it was written by David Mosberger. Some minor
155 * adjustments for x86-64 by me -AK
156 *
157 * Original comment reproduced below.
158 *
159 * Synchronize TSC of the current (slave) CPU with the TSC of the
160 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
161 * eliminate the possibility of unaccounted-for errors (such as
162 * getting a machine check in the middle of a calibration step). The
163 * basic idea is for the slave to ask the master what itc value it has
164 * and to read its own itc before and after the master responds. Each
165 * iteration gives us three timestamps:
166 *
167 * slave master
168 *
169 * t0 ---\
170 * ---\
171 * --->
172 * tm
173 * /---
174 * /---
175 * t1 <---
176 *
177 *
178 * The goal is to adjust the slave's TSC such that tm falls exactly
179 * half-way between t0 and t1. If we achieve this, the clocks are
180 * synchronized provided the interconnect between the slave and the
181 * master is symmetric. Even if the interconnect were asymmetric, we
182 * would still know that the synchronization error is smaller than the
183 * roundtrip latency (t0 - t1).
184 *
185 * When the interconnect is quiet and symmetric, this lets us
186 * synchronize the TSC to within one or two cycles. However, we can
187 * only *guarantee* that the synchronization is accurate to within a
188 * round-trip time, which is typically in the range of several hundred
189 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
190 * are usually almost perfectly synchronized, but we shouldn't assume
191 * that the accuracy is much better than half a micro second or so.
192 *
193 * [there are other errors like the latency of RDTSC and of the
194 * WRMSR. These can also account to hundreds of cycles. So it's
195 * probably worse. It claims 153 cycles error on a dual Opteron,
196 * but I suspect the numbers are actually somewhat worse -AK]
197 */
198
199 #define MASTER 0
200 #define SLAVE (SMP_CACHE_BYTES/8)
201
202 /* Intentionally don't use cpu_relax() while TSC synchronization
203 because we don't want to go into funky power save modi or cause
204 hypervisors to schedule us away. Going to sleep would likely affect
205 latency and low latency is the primary objective here. -AK */
206 #define no_cpu_relax() barrier()
207
208 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
209 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
210 static int notscsync __cpuinitdata;
211
212 #undef DEBUG_TSC_SYNC
213
214 #define NUM_ROUNDS 64 /* magic value */
215 #define NUM_ITERS 5 /* likewise */
216
217 /* Callback on boot CPU */
218 static __cpuinit void sync_master(void *arg)
219 {
220 unsigned long flags, i;
221
222 go[MASTER] = 0;
223
224 local_irq_save(flags);
225 {
226 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
227 while (!go[MASTER])
228 no_cpu_relax();
229 go[MASTER] = 0;
230 rdtscll(go[SLAVE]);
231 }
232 }
233 local_irq_restore(flags);
234 }
235
236 /*
237 * Return the number of cycles by which our tsc differs from the tsc
238 * on the master (time-keeper) CPU. A positive number indicates our
239 * tsc is ahead of the master, negative that it is behind.
240 */
241 static inline long
242 get_delta(long *rt, long *master)
243 {
244 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
245 unsigned long tcenter, t0, t1, tm;
246 int i;
247
248 for (i = 0; i < NUM_ITERS; ++i) {
249 rdtscll(t0);
250 go[MASTER] = 1;
251 while (!(tm = go[SLAVE]))
252 no_cpu_relax();
253 go[SLAVE] = 0;
254 rdtscll(t1);
255
256 if (t1 - t0 < best_t1 - best_t0)
257 best_t0 = t0, best_t1 = t1, best_tm = tm;
258 }
259
260 *rt = best_t1 - best_t0;
261 *master = best_tm - best_t0;
262
263 /* average best_t0 and best_t1 without overflow: */
264 tcenter = (best_t0/2 + best_t1/2);
265 if (best_t0 % 2 + best_t1 % 2 == 2)
266 ++tcenter;
267 return tcenter - best_tm;
268 }
269
270 static __cpuinit void sync_tsc(unsigned int master)
271 {
272 int i, done = 0;
273 long delta, adj, adjust_latency = 0;
274 unsigned long flags, rt, master_time_stamp, bound;
275 #ifdef DEBUG_TSC_SYNC
276 static struct syncdebug {
277 long rt; /* roundtrip time */
278 long master; /* master's timestamp */
279 long diff; /* difference between midpoint and master's timestamp */
280 long lat; /* estimate of tsc adjustment latency */
281 } t[NUM_ROUNDS] __cpuinitdata;
282 #endif
283
284 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
285 smp_processor_id(), master);
286
287 go[MASTER] = 1;
288
289 /* It is dangerous to broadcast IPI as cpus are coming up,
290 * as they may not be ready to accept them. So since
291 * we only need to send the ipi to the boot cpu direct
292 * the message, and avoid the race.
293 */
294 smp_call_function_single(master, sync_master, NULL, 1, 0);
295
296 while (go[MASTER]) /* wait for master to be ready */
297 no_cpu_relax();
298
299 spin_lock_irqsave(&tsc_sync_lock, flags);
300 {
301 for (i = 0; i < NUM_ROUNDS; ++i) {
302 delta = get_delta(&rt, &master_time_stamp);
303 if (delta == 0) {
304 done = 1; /* let's lock on to this... */
305 bound = rt;
306 }
307
308 if (!done) {
309 unsigned long t;
310 if (i > 0) {
311 adjust_latency += -delta;
312 adj = -delta + adjust_latency/4;
313 } else
314 adj = -delta;
315
316 rdtscll(t);
317 wrmsrl(MSR_IA32_TSC, t + adj);
318 }
319 #ifdef DEBUG_TSC_SYNC
320 t[i].rt = rt;
321 t[i].master = master_time_stamp;
322 t[i].diff = delta;
323 t[i].lat = adjust_latency/4;
324 #endif
325 }
326 }
327 spin_unlock_irqrestore(&tsc_sync_lock, flags);
328
329 #ifdef DEBUG_TSC_SYNC
330 for (i = 0; i < NUM_ROUNDS; ++i)
331 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
332 t[i].rt, t[i].master, t[i].diff, t[i].lat);
333 #endif
334
335 printk(KERN_INFO
336 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
337 "maxerr %lu cycles)\n",
338 smp_processor_id(), master, delta, rt);
339 }
340
341 static void __cpuinit tsc_sync_wait(void)
342 {
343 /*
344 * When the CPU has synchronized TSCs assume the BIOS
345 * or the hardware already synced. Otherwise we could
346 * mess up a possible perfect synchronization with a
347 * not-quite-perfect algorithm.
348 */
349 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
350 return;
351 sync_tsc(0);
352 }
353
354 static __init int notscsync_setup(char *s)
355 {
356 notscsync = 1;
357 return 1;
358 }
359 __setup("notscsync", notscsync_setup);
360
361 static atomic_t init_deasserted __cpuinitdata;
362
363 /*
364 * Report back to the Boot Processor.
365 * Running on AP.
366 */
367 void __cpuinit smp_callin(void)
368 {
369 int cpuid, phys_id;
370 unsigned long timeout;
371
372 /*
373 * If waken up by an INIT in an 82489DX configuration
374 * we may get here before an INIT-deassert IPI reaches
375 * our local APIC. We have to wait for the IPI or we'll
376 * lock up on an APIC access.
377 */
378 while (!atomic_read(&init_deasserted))
379 cpu_relax();
380
381 /*
382 * (This works even if the APIC is not enabled.)
383 */
384 phys_id = GET_APIC_ID(apic_read(APIC_ID));
385 cpuid = smp_processor_id();
386 if (cpu_isset(cpuid, cpu_callin_map)) {
387 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
388 phys_id, cpuid);
389 }
390 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
391
392 /*
393 * STARTUP IPIs are fragile beasts as they might sometimes
394 * trigger some glue motherboard logic. Complete APIC bus
395 * silence for 1 second, this overestimates the time the
396 * boot CPU is spending to send the up to 2 STARTUP IPIs
397 * by a factor of two. This should be enough.
398 */
399
400 /*
401 * Waiting 2s total for startup (udelay is not yet working)
402 */
403 timeout = jiffies + 2*HZ;
404 while (time_before(jiffies, timeout)) {
405 /*
406 * Has the boot CPU finished it's STARTUP sequence?
407 */
408 if (cpu_isset(cpuid, cpu_callout_map))
409 break;
410 cpu_relax();
411 }
412
413 if (!time_before(jiffies, timeout)) {
414 panic("smp_callin: CPU%d started up but did not get a callout!\n",
415 cpuid);
416 }
417
418 /*
419 * the boot CPU has finished the init stage and is spinning
420 * on callin_map until we finish. We are free to set up this
421 * CPU, first the APIC. (this is probably redundant on most
422 * boards)
423 */
424
425 Dprintk("CALLIN, before setup_local_APIC().\n");
426 setup_local_APIC();
427
428 /*
429 * Get our bogomips.
430 *
431 * Need to enable IRQs because it can take longer and then
432 * the NMI watchdog might kill us.
433 */
434 local_irq_enable();
435 calibrate_delay();
436 local_irq_disable();
437 Dprintk("Stack at about %p\n",&cpuid);
438
439 disable_APIC_timer();
440
441 /*
442 * Save our processor parameters
443 */
444 smp_store_cpu_info(cpuid);
445
446 /*
447 * Allow the master to continue.
448 */
449 cpu_set(cpuid, cpu_callin_map);
450 }
451
452 /* maps the cpu to the sched domain representing multi-core */
453 cpumask_t cpu_coregroup_map(int cpu)
454 {
455 struct cpuinfo_x86 *c = cpu_data + cpu;
456 /*
457 * For perf, we return last level cache shared map.
458 * TBD: when power saving sched policy is added, we will return
459 * cpu_core_map when power saving policy is enabled
460 */
461 return c->llc_shared_map;
462 }
463
464 /* representing cpus for which sibling maps can be computed */
465 static cpumask_t cpu_sibling_setup_map;
466
467 static inline void set_cpu_sibling_map(int cpu)
468 {
469 int i;
470 struct cpuinfo_x86 *c = cpu_data;
471
472 cpu_set(cpu, cpu_sibling_setup_map);
473
474 if (smp_num_siblings > 1) {
475 for_each_cpu_mask(i, cpu_sibling_setup_map) {
476 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
477 c[cpu].cpu_core_id == c[i].cpu_core_id) {
478 cpu_set(i, cpu_sibling_map[cpu]);
479 cpu_set(cpu, cpu_sibling_map[i]);
480 cpu_set(i, cpu_core_map[cpu]);
481 cpu_set(cpu, cpu_core_map[i]);
482 cpu_set(i, c[cpu].llc_shared_map);
483 cpu_set(cpu, c[i].llc_shared_map);
484 }
485 }
486 } else {
487 cpu_set(cpu, cpu_sibling_map[cpu]);
488 }
489
490 cpu_set(cpu, c[cpu].llc_shared_map);
491
492 if (current_cpu_data.x86_max_cores == 1) {
493 cpu_core_map[cpu] = cpu_sibling_map[cpu];
494 c[cpu].booted_cores = 1;
495 return;
496 }
497
498 for_each_cpu_mask(i, cpu_sibling_setup_map) {
499 if (cpu_llc_id[cpu] != BAD_APICID &&
500 cpu_llc_id[cpu] == cpu_llc_id[i]) {
501 cpu_set(i, c[cpu].llc_shared_map);
502 cpu_set(cpu, c[i].llc_shared_map);
503 }
504 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
505 cpu_set(i, cpu_core_map[cpu]);
506 cpu_set(cpu, cpu_core_map[i]);
507 /*
508 * Does this new cpu bringup a new core?
509 */
510 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
511 /*
512 * for each core in package, increment
513 * the booted_cores for this new cpu
514 */
515 if (first_cpu(cpu_sibling_map[i]) == i)
516 c[cpu].booted_cores++;
517 /*
518 * increment the core count for all
519 * the other cpus in this package
520 */
521 if (i != cpu)
522 c[i].booted_cores++;
523 } else if (i != cpu && !c[cpu].booted_cores)
524 c[cpu].booted_cores = c[i].booted_cores;
525 }
526 }
527 }
528
529 /*
530 * Setup code on secondary processor (after comming out of the trampoline)
531 */
532 void __cpuinit start_secondary(void)
533 {
534 /*
535 * Dont put anything before smp_callin(), SMP
536 * booting is too fragile that we want to limit the
537 * things done here to the most necessary things.
538 */
539 cpu_init();
540 preempt_disable();
541 smp_callin();
542
543 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
544 barrier();
545
546 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
547 setup_secondary_APIC_clock();
548
549 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
550
551 if (nmi_watchdog == NMI_IO_APIC) {
552 disable_8259A_irq(0);
553 enable_NMI_through_LVT0(NULL);
554 enable_8259A_irq(0);
555 }
556
557 enable_APIC_timer();
558
559 /*
560 * The sibling maps must be set before turing the online map on for
561 * this cpu
562 */
563 set_cpu_sibling_map(smp_processor_id());
564
565 /*
566 * Wait for TSC sync to not schedule things before.
567 * We still process interrupts, which could see an inconsistent
568 * time in that window unfortunately.
569 * Do this here because TSC sync has global unprotected state.
570 */
571 tsc_sync_wait();
572
573 /*
574 * We need to hold call_lock, so there is no inconsistency
575 * between the time smp_call_function() determines number of
576 * IPI receipients, and the time when the determination is made
577 * for which cpus receive the IPI in genapic_flat.c. Holding this
578 * lock helps us to not include this cpu in a currently in progress
579 * smp_call_function().
580 */
581 lock_ipi_call_lock();
582
583 /*
584 * Allow the master to continue.
585 */
586 cpu_set(smp_processor_id(), cpu_online_map);
587 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
588 unlock_ipi_call_lock();
589
590 cpu_idle();
591 }
592
593 extern volatile unsigned long init_rsp;
594 extern void (*initial_code)(void);
595
596 #ifdef APIC_DEBUG
597 static void inquire_remote_apic(int apicid)
598 {
599 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
600 char *names[] = { "ID", "VERSION", "SPIV" };
601 int timeout, status;
602
603 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
604
605 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
606 printk("... APIC #%d %s: ", apicid, names[i]);
607
608 /*
609 * Wait for idle.
610 */
611 apic_wait_icr_idle();
612
613 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
614 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
615
616 timeout = 0;
617 do {
618 udelay(100);
619 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
620 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
621
622 switch (status) {
623 case APIC_ICR_RR_VALID:
624 status = apic_read(APIC_RRR);
625 printk("%08x\n", status);
626 break;
627 default:
628 printk("failed\n");
629 }
630 }
631 }
632 #endif
633
634 /*
635 * Kick the secondary to wake up.
636 */
637 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
638 {
639 unsigned long send_status = 0, accept_status = 0;
640 int maxlvt, timeout, num_starts, j;
641
642 Dprintk("Asserting INIT.\n");
643
644 /*
645 * Turn INIT on target chip
646 */
647 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
648
649 /*
650 * Send IPI
651 */
652 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
653 | APIC_DM_INIT);
654
655 Dprintk("Waiting for send to finish...\n");
656 timeout = 0;
657 do {
658 Dprintk("+");
659 udelay(100);
660 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
661 } while (send_status && (timeout++ < 1000));
662
663 mdelay(10);
664
665 Dprintk("Deasserting INIT.\n");
666
667 /* Target chip */
668 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
669
670 /* Send IPI */
671 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
672
673 Dprintk("Waiting for send to finish...\n");
674 timeout = 0;
675 do {
676 Dprintk("+");
677 udelay(100);
678 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
679 } while (send_status && (timeout++ < 1000));
680
681 mb();
682 atomic_set(&init_deasserted, 1);
683
684 num_starts = 2;
685
686 /*
687 * Run STARTUP IPI loop.
688 */
689 Dprintk("#startup loops: %d.\n", num_starts);
690
691 maxlvt = get_maxlvt();
692
693 for (j = 1; j <= num_starts; j++) {
694 Dprintk("Sending STARTUP #%d.\n",j);
695 apic_write(APIC_ESR, 0);
696 apic_read(APIC_ESR);
697 Dprintk("After apic_write.\n");
698
699 /*
700 * STARTUP IPI
701 */
702
703 /* Target chip */
704 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
705
706 /* Boot on the stack */
707 /* Kick the second */
708 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
709
710 /*
711 * Give the other CPU some time to accept the IPI.
712 */
713 udelay(300);
714
715 Dprintk("Startup point 1.\n");
716
717 Dprintk("Waiting for send to finish...\n");
718 timeout = 0;
719 do {
720 Dprintk("+");
721 udelay(100);
722 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
723 } while (send_status && (timeout++ < 1000));
724
725 /*
726 * Give the other CPU some time to accept the IPI.
727 */
728 udelay(200);
729 /*
730 * Due to the Pentium erratum 3AP.
731 */
732 if (maxlvt > 3) {
733 apic_write(APIC_ESR, 0);
734 }
735 accept_status = (apic_read(APIC_ESR) & 0xEF);
736 if (send_status || accept_status)
737 break;
738 }
739 Dprintk("After Startup.\n");
740
741 if (send_status)
742 printk(KERN_ERR "APIC never delivered???\n");
743 if (accept_status)
744 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
745
746 return (send_status | accept_status);
747 }
748
749 struct create_idle {
750 struct task_struct *idle;
751 struct completion done;
752 int cpu;
753 };
754
755 void do_fork_idle(void *_c_idle)
756 {
757 struct create_idle *c_idle = _c_idle;
758
759 c_idle->idle = fork_idle(c_idle->cpu);
760 complete(&c_idle->done);
761 }
762
763 /*
764 * Boot one CPU.
765 */
766 static int __cpuinit do_boot_cpu(int cpu, int apicid)
767 {
768 unsigned long boot_error;
769 int timeout;
770 unsigned long start_rip;
771 struct create_idle c_idle = {
772 .cpu = cpu,
773 .done = COMPLETION_INITIALIZER(c_idle.done),
774 };
775 DECLARE_WORK(work, do_fork_idle, &c_idle);
776
777 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
778 if (!cpu_gdt_descr[cpu].address &&
779 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
780 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
781 return -1;
782 }
783
784 /* Allocate node local memory for AP pdas */
785 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
786 struct x8664_pda *newpda, *pda;
787 int node = cpu_to_node(cpu);
788 pda = cpu_pda(cpu);
789 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
790 node);
791 if (newpda) {
792 memcpy(newpda, pda, sizeof (struct x8664_pda));
793 cpu_pda(cpu) = newpda;
794 } else
795 printk(KERN_ERR
796 "Could not allocate node local PDA for CPU %d on node %d\n",
797 cpu, node);
798 }
799
800
801 alternatives_smp_switch(1);
802
803 c_idle.idle = get_idle_for_cpu(cpu);
804
805 if (c_idle.idle) {
806 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
807 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
808 init_idle(c_idle.idle, cpu);
809 goto do_rest;
810 }
811
812 /*
813 * During cold boot process, keventd thread is not spun up yet.
814 * When we do cpu hot-add, we create idle threads on the fly, we should
815 * not acquire any attributes from the calling context. Hence the clean
816 * way to create kernel_threads() is to do that from keventd().
817 * We do the current_is_keventd() due to the fact that ACPI notifier
818 * was also queuing to keventd() and when the caller is already running
819 * in context of keventd(), we would end up with locking up the keventd
820 * thread.
821 */
822 if (!keventd_up() || current_is_keventd())
823 work.func(work.data);
824 else {
825 schedule_work(&work);
826 wait_for_completion(&c_idle.done);
827 }
828
829 if (IS_ERR(c_idle.idle)) {
830 printk("failed fork for CPU %d\n", cpu);
831 return PTR_ERR(c_idle.idle);
832 }
833
834 set_idle_for_cpu(cpu, c_idle.idle);
835
836 do_rest:
837
838 cpu_pda(cpu)->pcurrent = c_idle.idle;
839
840 start_rip = setup_trampoline();
841
842 init_rsp = c_idle.idle->thread.rsp;
843 per_cpu(init_tss,cpu).rsp0 = init_rsp;
844 initial_code = start_secondary;
845 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
846
847 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
848 cpus_weight(cpu_present_map),
849 apicid);
850
851 /*
852 * This grunge runs the startup process for
853 * the targeted processor.
854 */
855
856 atomic_set(&init_deasserted, 0);
857
858 Dprintk("Setting warm reset code and vector.\n");
859
860 CMOS_WRITE(0xa, 0xf);
861 local_flush_tlb();
862 Dprintk("1.\n");
863 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
864 Dprintk("2.\n");
865 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
866 Dprintk("3.\n");
867
868 /*
869 * Be paranoid about clearing APIC errors.
870 */
871 apic_write(APIC_ESR, 0);
872 apic_read(APIC_ESR);
873
874 /*
875 * Status is now clean
876 */
877 boot_error = 0;
878
879 /*
880 * Starting actual IPI sequence...
881 */
882 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
883
884 if (!boot_error) {
885 /*
886 * allow APs to start initializing.
887 */
888 Dprintk("Before Callout %d.\n", cpu);
889 cpu_set(cpu, cpu_callout_map);
890 Dprintk("After Callout %d.\n", cpu);
891
892 /*
893 * Wait 5s total for a response
894 */
895 for (timeout = 0; timeout < 50000; timeout++) {
896 if (cpu_isset(cpu, cpu_callin_map))
897 break; /* It has booted */
898 udelay(100);
899 }
900
901 if (cpu_isset(cpu, cpu_callin_map)) {
902 /* number CPUs logically, starting from 1 (BSP is 0) */
903 Dprintk("CPU has booted.\n");
904 } else {
905 boot_error = 1;
906 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
907 == 0xA5)
908 /* trampoline started but...? */
909 printk("Stuck ??\n");
910 else
911 /* trampoline code not run */
912 printk("Not responding.\n");
913 #ifdef APIC_DEBUG
914 inquire_remote_apic(apicid);
915 #endif
916 }
917 }
918 if (boot_error) {
919 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
920 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
921 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
922 cpu_clear(cpu, cpu_present_map);
923 cpu_clear(cpu, cpu_possible_map);
924 x86_cpu_to_apicid[cpu] = BAD_APICID;
925 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
926 return -EIO;
927 }
928
929 return 0;
930 }
931
932 cycles_t cacheflush_time;
933 unsigned long cache_decay_ticks;
934
935 /*
936 * Cleanup possible dangling ends...
937 */
938 static __cpuinit void smp_cleanup_boot(void)
939 {
940 /*
941 * Paranoid: Set warm reset code and vector here back
942 * to default values.
943 */
944 CMOS_WRITE(0, 0xf);
945
946 /*
947 * Reset trampoline flag
948 */
949 *((volatile int *) phys_to_virt(0x467)) = 0;
950 }
951
952 /*
953 * Fall back to non SMP mode after errors.
954 *
955 * RED-PEN audit/test this more. I bet there is more state messed up here.
956 */
957 static __init void disable_smp(void)
958 {
959 cpu_present_map = cpumask_of_cpu(0);
960 cpu_possible_map = cpumask_of_cpu(0);
961 if (smp_found_config)
962 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
963 else
964 phys_cpu_present_map = physid_mask_of_physid(0);
965 cpu_set(0, cpu_sibling_map[0]);
966 cpu_set(0, cpu_core_map[0]);
967 }
968
969 #ifdef CONFIG_HOTPLUG_CPU
970
971 int additional_cpus __initdata = -1;
972
973 /*
974 * cpu_possible_map should be static, it cannot change as cpu's
975 * are onlined, or offlined. The reason is per-cpu data-structures
976 * are allocated by some modules at init time, and dont expect to
977 * do this dynamically on cpu arrival/departure.
978 * cpu_present_map on the other hand can change dynamically.
979 * In case when cpu_hotplug is not compiled, then we resort to current
980 * behaviour, which is cpu_possible == cpu_present.
981 * - Ashok Raj
982 *
983 * Three ways to find out the number of additional hotplug CPUs:
984 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
985 * - The user can overwrite it with additional_cpus=NUM
986 * - Otherwise don't reserve additional CPUs.
987 * We do this because additional CPUs waste a lot of memory.
988 * -AK
989 */
990 __init void prefill_possible_map(void)
991 {
992 int i;
993 int possible;
994
995 if (additional_cpus == -1) {
996 if (disabled_cpus > 0)
997 additional_cpus = disabled_cpus;
998 else
999 additional_cpus = 0;
1000 }
1001 possible = num_processors + additional_cpus;
1002 if (possible > NR_CPUS)
1003 possible = NR_CPUS;
1004
1005 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1006 possible,
1007 max_t(int, possible - num_processors, 0));
1008
1009 for (i = 0; i < possible; i++)
1010 cpu_set(i, cpu_possible_map);
1011 }
1012 #endif
1013
1014 /*
1015 * Various sanity checks.
1016 */
1017 static int __init smp_sanity_check(unsigned max_cpus)
1018 {
1019 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1020 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1021 hard_smp_processor_id());
1022 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1023 }
1024
1025 /*
1026 * If we couldn't find an SMP configuration at boot time,
1027 * get out of here now!
1028 */
1029 if (!smp_found_config) {
1030 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1031 disable_smp();
1032 if (APIC_init_uniprocessor())
1033 printk(KERN_NOTICE "Local APIC not detected."
1034 " Using dummy APIC emulation.\n");
1035 return -1;
1036 }
1037
1038 /*
1039 * Should not be necessary because the MP table should list the boot
1040 * CPU too, but we do it for the sake of robustness anyway.
1041 */
1042 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1043 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1044 boot_cpu_id);
1045 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1046 }
1047
1048 /*
1049 * If we couldn't find a local APIC, then get out of here now!
1050 */
1051 if (!cpu_has_apic) {
1052 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1053 boot_cpu_id);
1054 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1055 nr_ioapics = 0;
1056 return -1;
1057 }
1058
1059 /*
1060 * If SMP should be disabled, then really disable it!
1061 */
1062 if (!max_cpus) {
1063 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1064 nr_ioapics = 0;
1065 return -1;
1066 }
1067
1068 return 0;
1069 }
1070
1071 /*
1072 * Prepare for SMP bootup. The MP table or ACPI has been read
1073 * earlier. Just do some sanity checking here and enable APIC mode.
1074 */
1075 void __init smp_prepare_cpus(unsigned int max_cpus)
1076 {
1077 nmi_watchdog_default();
1078 current_cpu_data = boot_cpu_data;
1079 current_thread_info()->cpu = 0; /* needed? */
1080 set_cpu_sibling_map(0);
1081
1082 if (smp_sanity_check(max_cpus) < 0) {
1083 printk(KERN_INFO "SMP disabled\n");
1084 disable_smp();
1085 return;
1086 }
1087
1088
1089 /*
1090 * Switch from PIC to APIC mode.
1091 */
1092 connect_bsp_APIC();
1093 setup_local_APIC();
1094
1095 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1096 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1097 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1098 /* Or can we switch back to PIC here? */
1099 }
1100
1101 /*
1102 * Now start the IO-APICs
1103 */
1104 if (!skip_ioapic_setup && nr_ioapics)
1105 setup_IO_APIC();
1106 else
1107 nr_ioapics = 0;
1108
1109 /*
1110 * Set up local APIC timer on boot CPU.
1111 */
1112
1113 setup_boot_APIC_clock();
1114 }
1115
1116 /*
1117 * Early setup to make printk work.
1118 */
1119 void __init smp_prepare_boot_cpu(void)
1120 {
1121 int me = smp_processor_id();
1122 cpu_set(me, cpu_online_map);
1123 cpu_set(me, cpu_callout_map);
1124 per_cpu(cpu_state, me) = CPU_ONLINE;
1125 }
1126
1127 /*
1128 * Entry point to boot a CPU.
1129 */
1130 int __cpuinit __cpu_up(unsigned int cpu)
1131 {
1132 int err;
1133 int apicid = cpu_present_to_apicid(cpu);
1134
1135 WARN_ON(irqs_disabled());
1136
1137 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1138
1139 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1140 !physid_isset(apicid, phys_cpu_present_map)) {
1141 printk("__cpu_up: bad cpu %d\n", cpu);
1142 return -EINVAL;
1143 }
1144
1145 /*
1146 * Already booted CPU?
1147 */
1148 if (cpu_isset(cpu, cpu_callin_map)) {
1149 Dprintk("do_boot_cpu %d Already started\n", cpu);
1150 return -ENOSYS;
1151 }
1152
1153 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1154 /* Boot it! */
1155 err = do_boot_cpu(cpu, apicid);
1156 if (err < 0) {
1157 Dprintk("do_boot_cpu failed %d\n", err);
1158 return err;
1159 }
1160
1161 /* Unleash the CPU! */
1162 Dprintk("waiting for cpu %d\n", cpu);
1163
1164 while (!cpu_isset(cpu, cpu_online_map))
1165 cpu_relax();
1166 err = 0;
1167
1168 return err;
1169 }
1170
1171 /*
1172 * Finish the SMP boot.
1173 */
1174 void __init smp_cpus_done(unsigned int max_cpus)
1175 {
1176 smp_cleanup_boot();
1177
1178 #ifdef CONFIG_X86_IO_APIC
1179 setup_ioapic_dest();
1180 #endif
1181
1182 check_nmi_watchdog();
1183 }
1184
1185 #ifdef CONFIG_HOTPLUG_CPU
1186
1187 static void remove_siblinginfo(int cpu)
1188 {
1189 int sibling;
1190 struct cpuinfo_x86 *c = cpu_data;
1191
1192 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1193 cpu_clear(cpu, cpu_core_map[sibling]);
1194 /*
1195 * last thread sibling in this cpu core going down
1196 */
1197 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1198 c[sibling].booted_cores--;
1199 }
1200
1201 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1202 cpu_clear(cpu, cpu_sibling_map[sibling]);
1203 cpus_clear(cpu_sibling_map[cpu]);
1204 cpus_clear(cpu_core_map[cpu]);
1205 c[cpu].phys_proc_id = 0;
1206 c[cpu].cpu_core_id = 0;
1207 cpu_clear(cpu, cpu_sibling_setup_map);
1208 }
1209
1210 void remove_cpu_from_maps(void)
1211 {
1212 int cpu = smp_processor_id();
1213
1214 cpu_clear(cpu, cpu_callout_map);
1215 cpu_clear(cpu, cpu_callin_map);
1216 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1217 clear_node_cpumask(cpu);
1218 }
1219
1220 int __cpu_disable(void)
1221 {
1222 int cpu = smp_processor_id();
1223
1224 /*
1225 * Perhaps use cpufreq to drop frequency, but that could go
1226 * into generic code.
1227 *
1228 * We won't take down the boot processor on i386 due to some
1229 * interrupts only being able to be serviced by the BSP.
1230 * Especially so if we're not using an IOAPIC -zwane
1231 */
1232 if (cpu == 0)
1233 return -EBUSY;
1234
1235 clear_local_APIC();
1236
1237 /*
1238 * HACK:
1239 * Allow any queued timer interrupts to get serviced
1240 * This is only a temporary solution until we cleanup
1241 * fixup_irqs as we do for IA64.
1242 */
1243 local_irq_enable();
1244 mdelay(1);
1245
1246 local_irq_disable();
1247 remove_siblinginfo(cpu);
1248
1249 /* It's now safe to remove this processor from the online map */
1250 cpu_clear(cpu, cpu_online_map);
1251 remove_cpu_from_maps();
1252 fixup_irqs(cpu_online_map);
1253 return 0;
1254 }
1255
1256 void __cpu_die(unsigned int cpu)
1257 {
1258 /* We don't do anything here: idle task is faking death itself. */
1259 unsigned int i;
1260
1261 for (i = 0; i < 10; i++) {
1262 /* They ack this in play_dead by setting CPU_DEAD */
1263 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1264 printk ("CPU %d is now offline\n", cpu);
1265 if (1 == num_online_cpus())
1266 alternatives_smp_switch(0);
1267 return;
1268 }
1269 msleep(100);
1270 }
1271 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1272 }
1273
1274 __init int setup_additional_cpus(char *s)
1275 {
1276 return get_option(&s, &additional_cpus);
1277 }
1278 __setup("additional_cpus=", setup_additional_cpus);
1279
1280 #else /* ... !CONFIG_HOTPLUG_CPU */
1281
1282 int __cpu_disable(void)
1283 {
1284 return -ENOSYS;
1285 }
1286
1287 void __cpu_die(unsigned int cpu)
1288 {
1289 /* We said "no" in __cpu_disable */
1290 BUG();
1291 }
1292 #endif /* CONFIG_HOTPLUG_CPU */
This page took 0.061145 seconds and 6 git commands to generate.