[PATCH] x86_64: actively synchronize vmalloc area when registering certain callbacks
[deliverable/linux.git] / arch / x86_64 / mm / fault.c
1 /*
2 * linux/arch/x86-64/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 */
7
8 #include <linux/config.h>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/tty.h>
23 #include <linux/vt_kern.h> /* For unblank_screen() */
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/kprobes.h>
27
28 #include <asm/system.h>
29 #include <asm/uaccess.h>
30 #include <asm/pgalloc.h>
31 #include <asm/smp.h>
32 #include <asm/tlbflush.h>
33 #include <asm/proto.h>
34 #include <asm/kdebug.h>
35 #include <asm-generic/sections.h>
36
37 /* Page fault error code bits */
38 #define PF_PROT (1<<0) /* or no page found */
39 #define PF_WRITE (1<<1)
40 #define PF_USER (1<<2)
41 #define PF_RSVD (1<<3)
42 #define PF_INSTR (1<<4)
43
44 void bust_spinlocks(int yes)
45 {
46 int loglevel_save = console_loglevel;
47 if (yes) {
48 oops_in_progress = 1;
49 } else {
50 #ifdef CONFIG_VT
51 unblank_screen();
52 #endif
53 oops_in_progress = 0;
54 /*
55 * OK, the message is on the console. Now we call printk()
56 * without oops_in_progress set so that printk will give klogd
57 * a poke. Hold onto your hats...
58 */
59 console_loglevel = 15; /* NMI oopser may have shut the console up */
60 printk(" ");
61 console_loglevel = loglevel_save;
62 }
63 }
64
65 /* Sometimes the CPU reports invalid exceptions on prefetch.
66 Check that here and ignore.
67 Opcode checker based on code by Richard Brunner */
68 static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
69 unsigned long error_code)
70 {
71 unsigned char *instr;
72 int scan_more = 1;
73 int prefetch = 0;
74 unsigned char *max_instr;
75
76 /* If it was a exec fault ignore */
77 if (error_code & PF_INSTR)
78 return 0;
79
80 instr = (unsigned char *)convert_rip_to_linear(current, regs);
81 max_instr = instr + 15;
82
83 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
84 return 0;
85
86 while (scan_more && instr < max_instr) {
87 unsigned char opcode;
88 unsigned char instr_hi;
89 unsigned char instr_lo;
90
91 if (__get_user(opcode, instr))
92 break;
93
94 instr_hi = opcode & 0xf0;
95 instr_lo = opcode & 0x0f;
96 instr++;
97
98 switch (instr_hi) {
99 case 0x20:
100 case 0x30:
101 /* Values 0x26,0x2E,0x36,0x3E are valid x86
102 prefixes. In long mode, the CPU will signal
103 invalid opcode if some of these prefixes are
104 present so we will never get here anyway */
105 scan_more = ((instr_lo & 7) == 0x6);
106 break;
107
108 case 0x40:
109 /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
110 Need to figure out under what instruction mode the
111 instruction was issued ... */
112 /* Could check the LDT for lm, but for now it's good
113 enough to assume that long mode only uses well known
114 segments or kernel. */
115 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
116 break;
117
118 case 0x60:
119 /* 0x64 thru 0x67 are valid prefixes in all modes. */
120 scan_more = (instr_lo & 0xC) == 0x4;
121 break;
122 case 0xF0:
123 /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
124 scan_more = !instr_lo || (instr_lo>>1) == 1;
125 break;
126 case 0x00:
127 /* Prefetch instruction is 0x0F0D or 0x0F18 */
128 scan_more = 0;
129 if (__get_user(opcode, instr))
130 break;
131 prefetch = (instr_lo == 0xF) &&
132 (opcode == 0x0D || opcode == 0x18);
133 break;
134 default:
135 scan_more = 0;
136 break;
137 }
138 }
139 return prefetch;
140 }
141
142 static int bad_address(void *p)
143 {
144 unsigned long dummy;
145 return __get_user(dummy, (unsigned long *)p);
146 }
147
148 void dump_pagetable(unsigned long address)
149 {
150 pgd_t *pgd;
151 pud_t *pud;
152 pmd_t *pmd;
153 pte_t *pte;
154
155 asm("movq %%cr3,%0" : "=r" (pgd));
156
157 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
158 pgd += pgd_index(address);
159 if (bad_address(pgd)) goto bad;
160 printk("PGD %lx ", pgd_val(*pgd));
161 if (!pgd_present(*pgd)) goto ret;
162
163 pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address);
164 if (bad_address(pud)) goto bad;
165 printk("PUD %lx ", pud_val(*pud));
166 if (!pud_present(*pud)) goto ret;
167
168 pmd = pmd_offset(pud, address);
169 if (bad_address(pmd)) goto bad;
170 printk("PMD %lx ", pmd_val(*pmd));
171 if (!pmd_present(*pmd)) goto ret;
172
173 pte = pte_offset_kernel(pmd, address);
174 if (bad_address(pte)) goto bad;
175 printk("PTE %lx", pte_val(*pte));
176 ret:
177 printk("\n");
178 return;
179 bad:
180 printk("BAD\n");
181 }
182
183 static const char errata93_warning[] =
184 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
185 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
186 KERN_ERR "******* Please consider a BIOS update.\n"
187 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
188
189 /* Workaround for K8 erratum #93 & buggy BIOS.
190 BIOS SMM functions are required to use a specific workaround
191 to avoid corruption of the 64bit RIP register on C stepping K8.
192 A lot of BIOS that didn't get tested properly miss this.
193 The OS sees this as a page fault with the upper 32bits of RIP cleared.
194 Try to work around it here.
195 Note we only handle faults in kernel here. */
196
197 static int is_errata93(struct pt_regs *regs, unsigned long address)
198 {
199 static int warned;
200 if (address != regs->rip)
201 return 0;
202 if ((address >> 32) != 0)
203 return 0;
204 address |= 0xffffffffUL << 32;
205 if ((address >= (u64)_stext && address <= (u64)_etext) ||
206 (address >= MODULES_VADDR && address <= MODULES_END)) {
207 if (!warned) {
208 printk(errata93_warning);
209 warned = 1;
210 }
211 regs->rip = address;
212 return 1;
213 }
214 return 0;
215 }
216
217 int unhandled_signal(struct task_struct *tsk, int sig)
218 {
219 if (tsk->pid == 1)
220 return 1;
221 if (tsk->ptrace & PT_PTRACED)
222 return 0;
223 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
224 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
225 }
226
227 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
228 unsigned long error_code)
229 {
230 unsigned long flags = oops_begin();
231 struct task_struct *tsk;
232
233 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
234 current->comm, address);
235 dump_pagetable(address);
236 tsk = current;
237 tsk->thread.cr2 = address;
238 tsk->thread.trap_no = 14;
239 tsk->thread.error_code = error_code;
240 __die("Bad pagetable", regs, error_code);
241 oops_end(flags);
242 do_exit(SIGKILL);
243 }
244
245 /*
246 * Handle a fault on the vmalloc area
247 *
248 * This assumes no large pages in there.
249 */
250 static int vmalloc_fault(unsigned long address)
251 {
252 pgd_t *pgd, *pgd_ref;
253 pud_t *pud, *pud_ref;
254 pmd_t *pmd, *pmd_ref;
255 pte_t *pte, *pte_ref;
256
257 /* Copy kernel mappings over when needed. This can also
258 happen within a race in page table update. In the later
259 case just flush. */
260
261 pgd = pgd_offset(current->mm ?: &init_mm, address);
262 pgd_ref = pgd_offset_k(address);
263 if (pgd_none(*pgd_ref))
264 return -1;
265 if (pgd_none(*pgd))
266 set_pgd(pgd, *pgd_ref);
267 else
268 BUG_ON(pgd_page(*pgd) != pgd_page(*pgd_ref));
269
270 /* Below here mismatches are bugs because these lower tables
271 are shared */
272
273 pud = pud_offset(pgd, address);
274 pud_ref = pud_offset(pgd_ref, address);
275 if (pud_none(*pud_ref))
276 return -1;
277 if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))
278 BUG();
279 pmd = pmd_offset(pud, address);
280 pmd_ref = pmd_offset(pud_ref, address);
281 if (pmd_none(*pmd_ref))
282 return -1;
283 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
284 BUG();
285 pte_ref = pte_offset_kernel(pmd_ref, address);
286 if (!pte_present(*pte_ref))
287 return -1;
288 pte = pte_offset_kernel(pmd, address);
289 /* Don't use pte_page here, because the mappings can point
290 outside mem_map, and the NUMA hash lookup cannot handle
291 that. */
292 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
293 BUG();
294 return 0;
295 }
296
297 int page_fault_trace = 0;
298 int exception_trace = 1;
299
300 /*
301 * This routine handles page faults. It determines the address,
302 * and the problem, and then passes it off to one of the appropriate
303 * routines.
304 */
305 asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
306 unsigned long error_code)
307 {
308 struct task_struct *tsk;
309 struct mm_struct *mm;
310 struct vm_area_struct * vma;
311 unsigned long address;
312 const struct exception_table_entry *fixup;
313 int write;
314 unsigned long flags;
315 siginfo_t info;
316
317 /* get the address */
318 __asm__("movq %%cr2,%0":"=r" (address));
319
320 tsk = current;
321 mm = tsk->mm;
322 info.si_code = SEGV_MAPERR;
323
324
325 /*
326 * We fault-in kernel-space virtual memory on-demand. The
327 * 'reference' page table is init_mm.pgd.
328 *
329 * NOTE! We MUST NOT take any locks for this case. We may
330 * be in an interrupt or a critical region, and should
331 * only copy the information from the master page table,
332 * nothing more.
333 *
334 * This verifies that the fault happens in kernel space
335 * (error_code & 4) == 0, and that the fault was not a
336 * protection error (error_code & 9) == 0.
337 */
338 if (unlikely(address >= TASK_SIZE64)) {
339 /*
340 * Don't check for the module range here: its PML4
341 * is always initialized because it's shared with the main
342 * kernel text. Only vmalloc may need PML4 syncups.
343 */
344 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
345 ((address >= VMALLOC_START && address < VMALLOC_END))) {
346 if (vmalloc_fault(address) >= 0)
347 return;
348 }
349 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
350 SIGSEGV) == NOTIFY_STOP)
351 return;
352 /*
353 * Don't take the mm semaphore here. If we fixup a prefetch
354 * fault we could otherwise deadlock.
355 */
356 goto bad_area_nosemaphore;
357 }
358
359 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
360 SIGSEGV) == NOTIFY_STOP)
361 return;
362
363 if (likely(regs->eflags & X86_EFLAGS_IF))
364 local_irq_enable();
365
366 if (unlikely(page_fault_trace))
367 printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
368 regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
369
370 if (unlikely(error_code & PF_RSVD))
371 pgtable_bad(address, regs, error_code);
372
373 /*
374 * If we're in an interrupt or have no user
375 * context, we must not take the fault..
376 */
377 if (unlikely(in_atomic() || !mm))
378 goto bad_area_nosemaphore;
379
380 again:
381 /* When running in the kernel we expect faults to occur only to
382 * addresses in user space. All other faults represent errors in the
383 * kernel and should generate an OOPS. Unfortunatly, in the case of an
384 * erroneous fault occuring in a code path which already holds mmap_sem
385 * we will deadlock attempting to validate the fault against the
386 * address space. Luckily the kernel only validly references user
387 * space from well defined areas of code, which are listed in the
388 * exceptions table.
389 *
390 * As the vast majority of faults will be valid we will only perform
391 * the source reference check when there is a possibilty of a deadlock.
392 * Attempt to lock the address space, if we cannot we then validate the
393 * source. If this is invalid we can skip the address space check,
394 * thus avoiding the deadlock.
395 */
396 if (!down_read_trylock(&mm->mmap_sem)) {
397 if ((error_code & PF_USER) == 0 &&
398 !search_exception_tables(regs->rip))
399 goto bad_area_nosemaphore;
400 down_read(&mm->mmap_sem);
401 }
402
403 vma = find_vma(mm, address);
404 if (!vma)
405 goto bad_area;
406 if (likely(vma->vm_start <= address))
407 goto good_area;
408 if (!(vma->vm_flags & VM_GROWSDOWN))
409 goto bad_area;
410 if (error_code & 4) {
411 // XXX: align red zone size with ABI
412 if (address + 128 < regs->rsp)
413 goto bad_area;
414 }
415 if (expand_stack(vma, address))
416 goto bad_area;
417 /*
418 * Ok, we have a good vm_area for this memory access, so
419 * we can handle it..
420 */
421 good_area:
422 info.si_code = SEGV_ACCERR;
423 write = 0;
424 switch (error_code & (PF_PROT|PF_WRITE)) {
425 default: /* 3: write, present */
426 /* fall through */
427 case PF_WRITE: /* write, not present */
428 if (!(vma->vm_flags & VM_WRITE))
429 goto bad_area;
430 write++;
431 break;
432 case PF_PROT: /* read, present */
433 goto bad_area;
434 case 0: /* read, not present */
435 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
436 goto bad_area;
437 }
438
439 /*
440 * If for any reason at all we couldn't handle the fault,
441 * make sure we exit gracefully rather than endlessly redo
442 * the fault.
443 */
444 switch (handle_mm_fault(mm, vma, address, write)) {
445 case VM_FAULT_MINOR:
446 tsk->min_flt++;
447 break;
448 case VM_FAULT_MAJOR:
449 tsk->maj_flt++;
450 break;
451 case VM_FAULT_SIGBUS:
452 goto do_sigbus;
453 default:
454 goto out_of_memory;
455 }
456
457 up_read(&mm->mmap_sem);
458 return;
459
460 /*
461 * Something tried to access memory that isn't in our memory map..
462 * Fix it, but check if it's kernel or user first..
463 */
464 bad_area:
465 up_read(&mm->mmap_sem);
466
467 bad_area_nosemaphore:
468 /* User mode accesses just cause a SIGSEGV */
469 if (error_code & PF_USER) {
470 if (is_prefetch(regs, address, error_code))
471 return;
472
473 /* Work around K8 erratum #100 K8 in compat mode
474 occasionally jumps to illegal addresses >4GB. We
475 catch this here in the page fault handler because
476 these addresses are not reachable. Just detect this
477 case and return. Any code segment in LDT is
478 compatibility mode. */
479 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
480 (address >> 32))
481 return;
482
483 if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
484 printk(
485 "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
486 tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
487 tsk->comm, tsk->pid, address, regs->rip,
488 regs->rsp, error_code);
489 }
490
491 tsk->thread.cr2 = address;
492 /* Kernel addresses are always protection faults */
493 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
494 tsk->thread.trap_no = 14;
495 info.si_signo = SIGSEGV;
496 info.si_errno = 0;
497 /* info.si_code has been set above */
498 info.si_addr = (void __user *)address;
499 force_sig_info(SIGSEGV, &info, tsk);
500 return;
501 }
502
503 no_context:
504
505 /* Are we prepared to handle this kernel fault? */
506 fixup = search_exception_tables(regs->rip);
507 if (fixup) {
508 regs->rip = fixup->fixup;
509 return;
510 }
511
512 /*
513 * Hall of shame of CPU/BIOS bugs.
514 */
515
516 if (is_prefetch(regs, address, error_code))
517 return;
518
519 if (is_errata93(regs, address))
520 return;
521
522 /*
523 * Oops. The kernel tried to access some bad page. We'll have to
524 * terminate things with extreme prejudice.
525 */
526
527 flags = oops_begin();
528
529 if (address < PAGE_SIZE)
530 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
531 else
532 printk(KERN_ALERT "Unable to handle kernel paging request");
533 printk(" at %016lx RIP: \n" KERN_ALERT,address);
534 printk_address(regs->rip);
535 printk("\n");
536 dump_pagetable(address);
537 tsk->thread.cr2 = address;
538 tsk->thread.trap_no = 14;
539 tsk->thread.error_code = error_code;
540 __die("Oops", regs, error_code);
541 /* Executive summary in case the body of the oops scrolled away */
542 printk(KERN_EMERG "CR2: %016lx\n", address);
543 oops_end(flags);
544 do_exit(SIGKILL);
545
546 /*
547 * We ran out of memory, or some other thing happened to us that made
548 * us unable to handle the page fault gracefully.
549 */
550 out_of_memory:
551 up_read(&mm->mmap_sem);
552 if (current->pid == 1) {
553 yield();
554 goto again;
555 }
556 printk("VM: killing process %s\n", tsk->comm);
557 if (error_code & 4)
558 do_exit(SIGKILL);
559 goto no_context;
560
561 do_sigbus:
562 up_read(&mm->mmap_sem);
563
564 /* Kernel mode? Handle exceptions or die */
565 if (!(error_code & PF_USER))
566 goto no_context;
567
568 tsk->thread.cr2 = address;
569 tsk->thread.error_code = error_code;
570 tsk->thread.trap_no = 14;
571 info.si_signo = SIGBUS;
572 info.si_errno = 0;
573 info.si_code = BUS_ADRERR;
574 info.si_addr = (void __user *)address;
575 force_sig_info(SIGBUS, &info, tsk);
576 return;
577 }
578
579 DEFINE_SPINLOCK(pgd_lock);
580 struct page *pgd_list;
581
582 void vmalloc_sync_all(void)
583 {
584 /* Note that races in the updates of insync and start aren't
585 problematic:
586 insync can only get set bits added, and updates to start are only
587 improving performance (without affecting correctness if undone). */
588 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
589 static unsigned long start = VMALLOC_START & PGDIR_MASK;
590 unsigned long address;
591
592 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
593 if (!test_bit(pgd_index(address), insync)) {
594 const pgd_t *pgd_ref = pgd_offset_k(address);
595 struct page *page;
596
597 if (pgd_none(*pgd_ref))
598 continue;
599 spin_lock(&pgd_lock);
600 for (page = pgd_list; page;
601 page = (struct page *)page->index) {
602 pgd_t *pgd;
603 pgd = (pgd_t *)page_address(page) + pgd_index(address);
604 if (pgd_none(*pgd))
605 set_pgd(pgd, *pgd_ref);
606 else
607 BUG_ON(pgd_page(*pgd) != pgd_page(*pgd_ref));
608 }
609 spin_unlock(&pgd_lock);
610 set_bit(pgd_index(address), insync);
611 }
612 if (address == start)
613 start = address + PGDIR_SIZE;
614 }
615 /* Check that there is no need to do the same for the modules area. */
616 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
617 BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
618 (__START_KERNEL & PGDIR_MASK)));
619 }
620
621 static int __init enable_pagefaulttrace(char *str)
622 {
623 page_fault_trace = 1;
624 return 0;
625 }
626 __setup("pagefaulttrace", enable_pagefaulttrace);
This page took 0.074648 seconds and 5 git commands to generate.